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 ABSTRACT 

 This paper develops the Refined Zigzag Theory (RZT) for 

nonlinear dynamic response of an axially moving functionally 

graded (FG) Nano beam integrated with two magnetostrictive face 

layers based on the modified couple stress theory (MCST). The 

Sandwich Nano beam (SNB) subjected to a temperature difference 

and both axial and transverse mechanical loads. The material 

properties of FG core layer depend on the environment temperature 

and are assumed to vary in thickness direction. The SNB is 

surrounded by elastic medium, which is simulated by visco-

Pasternak model. The von-Karman nonlinear strain-displacement 

relationships are employed to consider the effect of geometric 

nonlinearities. In order to obtain governing motion equations and 

boundary conditions the energy method as well as Hamilton’s 

principle is applied. The differential quadrature method (DQM) is 
used for space domain and the Newmark-β method is taken into 

account for time domain response of the axially moving SNB. The 

detailed parametric study is conducted to investigate the effects of 

surrounding elastic medium, material length scale parameter, 

magnetostrictive layers, temperature difference, environment 

temperature, velocity of the SNB, axial and transverse mechanical 

loads and volume fraction exponent on the dynamic response of the 

SNB. Results indicate that the maximum deflection of the system 

can be controlled by employing negative values of velocity 

feedback gain values. In addition, the system loses its stability 

when the velocity of SNB is increased.               

© 2020 IAU, Arak Branch. All rights reserved. 

 Keywords: Nonlinear dynamic response; Magnetostrictive; 

Axially moving Nano beam; Visco-Pasternak; Refined zigzag 
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1    INTRODUCTION 

 ANDWICH beams are one of the most important of sandwich structures, which consists of two relatively thin 
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and stiff faces at bottom, and top that perfectly bonded to a thick lightweight core. In fact, the face sheets have 

enough stiffness and strength while the core layer chosen from lightweight and stiff materials. Due to this fact, they 

can be used in many engineering structures especially in aircrafts, space vehicles, automobile, electronics and others 

[1-7]. In order to analyze the mechanical response of sandwich beams different theories such as layer-wised theories 

(LW) and also equivalent single-layer theories (ESL), which contains classical laminate theory (CLT) and first order 

shear deformation theory can be applied. Among the mentioned models, CLT yields inaccurate results in compare 

with other theories since it neglects the shear strains and stresses. On the other hand, the weakness point of the 

FSDT is that its results depend on the shear correction factor. To solve the problem of FSDT, higher order beam 

theories (HOBTs) have been introduced and implemented by many researchers [8-11]. Akgoz and Civalek [8] 

employed a trigonometric shear deformation beam model to investigate the mechanical responses of isolated 

microtubules and included that effects of shear deformation become more significant for smaller shear modulus and 

aspect ratios. HOBT including non-linear distribution of shear stress through thickness of laminated beam was 

presented by Ozutok and Madenci [9] to analyze the static behavior of laminated composite beams. Shao et al. [10] 

presented a unified formulation which was based on a general refined shear deformation beam theory to conduct free 

vibration analysis of composite laminated beams subjected to general boundary conditions. Zhang and Taheri [11] 

simulated the dynamic pulsebuckling and postbuckling response of fiber-reinforced (FRP) laminated beams using 

higher order shear deformation theory. Although using HOBTs solve the problem of using other ESL theories such 

as CLT and FSDT, but generally ESL theories predicts inaccurate results for thick and especially sandwich beams. 

Therefore, using LW theories can be one of the choice of researchers. But the problem of employing LW theories 

for sandwich structures is that even though, LW theories are more accurate than ESL theories, they are not suitable 

especially for multilayered structures since the numbers of unknowns are proportional to the number of layers [12]. 

However, since in zigzag (ZZ) theories the number of unknowns are regardless of the layers number and also these 

theories are more computationally efficient than ESL and LW theories, ZZ theories can be chosen as a good choice 

to analyze the mechanical responses of sandwich structures. Due to this fact that many ZZ theories requires C1 

continuity Tessler et al. [13, 14] presented a modified ZZ model known as RZT which needs C0 continuous 

interpolation for all the kinematic variables [15]. Si Sciuva et al. [16] formulated a class of efficient higher-order 

C0-continuous beam elements based on RZT. The RZT was presented for laminated-composite and sandwich plates 

by Tessler et al. [17]. In another attempt, based on RZT, Gherlone et al. [18] analyzed the multilayered composite 

and sandwich beams. Analyzing the mechanical responses of nanostructures using conventional elasticity theory 

predicts inaccurate results since the effect of material length scale parameter have not been taken into account. To 

overcome this problem several non-classical theories have been introduced such as nonlocal elasticity theory [19-

