
 

© 2019 IAU, Arak Branch. All rights reserved.                                                                                                    

Journal of Solid Mechanics Vol. 11, No. 3 (2019) pp. 593-605 

DOI: 10.22034/JSM.2019.667234 

Study of Love Waves in a Clamped Viscoelastic 
Medium with Irregular Boundaries 

P. Alam
 1,*

, M.K. Singh
 2
 
 

1
Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore 

-632014, TN, India  
2
Department of Mathematics, Madanapalle Institute of Technology & Science Madanapalle-517325, 

AP, India 

Received 17 June 2019; accepted 17 August 2019 

 ABSTRACT 

 A mathematical model is presented to investigate the effects of 

sandiness, irregular boundary interfaces, heterogeneity and 

viscoelasticity on the phase velocity of Love waves. Geometry of 

the problem is consisting of an initially stressed viscoelastic layer 

with corrugated irregular boundaries, which is sandwiched between 

heterogeneous orthotropic semi-infinite half-space with initial 

stress and pre-stressed dry sandy half-space. Heterogeneity arises 

in the upper half-space is due to trigonometric variation in elastic 

parameters of the orthotropic medium. Inclusion of the concept of 

corrugated irregular viscoelastic layer clamped between two 

dissimilar half-spaces under different physical circumstances such 

as initial stress and heterogeneity brings a novelty to the existing 

literature related to the study of Love wave. Dispersion equation 

for Love wave is obtained in closed form. The obtained dispersion 

relation is found to be in well agreement with classical Love wave 

equation. Numerical example and graphical illustrations are made 

to demonstrate notable effect of initial stress, internal friction, wave 

number and amplitude of corrugations on the phase velocity of 

Love waves.            © 2019 IAU, Arak Branch. All rights reserved. 

 Keywords: Corrugation; Orthotropic; Heterogeneity; Phase 

velocity; Initial stress. 

1    INTRODUCTION 

 N the recent years, a number of authors investigated seismic waves phenomenon at regular interfaces of 

elastic/viscoelastic/poroelastic media [1, 2, 3]. However, the interface between any two adjacent layers of the 

Earth is very complicated and irregular in nature. These irregular interfaces may be in the shape of corrugation 

(cyclic), rectangular, parabolic or much complicated. The studies of Love waves in corrugated boundary surface of 

the Earth layer is highly interested to seismologist and earthquake engineers due to its relevance in many scientific 

and engineering fields. In addition to this the physical problem of Love wave propagations in irregular boundary 

surface, which is assumed here, is utilization of continued interest in earth crust and ground response. Many authors 
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have given some valuable information through their studies about the boundary surface of the Earth layer by 

considering different type of irregularity such as parabolic, hyperbolic and corrugated boundary surfaces. Behavior 

of Seismic waves produced through a layered half-space having geometrically corrugated is discussed by several 

authors. Tomar and Saini [4] have studied the behavior of reflection and refraction of SH-waves at a corrugated 

interface between two-dimensional transversely isotropic half spaces. Selim [5] discussed the static deformation of 

an irregular initially stressed medium. Singh and Tomar [6] studied the qP-wave at a corrugated interface between 

two dissimilar pre-stressed elastic half-space. SH-waves propagation through the irregular boundary layer is studied 

by Alam et al. [7]. 

Stresses, which exist in a body without action of some external forces is termed as initial stress. Due to 

atmospheric pressure, gravity, creep, difference in temperature, large amount of initial stresses may exist inside the 

earth. It should be noted that initial stresses are present in structural elements during their manufacture and 

assembly, in the Earth’s crust under the action of geostatic and geodynamic forces, in rocks, in composite materials, 

etc. The problems related to the dynamics of the initially stressed deformable bodies have a great practical 

importance due to its varied and wide applications in many engineering sciences such as those in the mechanics of 

composites and earthquake engineering. Effect of initial stress on the propagation behavior of Love waves in a 

layered piezoelectric structure was presented by Liu [8] et al. Qian et al [9] have discussed propagation of Love 

waves in a piezoelectric layered structure with initial stresses. Biot [10] has delineated the influence of initial stress 

on elastic waves. Influence of gravity and initial stress on the Love waves in a transversely isotropic medium was 

studied by Dey and Chakraborty [11]. Akbarov and Ilhan [12] investigated the dynamic response to a moving load 

of a system comprising an initially stressed covering orthotropic layer and initially stressed orthotropic half-plane. 

