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 ABSTRACT 

 The propagation of surface waves in a fluid- saturated porous 

isotropic layer over a semi-infinite homogeneous elastic medium 

with an irregularity for free and rigid interfaces have been studied. 

The rectangular irregularity has been taken in the half-space. The 

dispersion equation for Love waves is derived by simple 

mathematical techniques followed by Fourier transformations.  It can 

be seen that the phase velocity is strongly influenced by the wave 

number, the depth of the irregularity, homogeneity parameter and the 

rigid boundary. The dimensionless phase velocity is plotted against 

dimensionless wave number graphically for different size of 

rectangular irregularities and homogeneity parameter with the help of 

MATLAB graphical routines for both free and rigid boundaries for 

several cases. The numerical analysis of dispersion equation indicates 

that the phase velocity of surface waves decreases with the increase 

in dimensionless wave number.  The obtained results can be useful to 

the study of geophysical prospecting and understanding the cause and 

estimating of damage due to earthquakes.  

 © 2019 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 URFACE waves propagation with and without the presence of irregularities and rigidity has been studied by 

many researchers at the interface (e.g., Love [1], Ewing et al [2],Chatopadhyay [3], Gupta et al [4]  and others) . 

However, most of the research done on this subject does not concern porous media filled with fluid with irregular 

interface. Many researchers have studied the propagation of Love waves by taking various irregularities, in-

homogeneities and boundaries of the Earth. Kundu et al. [5] studied the effect rigidity of the propagation of Love 

waves in porous layer lying over pre-stressed half space. The dispersion equation of Love waves propagating in an 

irregular pre-stressed anisotropic porous stratum under initial stress had been studied by Chattaraj et al.[6]. Madan et 

al. [7] and Kumar et al [8] studied the Love wave propagation in an irregular fluid saturated porous anisotropic layer 

and shear waves propagation in multilayered medium including an irregular fluid saturated porous stratum with rigid 
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boundary respectively. The propagation of Love waves in a heterogeneous layer lying between homogeneous and 

inhomogeneous isotropic elastic half-spaces had been discussed by Kakar and Gupta [9]. Kumari [10] studied about 

reflection and transmission of longitudinal wave at micropolar viscoelastic solid/fluid saturated incompressible 

porous solid interface. Kumar et al. [11] derived the dispersion equation for Love waves in a model consisting of 

porous isotropic layer over a non-homogeneous elastic medium with half-space rectangular irregularity and 

observed that the phase velocity is significantly influenced by wave number, irregularity and in-homogeneity 

parameter. Kakar [12] discussed the propagation of Love waves in an isotropic layer lying between orthotropic and 

inhomogeneous half spaces by considering five different cases and also derived the dispersion equations for each 

case.  Barak and Kaliraman [13, 14] investigate reflection and refraction phenomena of elastic waves propagating 

through imperfect interface of solids and propagation of elastic waves at micropolar viscoelastic solid/fluid saturated 

incompressible porous solid interface. Kaliraman and Poonia [15] discussed about elastic wave propagation at 

imperfect boundary of micropolar elastic solid and fluid saturated porous solid half space. Kumar et al.[16] studied 

the effect of in-homogeneity and rigid interfaced  on propagation of Love waves in a porous isotropic layer over an 

elastic medium with a rectangular irregularity and obtained dispersion equation as a function of phase velocity and 

wave number.  

In this paper the effect of rectangular irregularity and rigidity on Love wave propagation in a fluid- saturated 

porous layer over a homogeneous elastic half space has been studied. By using Fourier transformations the 

dispersion equation have been derived. It has been observed that the phase velocity is significantly influenced by the 

wave number, the depth of the irregularity, homogeneity parameter and the rigid boundary. The dimensionless phase 

velocity is plotted against dimensionless wave number and is shown graphically for different size of rectangular 

irregularities and homogeneity parameter for both free and rigid boundaries for several cases. The numerical 

analysis of dispersion equation indicates that the dimensionless wave number increases with the decrease in the 

phase velocity for Love waves. The obtained results are very useful to study the cause and estimating of damage due 

to earthquakes.  