25], surface elasticity theory [26], MCST [27-31] and modified strain gradient theory [32-36]. Among mentioned 

theories, since MCST predicts accurate results in addition to less computational efforts, it can be selected as an 

appropriate theory to analyze the mechanical behavior of micro and nano structures. Therefore, many researchers 

have been applied MCST to capture the size effects. For instance, Ke and Wang [28] investigated the dynamic 

stability of micro beams made of functionally gadded materials (FGMs) based on the MCST and TB model and 

showed that the size effect on the dynamic stability characteristics is significant only when the thickness of beam 

has a similar value to the material length scale parameter. In another attempt, they [29] investigated vibration and 

instability of fluid-conveying double-walled carbon nanotubes (DWCNTs) based on MCST. They concluded that 

the imaginary component of the frequency and the critical flow velocity the fluid-conveying DWCNTs increase with 

increase in the length scale parameter. Based on the modified couple stress theory the nonlinear resonant dynamic of 

a microscale beam was studied numerically by Ghayesh et al. [31]. Most of the time in real applications, the 

structure surrounded by an elastic medium. The surrounded foundation can be simulated by different assumptions 

depend on the forces applied to the structure from the media. For instance the Winkler type of elastic medium 

considers only the normal forces of elastic medium. In comparison to the Winkler type model, the Pasternak elastic 

medium which considers both shear and normal forces are more accurate and it is sufficient for researchers to use 

this model as the surrounded elastic foundation. Ghorbanpour Arani et al. [32] studied the nonlinear vibration of a 

Nano beam elastically connected to a piezoelectric Nano beam using Pasternak foundation. Amir et al. [37] 

investigated the buckling analysis of nanocomposite sandwich plates with piezoelectric face sheets rested on 

Pasternak foundation based on flexoelectricity and first-order shear deformation theories. In another attempt, Amir 

et al. [38] studied the size-dependent vibration analysis of a three-layered porous rectangular nano plate with piezo-

electromagnetic face sheets subjected to pre loads based on SSDT. Lee and Jeong [39] developed the out-of-plane 

free vibrations of curved beams with variable curvature on a Pasternak foundation. Sobamowo [40] presented 

analytical solutions using differential transformation method with after-treatment technique for nonlinear analysis of 

thermal and flow-induced vibration of fluid-conveying carbon nanotube resting on Winkler and Pasternak 

foundations. Ghorbanpour Arani et al. [41] analyzed the electro-thermo-torsional buckling of a double-walled boron 
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nitride nanotube embedded on Pasternak elastic medium. Their results showed that increasing the shear modulus of 

Pasternak foundation increases the buckling load. The weakness of Pasternak simulation is neglecting damping 

effects of elastic medium, which may yields inaccurate results. Therefore, many researchers have been employed 

visco-Pasternak elastic medium in their analysis. For instance, the general equation for transverse vibration of 

double-viscoelastic-FGM-nanoplate system with viscoelastic Pasternak medium was formulated by Liu et al. [42]. 

Mohammadi et al. [43] studied the vibration behavior of the rotating viscoelastic Nano beam embedded in the visco-

Pasternak foundation. An analytical process was proposed by Jamalpoor et al. [44] to investigate the size-dependent 

free vibration of orthotropic multi-viscoelastic microplate systems embedded in Kelvin-Voigt visco-Pasternak 

medium based on the modified strain gradient theory. Magnetostrictive materials can be applied as smart materials, 

since they undergo deformation when subjected to magnetic field and vice versa. Motivated by these considerations, 

magnetostrictive materials have received plenty of attentions and many researchers have been studied the 

mechanical response of these materials. Hong [45] used generalized differential quadrature (GDQ) method to 

compute the transient response of thermal stresses and center displacement in laminated magnetostrictive plates. In 

another attempt, Hong [46] investigated thermal vibration and transient response of FGM plate with mounted 

magnetostrictive layer using GDQ method. Ghorbanpour Arani and Abdollahian [47] studied the transient response 

of a FG Nano beam integrated with magnetostrictive layers embedded on visco-Pasternak elastic foundation. 

Analytical solutions of FGM shells with embedded magnetostrictive layers were presented by Pradhan [48]. The 

problem of dynamic response of axially moving beams has received plenty of attentions, since axially moving 

beams are used in various engineering applications such as robotic manipulators, telescopic members of loading 

vehicles and machine tools [49]. Ghayesh and Amabili [50] investigated the non-linear dynamics of an axially 

moving beam with time-dependent axial speed, including numerical results for the non-linear resonant response of 

the system in the sub-critical speed regime and global dynamical behavior. Lim et al. [51] studied the transverse free 

vibrations of axially moving Nano beams subjected to axial tension based on nonlocal stress elasticity theory. They 

discussed the influences of nonlocal nanoscale and axial tension on the critical velocity. Applying the nonlocal 

theory and considering small fluctuations in the axial velocity, the stability and non-linear vibrations of an axially 

moving nanoscale visco-elastic Rayleigh beam were studied by Rezaee and Lotfan [52]. In another attempt, 

Ghorbanpour Arani et al. [53] investigated vibration and instability of axially moving single-layered grapheme sheet 

(SLGS) embedded on visco-Pasternak foundation. They concluded that the critical speed of moving SLGS can be 

improved by applying magnetic field. 