Heterogeneity is a trivial feature inside the earth or in a geo-structure and it makes a strong basis for the 

consideration in the study of geo-mechanical problems. Heterogeneity may arise in Earth’s medium in the form of 

linear, quadratic, trigonometric, harmonic or exponential variations of depth. These variations in material properties 

works as a catalyst in affecting the propagation behavior of waves through which they travel. Researchers and 

seismologists mostly favor the heterogeneous coupled field structures to analyze the underground response of 

seismic surface waves. Kundu et al. [13] and Alam et al. [14] investigated the SH-wave and torsional wave 

propagations in heterogeneous viscoelastic medium respectively. Gupta and Bhengra [15] examined the dispersion 

characteristic of torsional waves through heterogeneous anisotropic medium. 

Materials, in which mechanical and thermal properties are unique and independent in three mutually orthogonal 

twofold axes of rotational symmetry, are known as orthotropic materials. Hence, these planes of symmetries reduce 

the number of independent elastic constants to 9 in orthotropic materials. They are a subset of anisotropic materials, 

as their properties change when measured from different directions. Materials, such as ceramics, cold-rolled steel, 

wood, bone and many fiber-reinforced composites exemplify the orthotropic materials. The space of orthotropic 

materials in engineering applications is very vast than other anisotropic materials. Some notable references related to 

the study of wave phenomena in orthotropic media are Abd-Alla and Ahmed [16], Gupta and Ahmed [17] and 

Singhal and sahu [18], etc. 

Imperfect elastic bodies can be considered to have properties intermediate between those of elastic and viscous 

bodies, and they are called viscoelastic bodies. Sediments, coal tar, as well as salt exemplify viscoelastic materials. 

The rocks in the lithosphere and asthenosphere behave like viscoelastic materials and most of the earthquakes 

occurred in these zones in the last few decades. Therefore, it is enthralling the researchers to consider the 

viscoelastic materials for the seismic wave studies. The reflection and transmission of plane wave from a plane 

surface separating a micro polar viscoelastic solid (MVES) half-space and a fluid saturated (FS) incompressible 

porous solid half-space is investigated by Barak and Kaliraman [19]. Kielczynski et al. [20] have discussed the 

effect of viscous liquid on Love wave propagation. Kumari et al. [21] have investigated the possibility of 

propagation of torsional waves in a viscoelastic layer over an inhomogeneous half space. Kumari [22] studied 

reflection and refraction of longitudinal wave through the plane surface separating a micro polar viscoelastic solid 

half-space and a fluid saturated incompressible half-space. 

The real Earth materials such as soil or sand are found at each level and made of loosely connected mesoparticle 

grains or platelets. A dry sandy medium is nothing but a medium that consists of sandy particles retaining no 

moistures or water vapors. Rayleigh wave dispersion in an irregular sandy Earth’s crust over orthotropic mantle is 

analyzed by Vishwakarma and Xu [23] et al. Dey and Chandra [24] considered surface waves in a dry sandy 

medium under gravity. Alam et al. [25] developed torsional wave propagations in medium sandwiched between 

similar kinds of two heterogeneous dry sandy medium. Vishwakarma and Xu [26] considered a substratum over a 

dry sandy Gibson half-space to study the torsional surface waves. 

The objective of the present study is to investigate the behavior of Love waves in a corrugated viscoelastic layer 

sandwiched between a heterogeneous orthotropic half-space under initial stress and an initially stressed dry sandy 
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half-space. Using the mathematical methods dispersion relation has been obtained in closed form, which specifies 

the dependence of phase velocity over the wave number. Dispersion curves are plotted to highlight the effects of 

heterogeneity of upper half-space, sandiness of lower half-space, initial stresses, wave number of corrugation, 

internal friction parameter of viscoelastic layer, amplitude of upper corrugations on the propagation of Love wave. 

Obtained result has been matched with classical Love wave equation as a particular case of the considered problem. 

The effect of internal friction arises in the layer due to imperfect elasticity is also considered in this study. 

2    GEOMETRY OF THE PROBLEM 

To analyze the present problem geometrically we have taken Cartesian coordinate system in such a way that origin, 

O is at the common interface of the layer and the lower half-space, x-axis is along the direction of propagation of 

Love wave and z-axis is pointing vertically downward. A viscoelastic layer [
2 1 2: ( ) ( )M g x H z g x   ] of 

thickness H is clamped between a heterogeneous orthotropic half-space [
1 1: ( )M z g x H    ] and a dry sandy 

half-space [
3 2: ( )M g x z   ]. The common interfaces are considered as the corrugated irregular and all the 

media are initially stressed as shown in Fig. 1. 