2    FREE SURFACE PROBLEM 

2.1 Formulation of the problem 

In this paper, a fluid saturated porous isotropic layer of thickness T, resting on a homogeneous elastic half space 

with a rectangular irregularity at the interface with length s and depth 'T has been assumed. The Cartesian 

coordinate system (x1, x2, x3) is chosen with x3-axes taken vertically downward in the half space and x1-axes is 

chosen parallel to the layer in the direction of propagation of the disturbance. The origin is placed at the middle 

point of the interface irregularity and the source of the disturbance is placed on positive x3 axes at a distance d (d > 

'T ) from the origin. Therefore, the fluid saturated porous layer describes the medium MI: 3 0T x   , and the 

lower half space describes the medium MII: 0 3x   . The geometry of the considered problem is shown in Fig.1. 

 

 
Fig.1 

Geometry of the model considered for fluid saturated porous layer over homogeneous half space with free surface. 

 

The irregularity interface is defined as: 
 

 3 1x  =  h x  (1) 

 

where  
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     where 
'T

s
   and  1 . (2) 

2.2 Displacement equations 

For Love waves propagating in x1-direction in Medium MI, the displacements in x3-direction are expressed as: 

 
( ) ( ) 0,I Iu w                ( ) ( )

1 3( , , ),I Iv v x x t
 

( ) ( ) 0,I IU W 
            

( ) ( )
1 3( , , ),I IV V x x t  

(3) 

 

and the equation of motion for the fluid saturated porous isotropic layer in the absence of body forces are given by 

[10]: 

 

2 2( ) 2 2
2 ( ) (12 11

11 112 2 2
1 3 22 11

( )
( , ) 0.

2

I
I It t

t t

t t

b
b v V

x x b






        
                     

       
            

 (4) 

 

where ( )I  and ( )I  are Lame’s elastic constants. The displacement equations of homogeneous half space are 

 
( ) ( ) 0,II IIu w 

    
     ( ) ( )

1 3( , , ),II IIv v x x t  
       

  

 

and corresponding equation of motion for Love waves, are [12] 

 

2 2 2 ( )
( )

2 2 2 2
1 3 2

1
.

II
II v

v
x x t

    
  

    
       

            
 (5) 

2.3 Boundary conditions 

The boundary conditions for the considered Love wave propagation problem are: 

At the free surface 3x T  , the shear stress component vanishes, i.e.,  

 
( )

1 332 ( , , ) 0.
I

x x T t          (6) 

 

The stresses are continuous at the interface 3 1( )x h x : 

 
( ) ( ) ( ) ( ) ( )

( )
1 1

3 1 3 1

'( ) '( )
2

I I I II II
IIv v v v

h x h x
x x x x


  

      
              

      (7) 

   

 

where  1
1

1

( )
'( )

dh x
h x

dx
 . 

At the interface 3 1( )x h x , the displacements are continuous:  

 
( ) ( )

1 3 1 1 3 1( , ( ), ) ( , ( ), ).I IIv x x h x t v x x h x t          (8) 
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2.4 Solution of the problem 

2.4.1 Mathematical analysis  

For Love wave of angular frequency   changing harmonically with time and propagating in x1-direction in Medium 

MI and MII, we consider 

 
( )( )

3 1 3 10( , , ) ( , )exp( ),
IIv x x t v x x i t

 
( )( )

3 1 3 10( , , ) ( , )exp( ),
IIIIV x x t V x x i t   

( )( )
3 1 3 10( , , ) ( , )exp( ),

IIIIv x x t v x x i t      

(9) 

 

On substituting from Eq. (9) into Eqs. (4) and (5), we obtain 

 

( ) 2 2
( ) ( )2

1 0 02 2
1 3

( , ) 0,
2

I
I I

v V
x x




   
         

  (10) 

 
( ) ( )2 2 2

( )0 0
02 2 2

1 3

0,

II II
IIv v

v
x x





 
  

 
 (11) 

 

where 
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 
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 

   

  

 

where   and Gc  are the dimensionless frequency and velocity of shear wave in the porous layer respectively. 

Fourier transformations of Eqs. (10) and (11) are, therefore 

 
( )2

( )20
1 02

3

0,

I
Id v

v
dx

 

 
( )2

( )20
1 02

3

0,

I
Id V

V
dx

 

 
( )2

( )20
2 02

3

0.