However, no report has been found in the literature on the nonlinear dynamic response of axially moving SNBs 

so far. Motivated by these considerations in the present manuscript, applying the von-Karman nonlinear strain-

displacement relationships, transient response of an axially moving FG core integrated with magnetostrictive layers 

subjected to thermal and mechanical loads is studied using RZT. The MSCT has been employed to capture the effect 

of small scale parameter. The SNB is surrounded by an elastic medium, which is simulated by visco-Pasternak 
model. Using DQM for space domain in conjunction with the Newmark- β method for time domain the results are 

obtained which are then presented graphically to depicts the influences of material length scale parameter, Visco-

Pasternak elastic medium, magnetostrictive layers, environment and difference temperature, velocity of the SNB, 

applied mechanical forces and volume fraction exponent. The results of the present study can be used in designing 

nano electro mechanical systems (NEMS) especially where the magnetostrictive materials have been used. 

2    MODIFIED COUPLE STRESS THEORY 

The strain energy derived from the MCST is expressed as function of the symmetric strain tensor ij  and the 

symmetric rotation gradient tensor ij . Therefore, for a linear elastic material occupying region V with infinitesimal 

deformations the strain energy s  is written a follows [27-31]: 

 

          
1

, , , , ,
2

k k k k

s ij ij ij ij
V

m dV i j x y z               
 

(1) 

 

where ij  is the Cauchy stress and ijm  is the deviatoric part of the couple stress tensor and: 
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          , , , ,

1
,

2

k k k k k

ij i j j i m i m ju u u u    
 

(2a) 

 

      , ,

1
,

2

k k k

ij i j j i     
 

(2b) 

 

   
,

1
,

2

k k

i ijn n je u  
 

(2c) 

 

In which iu , i  and ijke  are the displacement vector, the infinitesimal rotation vector and the alternate tensor, 

respectively. 

3    PRELIMINARIES BASED ON RZT 

Schematically representation of the axially moving SNB with rectangular cross section with total thickness 
lh , 

width b and length L  is shown in Fig. 1. The Cartesian coordinate system  , ,x y z  is taken as a reference where 

the longitudinal axis x varies from 0 to L, the thickness coordinate z  ranges from 2lh  to 2lh , and the width 

coordinate y changes from 2b  to 2b . The core thickness is 
ch  and the integer  k  changes from 1 to 3, 

indicates the number of each layer from the bottom to the top of the SNB and the cross sectional area of each layer is 

kA . The Nano beam is subjected to temperature difference and axial and transverse mechanical loads. Furthermore, 

it is assumed that the SNB surrounded by visco-Pasternak elastic medium. 

 

 

 

 

 

 

 

 
Fig.1 

Schematic of an axially moving SNB embedded on visco-

Pasternak medium. 

 

Based on the RZT the nonzero displacement components of an arbitrary point of the SNB 
   , ,
k

xu x z t  and 

   , ,
k

zu x z t  in the x  and z directions, respectively, can be written as follows: [18]: 

 
             , , , , , ,
k k

xu x z t u x t z x t z x t     (3a) 

 

     , , , ,
k

zu x z t w x t  
 

(3b) 

 

where  ,u x t  and  ,w x t  are the in-plane displacements in the x and z directions, respectively;  ,x t ,  ,x t  

and 
   k

z  are the average cross-sectional rotation, the amplitude of zigzag rotation and the zigzag function, 

respectively. The zigzag function can be obtained from the following relations as [17]: 

 

 

 

1 1

1

11

1 ,
2

lh G
z

Q

  
        

 
 

(4a) 
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 
 
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2
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Q Q Q






    
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(4b) 

 

In which: 

 

 

 

1
3

1

1 11

2
,

k

k
kl

h
G

h Q





 
  
 
 

  
 

(5) 

 

where 
   , 1, ,6
k

lmQ l m   and 
 k

h  are the elastic constant and thickness of kth layer, respectively. 

Inserting Eqs. (3) into Eq. (2c) yields the components of rotations as follows: 

 
 

0,
k

x   (6a) 

 

 
   1

,
2

k
k

y

d z w

dz x
  

  
   
 
 

 
 

(6b) 

 
 

0.
k

z   (6c) 

 

Substituting Eqs. (3) into Eqs. (2a) results the von-Karman nonlinear strain-displacement relationships as 

follows: 

 

     
2

1
,

2

k k

xx

u w
z z

x x x x

 


    
    
    

 
 

(7a) 

 

   
   

2 .

k
k k

xz xz

d z w

dz x
   

 
   


 

 

(7b) 

 

Using Eqs. (3) into Eqs. (2b) the components of the symmetric rotation gradient tensor are obtained as: 

 

 
    2

2

1
,

4

k

k

xy

d z w

x dz x x

 


   
   
   
 

 

 

(8a) 

 

 
   2

2

1
.

4

k
k

yz

d z

dz
 


  

 

(8b) 

4    ENERGY METHOD 

4.1 Strain energy 

Substituting Eqs. (7) and (8) into Eq. (1) yields the total strain energy of the SNB as follows: 

 
2 2

1

20

32

1 1

2 2 2

,
2 2

L

s x x x

Yu w w w
N M M Q Q

x x x x x x x

YY
dx

x

  
 




 

             
                             

 
  

 


 

 

 

(9) 
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where: 

 

            
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k
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xy k yz k
A A

k k

d z
N M M z z dA Q Q dA

dz

d z d z
Y Y m dA Y m dA

dz dz

  

 

 

  
    

  

   
  

  

  

  

 

 

 

 

(10) 

4.2 Kinetic energy 

The kinetic energy of the axially moving SNB is calculated from the following relation as [53]: 

 

   
       

2 2
3

0
1

1
,

2 k

k k k k
L k x x z z

k x x x
A

k

u u u u
z V V V

t x t x




       
         
           

   
 

(11) 

 

In which 
 k

  is the density of k th layer and xV  denotes the velocity of the SNB. Eq. (11) can be rewritten by 

substituting Eqs. (3) Into Eq. (11) as follows: 
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,A x
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t x

   
     

     

 

 

 

 

 

(12) 

 

where: 
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









  





 

 

 

(13) 

4.3 External forces 

To calculate the virtual work the axial force p, visco-Pasternak foundation eF  and distributed transverse load 

 ,f x t  should be taken into consideration. 