 

 

 

 

 

 

 

 
Fig.1 

Geometry of modeled structure. 

3    GOVERNING EQUATIONS 

The corrugation of the upper boundary surface of the half-space is 1( )z g x H   and the Corrugation of the 

common interface between layer and the half-space is defined by 
2 ( )z g x  where

1( )g x  and 
2 ( )g x  are 

continuous periodic functions and independent of vertical direction of xz-plan. Taking a suitable origin of 

coordinates the Trigonometric Fourier series of 
1( )g x  and 

2 ( )g x  can be represented as follows (Asano [22]) 

 

( ) ( )

1

( ), 1,2l in x l in x

l n n

n

g g e g e l 








    (1) 

      

where ( )l

ng and ( )l

ng 
 are Fourier series expansion coefficients and n is the series expansion order such that 

 
( ) ( )

(1) (2) ( )

1 1, , , 1,2.... and 2,3,......
2 2 2

l l

l n n

n

A Ba b
g g g l n        (2) 

        

Here ( ) ,l

nA  ( )l

nB  are the cosine and sine coefficients of Fourier series expansion. In view of above expressions of 

( )l

ng and ( )l

ng 
, Eq. (2) gives (Alam et al. [7]) 

 
(1) (1) (1) (1) (1) (1)

1 2 2 3 3cos cos2 sin 2 cos3 sin3 ... cos sin ...,n ng a x A x B x A x B x A n x B n x               (3) 

 
(2) (2) (2) (2) (2) (2)

2 2 2 3 3cos cos2 sin 2 cos3 sin3 ... cos sin ....,n ng b x A x B x A x B x A n x B n x                    (4) 
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Here,   the wave number of corrugation so that wavelength of corrugation is 2 /  . The corrugated interfaces 

of the concerned problem can be expressed by only one cosine term 
1( ) cos( )g x a x

 
and

2 ( ) cos( )g x b x , 

where a and b are amplitudes of respected corrugations. 

Let us assume 
1 1 1 2 2 2( , , ), ( , , )u v w u v w  and  

3 3 3( , , )u v w  are the displacement components for upper initially 

stressed heterogeneous orthotropic layer, intermediate viscoelastic layer and lower dry sandy half-space. Then by 

the characteristic of Love wave propagation along the x-direction 

 

0, ( , , ), 0 for 1,2,3i i i iu v v x z t w i          (5) 

4    DYNAMICS OF THE UPPER HETEROGENEOUS ORTHOTROPIC HALF-SPACE 

The stress–strain relation for the upper heterogeneous orthotropic half-space is given by 
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     (6) 

 

where 
ij  are the stress components, ( , 1,2,3)ijA i j  and , ,L M N  are elastic constant and 

ij  are strain 

components. Using Eq. (5), the strain–displacement relation for the upper half-space are obtained as: 

 

1 1

11 22 33 23 13 12

1 1
0, 0, 0, , 0,

2 2

v v

z x
     

 
     

 
      (7) 

 

Using Eq. (7), in Eq. (6) we have 

 

1 1

11 22 33 13 23 21, 0, ,
v v

M N
z x

     
 

    
 

      (8) 

 

In view of Eq. (8), the only non-vanishing equation is given by 

 
2 2

2321 1 1

12 22

v vP

x z x t




  
  

   
      (9) 

 

Now the heterogeneity in the upper orthotropic half-space is taken in the following form 

 

1 0'(1 sin ), '(1 sin ), (1 sin ), (1 sin )M M z N N z z P P z                 (10) 

 

where   is the heterogeneity parameter. Therefore, the equation of motion for the propagation of Love wave in 

upper orthotropic half-space with initial stress is given by 

 
2 2 2

1 1 1 1

2 2 2 2

1

' 1

' 2

v v v vN P

z Mz x t
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

    
    
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    (11) 

 

where 1

0

M





  and P is the initial stress of the upper half-space. 
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Let us assume ( )

1 1( , , ) ( ) ik x ctv x z t V z e   be the solution of Eq. (11) then which takes the form 

 
2 2

21 1

12 2

1

cos( ) '
0

1 sin ' 2

d V dVz c N P
k V

z dz Mdz

 