II
IId v

v
dx

   

(12) 

              

where 
2 2

2 2 2 21
1 2(1) 2

2

2
, .

 
   

 

   
         
   

  

2.4.2 Solution analysis 

The solutions of Eqs. (12) are: 
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( )
1 3 1 30 cos sin ,

I
v A x B x  

 
( )

1 3 1 30 cos sin ,
I

V A x B x  
 

( )
2 30 exp( ),

II
v D x   

(13) 

 
        

where , , , ,A B A B D are functions of .  

By applying inverse Fourier transformations, we have 

 

1( )
3 1 1 3 1 30

1
( , ) ( cos sin ) ,

2

I i x
v x x A x B x e d

  








 
 

1( )
3 1 1 3 1 30

1
( , ) ( cos sin ) ,

2

I i x
V x x A x B x e d

  








 
 

2 3 2 3 2 1( )
3 10

2

1 2
( , ) ( ) ,

2

x xII d i x
v x x De e e e d

    
 



  



   

(14) 

 

where the second term in the right side of the value of ( )
3 10 ( , )

II
v x x  is introduced due to the source in the lower 

medium. 

The relations between the constants ,A B and A, B are provided by Eq. (4) and due to small value of  , we can 

set A, B, D as: 

 

0 1 0 1 0 1, , .A A A B B B D D D         (15) 

 

Since the boundary is not uniform, the terms , ,A B D
 
 in Eq. (14) are also functions of  . Expanding these 

terms in ascending powers of 
 
and keeping in view that 

 
is so small that we can neglect second degree term and 

the terms containing higher powers of 
 
and , ,A B D can be approximated as in Eq. (15). In physical situations, 

when the depth 'T  of the irregular boundary is too small with respect to the length of the boundary s, the above 

assumptions are justified. Further for small .
 

 

1 1 11 ,cos 1,sinhe h h h h              

 

where  is any quantity. 

Now, by using boundary condition (6), we obtain 

 

0 1 1 0 1 1( )sin ( )cos 0.A A T B B T        (16) 

 

Now we define Fourier Transform of h(x1) as: 

 

1

_

1 1( ) ( ) ,
i x

h h x e d x






   (17) 

 

and the inverse Fourier Transform is 

 

1

_

1

1
( ) ( ) ,

2

i x
h x h e d

 








   (18) 
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Therefore,  

 

1

_

1'( ) ( ) ,
2

i xi
h x h e d

  









   (19) 

 

Using boundary condition (8), we have 

 

2 1 2 1
0 1 2 0 1 0 0 1 1

2

2
[( 2 )] ( ) [( ) ) ( )] .

d i x d i x
B D e h x e d D A e D A e d

        


 

   

 

         (20) 

 

Now by using Eq. (18), Eq. (20) takes the form of 

 

2 1 2 1

_
( )

0 1 2 0 0 0 1 1
2

2
[( 2 )] ( ) [(( ) ) ( )] .

2

d i x d i x
B D e h e d d D A e D A e d

    
      

 

  

    

  

 
       
 
 
    (21) 

 

Putting k   for the inner integral in the left hand side of Eq. (21), so that   may be treated as a constant 

such that d dk   , replacing   by k in the right hand side of Eq. (21), and finally after applying the Fourier 

transformations as defined in Eq. (17), we have 

 

2
0 0 1 1 1

2

2
(( ) ) ( ) ( )

d
D A e D A R k

  



      (22) 

where 

  

1( )R k  2

_

0 1 2 0

1
[( 2 )] ( )

2

d kB D e h d
     





  



   (23) 

 

Similarly, by applying boundary condition (7) using Eqs. (17)-(19), we obtain 

 

2( ) ( ) ( ) ( )
0 1 2 0 2 1 1 1 2( / 2 ( 2 )) ( / 2) ( )

dI II II IB D e D B R k
         

      (24) 

 

where  

 

2 2

_
2 ( ) ( ) ( ) ( )

2 1 0 2 2 0 0 0
2

1 2
( ) ( / 2) ( )( 2 ) (( / 2) ( )) ( ) .