The force induced by the elastic medium can be expressed as [47]: 

 
2

2
,e w g c

w w
F k w k k

tx

 
   


 

 

(14) 

 

where wk , gk  and ck  are spring, shear and damping modulus, respectively. Also, the distributed transverse load 

can be written as follows: 

 

     0, ,f x t f F x G t  (15) 
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In which 0f  is a constant and the functions  F x  and  G t  depend on the externally distributed load. 

Therefore, the first variation of the external applied forces extW  can be given as: 
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x x t x x x

w w w w
k w wdx k w k wdx k wdx p u P w

x t xx

w
P wdx f wdx

x

  
   

     

 
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 


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  

 

 

 

 

 

 

(16) 

5    HAMILTON’S PRINCIPLE 

The governing motions equations and boundary conditions can be obtained using Hamilton’s principle as follows 

[18]: 

 

 
0

0,
T

k s extW dt      
 

(17) 

 

Inserting Eqs. (9), (12) and (16) into Eq. (17), after some mathematical manipulations, the governing motion 

equations of SNB are obtained as: 

 
2 2 2 2 2 2 2

2 2

2 2 2 2 2

2 2
2
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: 2 2

2 ,

x
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N u u u
u I I V I V I I V I V I

x t x t xt x t x t

I V I V
t x x

   


 

       
      

        

 
 

  

 

 

 

(18a) 

 
2 2 2 2

1

2 2 2 2

2 2
2

2

1
:

2

2 ,

x
x w g c A

A x A x

Q Yw w w w w
w N k w k k p f I

x x x tx x x t

w w
I V I V

t x x


       

        
       

 
 

  

 

 

 

(18b) 

 
2 2 2 2 2
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2 2 2

2 2 2 2
2 2

2 2 2

1
: 2 2

2
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x
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u
I V I I V I V

t xx t x

  


  

      
      

       

   
   

   

 

 

 

(18c) 
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1
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u
I V I I V I V

t xx t x

  


  





      
       

       

   
   

   

 

 

 

(18d) 

 

Moreover, the related boundary conditions are obtained as follows: 

 

2 2 2 2

0, : 0 0,

0, : 0 0,

A x A A x B B x E E x

A x A x A x B x B x E x E x x

u u
t T u or I V I I V I I V I I V

t x t t t t

u u
x L u or I V I V I V I V I V I V I V N p

t x t x t x

   

   

     
        

     

     
          

     

 

 

 

(19a) 
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2 1

0, : 0 0,

1
0, : 0 0,

2

A A x

A x A x x x g

w w
t T w or I I V

t x

Yw w w w w
x L w or I V I V N Q p k

t x x x x x

 
   

 

    
        

     

 

 

 

(19b) 

 

10, : 0, 0,
2

Yw
x L or

x


  


 

 

(19c) 

 

2 2 2

2 1
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0, : 0
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2

D D x B x B B x F F x

D x D x B x B x B x F x
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t T or I I V I V I I V I I V

t x t x t x

u u
x L or I V I V I V I V I V I V

t x t x t

Y
I V M

x

   


  




     
        

     

    
      

    


   



 

 

 

 

(19d) 

 

2 2 2

2

2
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0, : 0

1
0.

2

H H x E x E E x F F x

H x H x E x E x E x F x

F x

u u
t T or I I V I V I I V I I V

t x t x t x

u u
x L or I V I V I V I V I V I V

t x t x t

I V M Y
x

   


  





     
        

     

    
      

    


   



 

 

 

 

(19e) 

 

In order to find the governing motion equations and boundary conditions in terms of displacements, it is 

necessary to introduce the nonzero stress components and deviatoric part of the couple stress for FG core and 

magnetostrictive layers of SNB as [46, 54]: 

 
       2 2 2 2

11 ,xx xx xQ T      (20a) 

 

     22 2

55 ,xz xzQ   
(20b) 

 
         1,3 1,3 1,3 1,3 1,3

11 31 ,xx xx z xQ e H T       (20c) 

 
     1,3 1,3 1,3

55 ,xz xxQ   (20d) 

 
     2

552 ,
k k k

xy xym Q l   (20e) 

 
     2

552 ,
k k k

yz yzm Q l   (20f) 

 

where 
 1,3

31e  is the magnetostrictive material coefficient, l  is the material length scale parameter, T  indicates the 

temperature difference, 
 k
x  is the longitudinal thermal expansion coefficient of k th layer and: 

 

   

 
   

  
2 2

11 552
, ,

2 11

E z E z
Q Q

zz 
 


 

 