 

 
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  
    (12) 

        

Taking 
1

( )
( )

1 sin

z
V z

z







in Eq. (12) to eliminate the  1dV

dz
 term we get 

 
2

2

2
0

d

dz


       (13) 

  

where 

 
2 2

2 2

2 2

2

'

' 24

c N P
k

Mk






 
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 
    (14) 

 

The solution of Eq. (13) is given by 

 

1 1( ) i z i zz A e B e        (15) 

 

where 
1A  and 

1B  are arbitrary constant. Hence, we have 

 

1 1

1

( )
( )

1 sin

i z i zA e B e
V z

z

 







    (16) 

 

The appropriate solution of Eq. (16) in view of condition
1( ) 0v z    when  z    is given by 

 

1

1( )
1 sin

i zA e
V z

z







    (17) 

 

Therefore, the expression of displacement in upper-half space is obtained as: 

 
( )

1

1( , , )
1 sin

i z ik x ctA e e
v x z t

z










    (18) 

5    DYNAMICS OF THE INITIALLY STRESSED VISCOELASTIC LAYER 

With condition (5), the stress-displacement relations for non-vanishing stresses in viscoelastic medium are as: 

 

2

23 2 2( ' )
v

S i
z

 
 

   
 

    (19) 

 

2

21 2 2( ' )
v

S i
x

 
 

   
 

    (20) 

 
In view of Eqs. (19) and (20), the only non-vanishing equation of motion for propagation of Love wave in 

initially stressed viscoelastic layer is given by 
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2 2 2 2

2 2 2 2

2 2 22 2 2 2

'
'

2

v v v vP

t x z x t
  

     
     
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    (21) 

 

where 
2  is the  rigidity modulus, 

2 '
 
is a parameter representing internal friction due to viscoelasticity, 2  is the 

density of medium and 'P  is the initial stress acting along x-direction in the medium. 

Let us assume ( )

2 2( , , ) ( ) ik x ctv x z t V z e   be the solution of Eq. (21) then it takes the form 

 

2 2'' ( ) ( ) 0V z DV z      (22) 

 

where 

 

2

2 2

2

2 2 2

'
1 and ; where .

2 '

cP
D k kc

i

 
 

   

 
      

 
    (23) 

 

Hence, solution of above Eq. (22) is given by 

 

2 2 2( ) ( cos sin )V z A Dz B Dz      (24) 

 

The displacement in sandwiched viscoelastic layer with initial stress is given by 

 
( )

2 2 2( ) ( cos sin ) ik x ctv z A Dz B Dz e       (25) 

6    DYNAMICS OF THE PRE-STRESSED DRY SANDY HALF-SPACE 

In view of condition (5), the stress-displacement relations for non-vanishing stresses in dry sandy medium are given 

by: 

 

3

23

v
A

z


 
  
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    (26) 

 

3

23

v
A

x


 
  
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    (27) 

 

where, 
3 3;A     is the rigidity modulus,   is the sandy parameter. 

Therefore, the only non-vanishing equation of motion for propagation of Love type wave in dry sandy half-space 

under initial stress is given by 

 
2 2 2

3 3 3

32 2 2

''
1

2

v v vP
A

A x z t


    
    

    
    (28) 

 

where 3  is the density of medium and P" is the initial stress acting along x-direction in the medium. 

Let us assume ( )

3 3( , , ) ( ) ik x ctv x z t V z e   be the solution for Eq. (28) is as follows.  

Then the generated ordinary differential is obtained as: 

 
2

3 3''( ) ( ) 0V z y V z      (29) 
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where, 
2

3''
1

2

cP
y

A A


   . Then solution of Eq. (29) is given as: 

 

3 3 3

yz yzV A e B e      (30) 

 

In view of Eqs. (28) and (30) we have 

 
( )

3 3 3( , , ) ( )yz yz ik x ctv x z t A e B e e       (31) 

 

where 
3A and 

3B  are arbitrary constants. The appropriate solution of above equation in view of condition 

3( ) 0V z   as .z   
Therefore, the solution of sandy half-space in presence of hydrostatic stress is given by 

 
( )

3 3( , , ) yz ik x ctv x z t A e e      (32) 

7    BOUNDARY CONDITIONS AND DISPERSION RELATION 

Stresses and displacements are continuous at 1( )z g x H  , which leads the following relations 

 