2

k

d dI II I IIR k A q D e k A D e h d

 

          
 

 

 



 
       

 
  (25) 

 

Equating the coefficients of like terms of   from Eqs. (16), (22), and (24), we obtain 

 

0 1 0 1sin cos 0,A T B T  
 

2
0 0

2

2
,

d
A D e






 

 
2( ) ( ) ( )

1 0 2 0( / 2) 2 ,
dI II IIB D e

     
 

 

1 1 1 1sin cos 0,A T B T  
 

1 1 1( ),D A R k 
 

( ) ( )
1 1 2 1 2( / 2) ( ).I IIB D R k      

(26) 

 

Solving the above six equations given as in (26), we deduce that 
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2 ( ) 2
2 1

0
2

2 ( ) tan
,

( )

d IIe T
A

E k

   








 
2( )

1
0

4 tan
,

( )

dII e T
B

E k

 




 
2 ( ) ( )

2 1 1
0

2

2 ( ( / 2) tan )
,

( )

d II Ie T
D

E k

     








 
( )

2 2 1
1 ,

( )

IIR R
A

E k

 


 
(2)

2 2 1 1
1

( ) tan
,

( )

R R T
B

E k

   


 
( )

2 1 1 1
1

( / 2) tan
.

( )

IR R T
D

E k

  
  

(27) 

 

where ( ) ( )
2 1 1( ) ( / 2) tan( )II IE k T        

2.4.3 Displacements equation for surface waves 

The displacement vector in the fluid saturated isotropic layer is 

 

22

1

( )( )
( ) 2 2 1

1 3 1 1 30 ( )

( )1 4
1 (cos tan( )sin ) ,

2 ( ) 4

dIIdII
I ikx

II

R R ee
v x T x e dk

E k

   
  

 

 




 
   

  
  (28) 

 

Therefore, by following Kumar et al. [11], the displacement in the isotropic layer is 

 

2

1

2

( )
( )

1 3 1 1 30

1 4
(cos tan( )sin ) .

'2
( ) 1 ( )

2

dII
I ikx

d

e
v x T x e dk

T
E k k e






  




 




 
 
 

 

  
(29) 

 

The value of this integral depends entirely on the contribution of the poles of the integrand and poles are given 

by 

 

2
'

( ) 1 ( ) 0
2

dT
E k k e


 
  

 
 (30) 

 

This implies  

 

 ( )( )
1 1 1( ) 1 1

2 1 2 1

tantan( )
' tan 0

2 2

II
II q TT

T T
     

    
   

        
   

 (31) 

 

If c is the common wave velocity of wave propagating along the surface, then we can set in Eq. (31) ,ck   

(  is the circular frequency and k  is the wave number), 1 1P k  and 2 2P k   where 

 

 

 

 

1

2 2 2

1 2 2

2 2
. ( ) . . ( )

2

I

I I
G G

c c
P F i R
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
 

 

  
    

  
     
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2

2 2
2

1
c

P

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Solving Eq. (31), we obtain  

 
 

 

( ) 2
2 1

1

1 2

' / 2
tan

( (1 ') / 2 ' )

III

I

P T P k
P kT

P QkT P T k

 






 
 (32) 

 

Since the quantity 2
1P  is complex, so we have 

 

1 1 2 ,P k ik   (33) 

 

where  

 

     

1

1 2
2 2 22 2 2

1,2 2 2 2

1 2 2 2
( ) 1 . ( ) ( ) 1

2 I I I
G G G

c c c
k F R F

c c c
  

  

  
                                                          

 (34) 

 

 

Therefore with the help of Eq. (33), the dispersion Eq. (32) for Love waves, reduces to 

 

1 2tan( ) r ik ik kH A iA    (35) 

 

where 

 

 
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2 2
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A

QkT
k k P T k
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  
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2 2
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

  
    

  
  

 
 

  
 
 

 

 

 

   

For small values of 2k ,we obtain  

 

1 2
1 2

2 1

tan
tan( ) .