(21a) 

 

  ,z c

w
H k c t

t





 

 

(21b) 

 



760                                Refined Zigzag Theory for Nonlinear Dynamic Response.… 
 

 

© 2020 IAU, Arak Branch 

where ck  is the coil constant and  c t  denotes the control gain [45-48]; Moreover, the Young’s modulus E, 

Poisson’s ratio v and density c  of the FGM core can be expressed as [47, 48]: 

 

 2 1 1

2
,

2

c

c

z h
E E E E

h


 

   
 

 

 

(22a) 

 

 2 1 1

2
,

2

c

c

z h

h



   
 

   
 

 

 

(22b) 

 

 2 1 1

2
,

2

c
c c c c

c

z h

h



   
 

   
 

 

 

(22c) 

 

where 2E  and 1E  are the Young’s moduli, 2  and 1  are the Poisson’s ratio, 2c  and 1c  are the density of the 

constituent materials and   is the volume fraction exponent, respectively [47, 48]. 

On the other hand, due to this fact that most of FGM are used in high temperature applications, each property of 

the SNB core layer Z  depends on the environment temperature  T K  as follows [47, 48]: 

 

 1 1 2 3

0 1 1 2 31 ,Z Z Z T Z T Z T Z T

      (23) 

 

where
0Z , 

1Z 
, 

1Z , 
2Z  and 

3Z  are temperature coefficients of the constituent materials. 

Substituting Eq. (20) into Eq. (10), and then using the obtained relations in Eqs. (18) and (19) the governing 

motion equations and boundary conditions are obtained in terms of displacement components as follows: 

 
2 2 2 2 2 2 2

2

11 11 312 2 2 2 2

2 2 2 2 2 2 2
2 2

2 2 2 2 2

2

2 2 ,

x x

B x B x E x E x B E

U W W W U U
B E M V V

X X XX X X X X

U
I V I V I V I V I I

X XX X


 

    

         
     

        

            
      

       

 

 

 

(24a) 

 
22 2 2 2 2

2
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2 2 2 2 2
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2 3
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3

2

1 1
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T
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U W W W W W W
B E A T M
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BW
A A l

X XX X

    


   



 

            
    

          

        
     

       

     
         

   

4 3 2
2

13 04 3

2 2 2 2
2

02 2 2 2

1
2

4

,

x

x w g c

W W
B l V

XX X

W W W W W
V F F X T K W K K P

X X X

 



 

    
       

    
      

   

 

 

 

 

 

 

(24b) 
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X X
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  


 

 

           
          

      

         
     

       

    
   

   

2 2

2 2
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 

   
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2 2 2 2 2

13 13

11 11 11 11 322 2 2 2 2
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B DU W W W W
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X XX
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


 
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        

        

         
       

     

   
   

   

2 2 2 2
2

2 2 2 2
,x E F H

U
V I I I

X   

      
  

   

 

 

 

 

(24d) 

 

and the dimensionless CC end conditions are obtained as follows: 

 

0, 0, 0, 0, 0.
W

U W
X


      


 

 

(25) 

 

It is worth mentioning that the initial displacements and the initial velocities of the beam are assumed to be zero 

[55]. The dimensionless parameters used in Eqs. (24) and (25) are defined as: 
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A l A l A l A l A l A

A

x x

l

B E

A A h A h

kk L k LI I I I I
I I I I I K K K

I h I h A AI h I h I h I A

A B D E L f L I p
A B D E F V V P

A A A A A h A

 
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 
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 
    
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,
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(26) 

 

In which: 

 

              
3 3
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1 1
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A A
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A B D Q z z dA E F H Q z z z dA
 

       
 

(27a) 

 

   
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
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(27b) 
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(27c) 

 

       
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1 1

, 1, , ,
k k
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k k

A B Q z dA E Q z dA 
 

      
 

(27d) 

6    NUMERICAL SOLUTION 

The DQM which used in the present manuscript to discretize the space domain is a numerical method that predicts 

the derivative of a function at a given discrete point as a weighted linear sum of the function values at all discrete 

points chosen in the solution domain. Even though the DQM is a numerical result but it yields accurate results and 
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can be chosen as an effective method to solve the governing motion equations. At first, the positions of the grid 

point in space domain can be obtained using Chebyshev polynomials as follows [19, 27, 28]: 

 

 11
1 cos , 1,2, ,

2 1
n

n
X n N

N

  
        

 

 

(28) 

 

where N is the total number of grid points along X. Also, the functions U, W,   and   and their r th derivatives 

with respect to X can be expressed as [19, 27, 28]: 
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(29a) 
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
    


  

 

(29b) 

 

In which  ml X  and 
 k

nmC  are the Lagrange interpolation polynomials and the weighting coefficients, which can 

be found in [20, 21, 23]. Substituting Eqs. (29) into Eqs. (24) and (25) yields: 
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The dot notation over the variables denotes the derivations of the mentioned variables to the time. Using Eqs. 