1 2v v     (33) 

 

23 1 21 23 1 21' ( ) ' ( )g x S g x S        (34) 

 

Stresses and displacements are continuous at 
2 ( )z g x  , which leads the following relations 

 

2 3v v     (35) 

 

23 2 21 23 2 12' ( ) ' ( )S g x S g x        (36) 

 

Using the above boundary conditions and eliminating all the constants, we get dispersion equation for Love 

wave as: 
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   (37) 
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8    PARTICULAR CASE OF THE PROBLEM 

If the uppermost half-space is omitted, and both the intermediate layer and half-space are considered as stress free 

and homogeneous isotropic elastic with planer boundary surfaces, then the dispersion Eq. (37) reduces to the 

classical equation of Love wave [27] 

 

2

3 22
3

2 2
2

2 2

2

1

tan 1

1

c

c
kH

c











 



    (38) 

where, 3

2

3

.







 

9    NUMERICAL CALCULATIONS AND DISCUSSION 

In order to study the influence of various affecting parameters on the phase velocity of Love wave propagating in the 

said model, we have considered following data for computation purpose: 

(a)  For the upper corrugated heterogeneous orthotropic half-space under initial stress
1( )M (Prosser and  

Green [28]): 

 
9 2 9 2 3

12.64 10 / , 1.87 10 / and 1442 /M N m N N m kg m       

 

(b) For intermediate viscoelastic layer with initial stress 
2( )M  (Gubbins [29]) 

 
9 2 3

2 2203.9 10 / and 4744 /N m kg m      

 

(c) For the lower corrugated dry sandy half-space under initial stress
3( )M  (Gubbins [29]) 

 
9 2 3

3 36.54 10 / and 3404 / .N m kg m      

 

The variation of dimensionless phase velocity (
2/c  ) of Love wave against dimensionless wave number 

( )kH for different value of various affecting parameters such as heterogeneity ( ), sandy parameter ( ), initial 

stress acting in upper half-space ( )P , sandwiched layer ( ')P and lower half-space ( ")P , wave number of 

corrugation ( ) , internal friction parameter (
2 2'/  ) of viscoelastic layer, amplitude of upper corrugation (a)

 
and 

for lower half-space (b) have been shown in following Figs. 2 to 10. 

Figs. 2 and 3 represent the effect of amplitude parameters a for upper corrugation and b for lower corrugation 

boundary surfaces on the phase velocity of Love wave. The minute observations of both figures conclude that phase 

velocity of the wave decreases with an increment in the amplitude a associated with upper corrugation, whereas the 

phase velocity of increases with an increment in the amplitude b associated with the lower half-space. Moreover, we 

can see that the effect of upper corrugation amplitude a on the phase velocity is almost negligible at the lower 

frequency region compared to the higher frequency region. It can also be established through the figures that the 

phase velocity of the wave can be enhanced by taking flatter (regular) upper interface, whereas the flatter (regular) 

lower interface diminishes the velocity. 

Fig.4 describes the effect of wave number of corrugation (  ) on the phase velocity against wave number of the 

wave. The figure clearly indicates that the wave number of corrugation retard down the phase velocity of the wave. 

More expressly, the longer wave number of corrugation can be used to diminish the phase velocity of Love waves 

and smaller wave number of corrugation can be used to enhance the phase velocity of Love waves. It can be 
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observed from the figure that, phase velocity curves become closer at higher magnitude of wave number of 

corrugation. It means that, the higher wave number of corrugation affects the phase velocity of the wave negligibly. 

Fig.5 describes the variation of phase velocity against wave number for different value of heterogeneity 

parameter ( ).The meticulous observation of the figure irradiates that phase velocity of the wave increases with an 

increment in the heterogeneity parameter. It means that the heterogeneity present in upper orthotropic half-space 

enhancing the phase velocity of wave. Moreover, we can see that the effect of heterogeneity associated with the 

bonded layer on the phase velocity is almost negligible at the higher frequency region compared to the lower 

frequency region. 

Fig.6 manifest the variation of phase velocity against wave number for different value of dry sandy parameter 

( ) associated with lower half-space. It can be observed by the figure that sadness present in lower half-space has 

admiration effect on the wave. Here the phase velocity of the wave got enhanced by the sandiness present in the 

lower half-space medium. It means that Love waves travels slowly when the lower half-space is an elastic solid, 

whereas it travels fast when the lower half-space is dry sandy. It is also clear from the concerned figure that the 

phase velocity curves accumulated in the higher frequency region, which shows that dray sandiness has almost 

negligible effect on the phase velocity of the wave. 