1 tan

k kT ik kh
k ik kT

ik kT k kT


 


 (36) 

 

Using the expressions for rA , iA  and Eq. (36) and separating real and imaginary parts of Eq. (35) to obtain two 

real equations  

 

1 2 2 1
2

tan , (1 .tan )
1

r
r i

i

A
k kT k kT A k kT k kT A

A k kT
  


 (37) 

 

The dispersion equation for Love waves can be obtain from the real part of Eq. (35), i.e. ,  

 

1 2
2

tan (1 ).
1

r
r i

i

A
k kT A A k kT

A k kT
  


 (38) 
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3    RIGID BOUNDARY PROBLEM 

3.1 Formulation of the problem 

A fluid saturated porous isotropic layer of thickness T with rigid boundary, resting on a homogeneous elastic half 

space has been considered. The Cartesian coordinate system (x1, x2, x3) is chosen with x3-axes taken vertically 

downward in the half space and x1-axes is chosen parallel to the layer in the direction of propagation of the 

disturbance by taking a rectangular irregularity with length s and depth 'T  with origin at the middle point of the 

interface irregularity and the source of the disturbance is placed on positive x3-axes at a distance d (d> 'T ) from the 

origin. Therefore, the upper layer describes the medium MI: 3 0T x   , and the homogeneous elastic half space 

describes the medium MII: 30 x   . The geometry of the problem is shown in Fig. 2. 

 

 
Fig.2 

Geometry of the problem for fluid saturated porous layer over homogeneous half space with rigid boundary. 

3.2 Equation of love waves propagation over rigid surface and boundary conditions 

3.2.1 Displacement equations 

The basic governing equations for this medium will be same as for the medium considered for free surface i.e., from 

Eqs. (1) to (5). 

3.2.2 Boundary conditions 

The boundary conditions for the considered model are: 

The displacement component vanishes at the rigid surface 3x T  , i.e., 

 
( )

1 3( , , ) 0Iv x x T t    (39) 

 

The continuity of stress component at the interface 1( )z h x that is 

 
( ) ( ) ( ) ( ) ( )

( )
1 1

3 1 3 1

'( ) '( )
2

I I I II II
IIv v v v

h x h x
x x x x


  

      
              

 (40) 

 

where 1
1

1

( )
'( )

dh x
h x

dx
 . 

The displacements are also continuous at the interface 3 1( )x h x :  

 
( ) ( )

1 3 1 1 3 1( , ( ), ) ( , ( ), ).I IIv x x h x t v x x h x t     (41) 
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Now, by using boundary condition (39), we obtain 

 

0 1 1 0 1 1( )cos ( )sin 0.A A T B B T        (42) 

 

By using boundary conditions (40) and (41), we obtain Eqs. (22) and (24). 

Now, by equating the coefficients of like powers of   from Eqs. (42), (22), and (24), we obtain a set of six 

equations  

 

0 1 0 1cos sin 0,A T B T  
 

2
0 0

2

2
,

d
A D e






 

 
2( ) ( ) ( )

1 0 2 0( / 2) 2 ,
dI II IIB D e

     
 

 

1 1 1 1cos sin 0,A T B T  
 

1 1 1( ),D A R k 
 

( ) ( )
1 1 2 1 2( / 2) ( ).I IIB D R k      

(43) 

 

The values of 0 0 0 1 1 1, , , , ,A B D A B D  are obtained by solving above set of equations and the corresponding values 

are given by  

 

2( )
1

0
1

4 tan
,

( )

dII e T
A

E k

 



 
2( )

0
1

4
,

( )

dII e
B

E k

 



 
2 ( ) ( )

2 1 1
0

2 1

(2 tan )
,

( )

d II Ie T
D

E k

     








 
( )

2 2 1 1
1

1

( ) tan
,

( )

IIR R T
A

E k

  


 
( )

2 2 1
1

1

,
( )

IIR R
B

E k

 


 
( )

2 1 1 1
1

1

2 tan
,

2 ( )

IR T R
D

E k

  
  

(44) 

 

where ( ) ( )
1 2 1 1( ) tan ( / 2)II IE k T       

Therefore the equation of the displacement vector in the isotropic layer is 

 

22

1

( )( )
( ) 2 2 1

1 3 1 1 30 ( )
1

( )1 4
1 (sin tan( )cos ) ,

2 ( ) 4

dIIdII
I ikx

II

R R ee
v x T x e dk

E k

   
  

 

 




 
   

  
  (45) 

or 

 

2

1

2

( )
( )