(29) yields the CC boundary conditions as follows: 
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Considering Eqs. (30) and (31), one can rewrite governing motion equations as follows: 

 

          ,NL L NL LM d C C d K K d F      (32) 

 

In which  M  is the mass matrix,  NL LC C are the nonlinear and linear damping matrixes,  NL LK K  are 

the nonlinear and linear stiffness matrixes and  F  is the transverse load matrix and: 

 

          , , , ,
T T T T

i i i id U W    
(33) 

 
In the next step, the implicit time integration Newmark-β method [56] is employed to find the time response of 

the SNB. The algorithm of the Newmark-β method can be described as follows: 

1) From Eq. (32) and primary conditions of time for displacements and velocities terms, the acceleration terms 

are obtained as: 

 

            1
,NL L NL Ld M F C C d K K d


      

(34) 

 

2) Choosing an appropriate time step t , and coefficients   and   the following parameters can be 

obtained: 

 

 
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1 1 1
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t tt
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         

   

 
 

(35) 

 

It is also worth mentioning that in the present manuscript 
1

2
   and 

1

4
  . 

3) The effective stiffness matrix can be defined as follows: 

 

       0 1 ,L NL L NLK K K a M a C C      (36) 

 

4) For each time step the effective force vector can be calculated from those obtained from previous time step 

as follows: 
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                     0 2 3 1 4 5 .t t t t t t t L NL t t tF F M a d a d a d C C a d a d a d          
(37) 

 

5) After that the displacement vector can be obtained from: 

 

     
1

.t t t td K F


   (38) 

 

6) Therefore, from Eq. (38), the following terms can be calculated as: 
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 

   

   

 

 

(39) 

 

7) For each time step the problem can be solved from step 4 and finally the time history can be obtained. 

7    RESULTS AND DISCUSSIONS 

The influences of small scale parameter, visco-Pasternak elastic foundation, magnetostrictive layers, temperature 

difference, environment temperature, velocity of SNB, applied mechanical loads and volume fraction exponent on 

the dynamic bending of the axially moving SNB subjected to transverse load   0 sin 0.1aF e X a    is presented 

in this section. To this purpose, the material properties of Terfenol-D which is chosen as the magnetostrictive 

material, are presented in Table 1. 

 
Table 1 

Material properties of magnetostrictive layers made of Terfenol-D [45]. 

Terfenol-D 

 26.5E GPa  

 81.67 10md m A   

 31 32 442.55e e N mA   

 39250l Kg m   

 

Based on Eq. (23), the temperature coefficients of the FG core layer are reported in Table 2 based on the 

information presented in Pradhan [48]. 

 
Table 2 

Material properties of the FGM core [48]. 

 Stainless Steel Nickel 

Density ( 3kg m ) 7900 8909 

Coefficient E ( 2N m )   E ( 2N m )   

0P  9201.04 10  0.3262 9244.27 10  0.2882 

1P  0 0 0 0 

1P  43.079 10  42.002 10  41.371 10   41.133 10  

2P  76.534 10   73.797 10  71.214 10  0 

3P  0 0 73.681 10   0 

 

In order to calculate the material properties of FG core layer, the environment temperature is assumed to be 

25T C . Unless otherwise mentioned, results presented here are based on the following data: the core thickness 

 1ch nm , the thickness of each magnetostrictive layer  0.25mh nm  ,the aspect ratio of length to the thickness 
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/ 8lL h  , the small scale parameter 0.2 ll h , the temperature difference 0T C  , the control gain value 

  0ck c t  , the dimensionless velocity of the SNB 0.01xV  , volume fraction exponent of FG core layer 0  , 

the axial force  0p N , the dimensionless constant of the distributed transverse load 0 0.5F  , the spring 

constant of elastic medium  2100wk MN m , the shear constant of elastic medium  1gk nN  and the 

damping modulus constant of elastic foundation  43 10ck kg ms  . 

7.1 Convergence and verification of the numerical results 

First, in order to check the convergence and accuracy of the DQM, the appropriate number of grid points are 

obtained. For this purpose, the maximum dimensionless midpoint deflections (
0.5X

W


) of the SNB for different 

values of grid points for both linear and nonlinear analysis are presented in Table 3. As can be seen for 15N   the 

maximum values of 
0.5X

W


 are converged to 0.724 for linear and 0.634 for nonlinear analysis. Therefore, 15N   

is chosen to calculate the numerical results of the present manuscript. 

 
Table 3 

Maximum values of dimensionless midpoint deflection for different number of grid points. 

Types of solution N=5 N=7 N=9 N=11 N=13 N=15 N=17 

Linear 0.498 0.689 0.710 0.719 0.722 0.724 0.724 

Nonlinear 0.561 0.644 0.622 0.631 0.632 0.634 0.634 

 

In order to check the validity of the obtained results, since no published paper is found on the nonlinear dynamic 

bending of an axially moving SNB, the results obtained from the presented numerical solutions are compared with 

those obtained from the exact solution in Fig. 2, by neglecting the axially moving, surrounding elastic medium, 

nonlinear terms, power law exponent of FG core layer and magnetostrictive layer effects for the Roller-Roller (RR) 
boundary conditions. It is seen from Fig. 2 that the results concluded from DQM in conjunction with the Newmark-β 

method are in good agreement with those obtained from the exact solutions. It is notable that the exact solutions 

used here to check the validity of the obtained results, include Navier method for space domain and Laplace 

transform for time domain. Moreover, neglecting the mentioned parameters, the dimensionless RR boundary 

conditions are expressed in Appendix A. 

 

 

 

 

 

 

 

 

 

 
Fig.2 

Verification of the results obtained by numerical solutions 

with those obtained by exact solutions. 

7.2 Effect of different parameters 

The effects of surrounding elastic medium on the dimensionless midpoint deflection of the axially moving SNB are 

illustrated in Figs. 3(a) and 3(b) for both linear and nonlinear analysis, respectively. Comparing Figs. 3(a) and 3(b) 

yields that the deflection of the SNB obtained from nonlinear analysis are lower than those obtained from linear 

solution. It is due to the fact that based on Eqs. (7a) and (9), considering nonlinear strain terms increases the strain 

energy and stiffness of the SNB and therefore, decreases the deflection of the system. From both Figs. 3(a) and 3(b), 

it is observed that considering elastic medium predicts lower deflection values than the results obtained without the 

elastic medium. Furthermore, it is seen from Figs. 3(a) and 3(b) that the Pasternak foundation predicts lower 
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deflection values than the Winkler medium, since Pasternak elastic foundation considers both spring and shear 

constants while Winkler medium considers only spring modulus. It is also worth mentioning that results obtained 

based on visco-Pasternak elastic medium are lower than those obtained by Pasternak foundation. As can be seen 

from Eq. (14), the visco-Pasternak elastic medium causes a damping term c

w
k

t




 in governing motion equation. 

The damping effect of this terms can be seen in both Figs. 3(a) and 3(b) where the visco-Pasternak elastic medium 

cause a reduction in dimensionless deflection as the time passes. 

 

 
(a) 

 
(b) 

Fig.3 

Surrounding elastic foundation effects on the time history of dimensionless midpoint deflection of the SNB for a) Linear 

solution b) Nonlinear solution. 

 

Figs. 4(a) and 4(b) show the material length scale parameter effects on the deflection of axially moving SNB for 

both linear and nonlinear solutions, respectively. It is seen from Fig. 4 that increasing material length scale 

parameter decreases the dynamic midpoint deflection of the system. Eqs. (1) and (20) prove this fact that increasing 

the small scale parameter, increases the strain energy of the SNB and therefore decreases the midpoint deflection. 

Moreover, the difference between linear and nonlinear results becomes more prominent at lower small scale 

parameter values. It is because that the difference between linear and nonlinear solutions becomes more visible in 

looser systems. Also, for linear or nonlinear analysis, the effect of small scale parameter is more distinguished at 

earlier times or in transient response region. In other words, with increasing the time the effect of material length 

scale parameter on the midpoint deflection of the system decreases. 

 

 
(a) 

 
(b) 

Fig.4 

Small scale effects on the time history of dimensionless midpoint deflection of the SNB for a) Linear solution b) Nonlinear 

solution. 

 

To clarify the influences of external transverse load  0 sinaF e X 
 on the midpoint deflection of the axially 

moving SNB, Figs. 5 and 6 are presented. Fig. 5 displays the variations of the distributed transverse load 

dimensionless constant versus dimensionless time. It is realized from Fig. 5 that increasing the dimensionless 

constant of the distributed transverse load cause to increases the midpoint deflection of the system. In addition, it is 
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worth to note that with increasing the distributed transverse load constant the difference between linear and 

nonlinear solutions decreases. Also, from Fig. 5, it is obtained that the effects of distributed transverse load constant 

are more prominent at transient response. In other words when the SNB reaches the steady state region the effect of 

the distributed transverse load constant decreases. 

 

 

 
 

 

 

 

 

 

 

Fig.5 

Dimensionless constant of distributed transverse load 

effects on the time history of dimensionless midpoint 

deflection of the SNB.  

To investigate the effect of the parameter a  in the transverse load on the dimensionless midpoint deflection of 

the SNB Figs. 6(a) and 6(b) are provided for linear and nonlinear solutions, respectively. It is clear that the 

parameter a is related to the damping ratio of the external transverse load. Therefore, with increasing this parameter, 

the transient response region should be decreased. This fact, can be easily seen in Fig. 6 in which increasing the 

parameter a reduces the transient response region of the SNB. Fig. 6 also shows that the linear and nonlinear 

solution differences become more prominent at lower values of the parameter a. 

 

 
(a) 

 
(b) 

Fig.6 

Influence of the parameter a of transverse load on the time history of dimensionless midpoint deflection of the SNB for a) 

Linear solution b) Nonlinear solution. 

 

In Fig. 7, the effects of temperature difference on the linear and nonlinear dynamic responses of CC axially 

moving SNB subjected to transverse load are examined. It is found from Fig. 7 that increasing the temperature 

difference, increases the midpoint deflection of the SNB. It is due to the fact that, according to Eqs. (1), (20a) and 

(20c), with increasing the temperature difference the stain energy of the system decreases, therefore the SNB 

midpoint deflection decreases. Furthermore, the effects of temperature difference becomes more obvious at steady 

state region for both linear and nonlinear analysis. 

Time history of the dimensionless midpoint deflection of the CC axially moving SNB for linear and nonlinear 

solutions are illustrated in Fig. 8 for different values of temperature environments. The presented results in Fig. 8 

reveal that as the temperature difference increases, the dimensionless midpoint deflection of the SNB increases, too. 