1 3 1 1 30

1

1 4
(sin tan( )cos ) ,

'2
( )[1 ( ) ]

2

dII
I ikx

d

e
v x T x e dk

T
E k k e






  




 




 


  (46) 

 

The value of the integral in Eq.(46) depends on the contribution of the poles of the integrand and the poles are 

located at the roots of the equation 
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2
1

'
( )[1 ( ) ] 0

2

dT
E k k e

   (47) 

 

On simplification 

 
   

 

( )
2 2 1

1 ( ) 2
2 1

' ( 2 )
tan ,

2 '

I III

III

T kP Q P P
P kT

P T k P

  

 

 



 (48) 

 

where, the quantity 2
1P  is complex, so we have 

 

1 1 2 ,P k ik 
 

1

1 2
2 2 22 2 2

1,2 ( ) 2 ( ) 2 ( ) 2

1 2 2 2
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                                       

 

 

 

Eq. (48) gives 

 

1 2tan( ) r ik ik kT A iA    (49) 

 

where 
   

  

 
2 ( ) 2

( ) ( ) ( ) ( )
2 2 5 1 2 22 2

2 2
( )2 ( ) 2

( ) 2
2 2 2

' ( 2 ) ' . ( ) ' . . ( )
2

,

'
2 ' . ( ) . . ( )

2 2

I
I II II I

G G

r
II

II

G G

c c
T kP Q P C k P T k F T k k R

c c
A

T k kc c
P T k F R

c c


     


  

   
             


     
                 

 

 
2 2 ( )

( ) ( ) ( ) ( ) ( )
2 2 1 2 22 2

2 2
2 ( ) ( ) 2

( )
2 22 2

' ( 2 ) . ' . . ( ) ' . ( )
2

.

2 ' . ( ) ' . . . ( )
2 2

I
I II I I II

G G

i
I I

II

G G

c c
T kP Q P k T k R k P T k F

c c
A

c c
P T k F T kk R

c c


      

 
  

   
             


     
                 

 

 

 

 

Due to small values of 2k ,we have  

 

1 2
1 2

2 1

tan
tan( ) .

1 tan

k kT ik kT
k ik kT

ik kT k kT


 


 (50) 

 

Using the expressions for rA , iA  and Eq. (50) and separating real and imaginary parts of Eq. (49) to obtain two 

real equations  

 

1 2 2 1
2

tan , (1 .tan ) .
1

r
r i

i

A
k kT k kT A k kT k kT A

A k kT
  


 (51) 

 

The dispersion equation for Love waves is obtained from the real part of Eq. (49) and is of the form 
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1 2
2

tan (1 ).
1

r
r i

i

A
k kT A A k kT

A k kT
  


 (52) 

4    NUMERICAL ANALYSIS AND PLOTS 

In this section, we wish to examine the effect of irregularity present in the layer by varying the phase velocity 

( / Gc c ) with wave number ( kT ) for different values of homogeneity parameter for  free  as well as rigid surface. 

By using MATLAB graphical routines and following results:  

(i) For fluid saturated isotropic layer, MI [13] 

 
  10 27.10 10 /
I

N m  
        

  33321 /
I

kg m 
        

 

 

(ii)  For homogeneous half space, MII [13] 

 
  10 26.77 10 /
II

N m  
    

 
  33323 /
II

kg m 
         

 

 

                     We obtain following figures and graphs:   
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Fig.3  

Variations of ( / Gc c ) with ( kT ) in a fluid saturated porous 

isotropic layer with free surface for different values of  

'/T T (=0.15, 0.30, 0.45) when q=0. 
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Fig.4  

Variations of  ( / Gc c ) with ( kT ) in a fluid saturated porous 

isotropic layer with free surface for different values of '/T T  

(=0.15, 0.30, 0.45) when q=1. 
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Fig.5  

Variations of ( / Gc c ) with ( kT ) in a fluid saturated porous 

isotropic layer with free surface for different values of '/T T  

(=0.15, 0.30, 0.45) when q=2. 
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Fig.6  

Variations of ( / Gc c ) with ( kT ) in a fluid saturated porous 

isotropic layer with free surface for different values of '/T T  

(=0.15, 0.30, 0.45) when q=3. 
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Fig.7  

Variations of ( / Gc c ) with ( kT ) in a fluid saturated porous 

isotropic layer with free surface for different values of '/T T  

(=0.15, 0.30, 0.45) when q=4. 
 

  

10 11 12 13 14 15 16 17
-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

Dimensionless Wave Number

D
im

e
n

s
io

n
le

s
s
 P

h
a
s
e
 V

e
lo

c
it

y

q=0

T'/T=0.45

T'/T=0.15

T'/T=0.30

 

 

 

 

 

 

 

 

 

Fig.8  

Variations of ( / Gc c ) with ( kT ) in a fluid saturated porous 

isotropic layer over rigid boundary for different values of '/T T  

(=0.15, 0.30, 0.45) when q=0. 
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Fig.9  

Variations of  ( / Gc c ) with ( kT ) in a fluid saturated porous 

isotropic layer over rigid boundary for different values of '/T T  

(=0.15, 0.30, 0.45) when q=1. 
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Fig.10  

Variations of  ( / Gc c ) with ( kT )  in a fluid saturated porous 

isotropic layer over rigid boundary for different values of '/T T  

(=0.15, 0.30, 0.45) when q=2. 
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Fig.11 

Variations of  ( / Gc c ) with ( kT ) in a fluid saturated porous 

isotropic layer over rigid boundary for different values of '/T T  

(=0.15, 0.30, 0.45) when q=3. 
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Fig.12 

Variations of  ( / Gc c ) with ( kT ) in a fluid saturated porous 

isotropic layer over rigid boundary for different values of '/T T  

(=0.15, 0.30, 0.45) when q=4. 

 

In above figures we have plotted the dimensionless phase velocity ( Gc c/ ) against the dimensionless wave 

number ( kT ). It is interesting to note that      T T T G
T T T

kT kT kT c c' ' '
0.15 0.30 0.45

; / 0
  

    at the free surface 
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for different values of q (i.e., q=0, 1, 2, 3, 4), but      T T T G
T T T

kT kT kT c c' ' '
0.15 0.30 0.45

; / 0
  

    for q (q= 0, 1, 2) 

and      T T T G
T T T

kT kT kT c c' ' '
0.15 0.30 0.45

; / 0
  

     for q (q=3, 4) over rigid boundary in all the cases. And 

the wave number decreases with the increase in the value of the homogeneity parameter q over rigid boundary and 

increases over free surface. 

5    CONCLUSIONS 

The propagation of Love waves in an irregular fluid saturated porous isotropic layer with free and rigid boundary 

over a homogeneous isotropic half space has been discussed in the present study. Simple mathematical techniques 

followed by Fourier transformation  are applied to find the displacement vector in the porous layer. The effect of 

rigidity and dimensionless wave number on dispersion curve is shown graphically by using MATLAB graphical 

routines for different values of q and the results are compared with free surface boundaries. Variation of phase 

velocity for different ratio of irregularity depth to the layer width and for different values of homogeneity parameter 

has been studied and shown graphically. From above numerical analysis, it may be conclude that: 

(i) It is observed from graphs that with the increase in the value of the homogeneity parameter q, the 

dimensionless wave number also increases.  

(ii) The numerical analysis of dispersion equation indicates that the dimensionless wave number increases with 

the decrease in the phase velocity of Love waves. 

(iii) It is noticed that the phase velocity Gc c/  of Love waves is affected by the ratio of height of irregularity 

with the height of the layer i. e., T T'/  and the phase velocity Gc c/  increases with the increase in the 

value ofT T'/ . 

(iv) It is observed from all graphs and figures that the dimensionless phase velocity Gc c/  increases over free 

surface, but decreases over rigid boundary with the increase in the value of the parameter q.  

Hence, it is concluded that the irregular fluid saturated porous isotropic layer with rigid boundary as well as free 

surface has a significant effect on the propagation of Love waves, and the phase velocity in a layer with irregularity 

is affected by not only the shape of irregularity, but also by wave number, rigid boundary, homogeneity parameter, 

the ratio of the depth of the irregularity to layer width and layer structure. From above discussion, it can be said that 

the obtained results in this research paper are useful for the study of various fields of geophysics and to understand 

the cause and estimating of damage due to earthquakes. 
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