This result can also be theoretically obtained from Eqs. (1) and (20), in which increasing the temperature 

environment of the SNB, reduces the stresses and strain energy of the SNB, that yields increasing in midpoint 

deflection of the system. 
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Fig.7 

Temperature difference effect on the time history of 

dimensionless midpoint deflection of the SNB. 

  

 

 

 

 

 

 

 

 

 
Fig.8 

Environment temperature effect on the time history of 

dimensionless midpoint deflection of the SNB. 

 

Fig. 9 indicates the SNB velocity effect on the maximum values of dimensionless midpoint deflection for both 

linear and nonlinear solutions and different values of volume fraction exponent. It is seen from Fig. 9 that increasing 

the velocity of increases the maximum deflection of SNB. Therefore, increasing the SNB velocity decreases the 

stability of the system. The obtained numerical results approve those obtained from physical investigations, where 

with increasing the velocity of systems, its stability decreases and therefore the deflection increases. Moreover, the 

difference between linear and nonlinear solutions becomes more prominent at higher velocity values. It is also worth 

mentioning that enhancing the volume fraction exponent values decreases the deflection of SNB. But it should be 

noted that increasing the volume fraction exponent values from 0 to 10 decreases the deflection at a decreasing rate. 

Therefore, one can conclude that increasing the volume of stainless steel in FG core decreases the deflection of 

system. 

 

 

 

 

 

 

 

 

 

 
Fig.9 

SNB velocity effect on the time history of maximum 

dimensionless midpoint deflection. 

 

 

In order to show the effect of dimensionless axial load on the maximum dimensionless deflection of the SNB, 

Fig. 10 is plotted. As can be seen from Fig. 10, increasing the axial load yields an increase in maximum 

dimensionless deflection of SNB. This is because increasing the dimensionless axial load decreases the SNB 

stiffness and make the system looser. Similar to the velocity effect, the difference between linear and nonlinear 

solution enhances as the axial load increases. It is due to the fact that increasing the values of axial load, means that 
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the compressive axial load increases and the system stiffness decreases. Therefore, increasing the compressive axial 

load yields that the difference between linear and nonlinear solutions increases. 

 

 

 

 

 

 

 

 

 

 
Fig.10  
Axial load effect on the maximum values of dimensionless 

midpoint deflection. 

 

 

The effects of magnetostrictive layers on the transient response of the SNB are shown on Figs. 11(a) and 11(b) 

by plotting the maximum dimensionless midpoint deflection versus velocity feedback gain (  ck c t ) for both linear 

and nonlinear solutions, respectively. The obtained results show that increasing the velocity feedback gain from 

negative to positive values increases the maximum dimensionless midpoint deflection of the system. This result 

coincides with the mathematically point of view, where in Eq. (20c) and (21b) increasing the velocity feedback gain 

decreases the strain energy of the system and therefore, reduce the stability of the system. When the system loose its 

stability the deflection is increased. Hence, the velocity feedback gain can be used as a controller parameter and 

employing appropriate values for velocity feedback gain controls the dynamic response of the system. Furthermore, 

the linear solution in more sensitive to the axial load than nonlinear solution. 

 

 
(a) 

 
(b) 

Fig.11 

Magnetostrictive layers effect on the time history of maximum dimensionless midpoint deflection a) Linear solution b) 

Nonlinear solution. 

8    CONCLUSIONS 

Geometrically nonlinear dynamic response of an axially moving FG Nano beam as the core layer integrated with a 

pair of magnetostrictive sensors embedded on visco-Pasternak elastic foundation under multi-physical loads was 

developed in this work. The temperature dependent material properties of FG core layer were assumed to vary along 

the thickness direction of the Nano beam. The MCST were utilized to capture the size effects on the dynamic 

response of the SNB. Applying energy method as well as Hamilton’s principle, the governing motion equations 
were obtained. Both DQM and Newmark-β method were employed to find the dynamic response of the CC axially 

moving SNB. The obtained results by numerical method were compared with those obtained by the exact solution to 

certify the accuracy of the obtained results. Influences of surrounding elastic foundation, small scale parameter, 
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external transverse loads, temperature difference, environment temperature, magnetostrictive layers, velocity of the 

SNB, axial mechanical load, volume fraction exponent were investigated in details. The following conclusions can 

be outlined from the obtained results: 

 It was concluded that the surrounding elastic medium has a significant effect on the dynamic response of 

the SNB. Using visco-Pasternak model reduces the midpoint deflection of the SNB. 

 It was found that with increasing the material length scale parameter, the midpoint deflection of the SNB 

decreases. Therefore, the size effects cannot be neglected in nanostructure analysis. 

 The difference between linear and nonlinear solutions becomes more pronounced when the transverse load 

constant increases. 

 Increasing the velocity of SNB and also, axial load makes the system looser and therefore the maximum 

deflection increases. 

 The maximum deflection of the SNB can be controlled and decreased using negative values for velocity 

feedback gain values. 

 In order the decrease the maximum deflection of SNB, increasing the volume fraction exponent is 

suggested. 

APPENDIX A 

Considering Eqs. (19) and (26) the RR end conditions can be written as follows: 
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