 

 

 

 

 

 

 

 
Fig.2 

Variation of dimensionless phase velocity ( 2/c  ) against 

dimensionless wave number ( )kH  for different values of 

upper corrugation amplitude parameter (a) when 0.45b  . 

  

 

 

 

 

 

 

 

 

 

Fig.3 

Variation of dimensionless phase velocity ( 2/c  ) against 

dimensionless wave number ( )kH  for different values of 

lower corrugation amplitude parameter (b) when 0.18a  . 

  

 

 

 

 

 

 

 

 
Fig.4 

Variation of dimensionless phase velocity ( 2/c  ) against 

dimensionless wave number ( )kH  for different values of 

wave number of corrugation (  ) when 0.1b  and 0.12a  . 
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Fig.5 

Variation of dimensionless phase velocity (
2/c  ) against 

dimensionless wave number ( )kH  for different values of 

intermediate heterogeneity parameter ( ) when 0.4  . 

  

 

 

 

 

Fig.6 

Variation of dimensionless phase velocity ( 2/c  ) against 

dimensionless wave number ( )kH  for different values of 

dry sandy parameter ( ) associated with lower dry sandy 

half-space when 0.4.   

 

Figs. 7, 8 and 9 represent the variation of phase velocity against with respect to the wave number due to the 

effect of initial stresses present in the said model. Fig. 7 shows the effect of initial stress present in the upper half-

space (
1M ), Fig. 8 reveals the effect of initial stress present in the sandwiched layer (

2M ) and Fig. 8 shows the 

effect of initial stress present in the lower half-space (
3M ). The Figs. 7 and 9 clearly irradiate that the initial stresses 

associated with the upper and lower half-spaces have inverse impact on the phase velocity of wave, while form Fig. 

8 it is found that the initial stresses associated with the layer has proportional impact phase velocity of wave. 

  

 

 

 

 

 

 
Fig.7 

Variation of dimensionless phase velocity ( 2/c  ) against 

dimensionless wave number ( )kH  for different values of 

initial stress (P) associated with uppermost heterogeneous 

orthotropic half-space when ' 0.11P  and " 0.61.P   

  

 

 

 

 

 

 

Fig.8 

Variation of dimensionless phase velocity ( 2/c  ) against 

dimensionless wave number ( )kH  for different values of 

initial stress ( 'P ) acting in intermediate viscoelastic layer 

when ' 0.4P  and " 0.2.P   

  



603                                Study of Love Waves in a Clamped Viscoelastic…. 
 

 

© 2019 IAU, Arak Branch 

 

 

 

 

 

 
Fig.9 

Variation of dimensionless phase velocity (
2/c  ) against 

dimensionless wave number ( )kH for different values of 

initial stress ( "P ) acting in lowermost dry sandy half-

space when ' 0.11P  and 0.61P  . 

 

The effect of internal friction arises due to viscoelasticity of the layer is discussed in the Fig. 10. The curves in 

this figure have been plotted between the phase velocity and the wave number for different values of internal friction 

parameter. It can be noticed from the figure that the internal friction arises due to viscoelasticity of the layer 

enhances the phase velocity of the wave. It can also be seen from the figure that the effect of internal friction on the 

phase velocity is significant in the lower frequency region of the wave number. 

  

 

 

 

 

 

 
Fig.10 

Variation of dimensionless phase velocity ( 2/c  ) against 

dimensionless wave number ( )kH  for different values of 

internal friction parameter ( 2 2'/  ) acting in intermediate 

viscoelastic layer. 

10    CONCLUSIONS 

The earth is a combination of layers, which have different material properties. The interface between any two 

adjacent layers is very complicated and irregular in nature and work as a catalyst in affecting the propagation 

behavior of Love waves. It may not be enough to catch all the engineering problems by the assumption that material 

mediums are perfect elastic, isotropic, homogeneous, without initial stress and have a planar boundary surface, as 

the concept cannot indulge many features of the continuum response, which are of great significance. This motivates 

us to study the Love waves propagation in an irregular corrugated initially stressed viscoelastic layer clamped 

between a initially stressed heterogeneous orthotropic half-space and a initially stressed dry sandy half-space. We 

have investigated the various affective parameters, which influences the propagation of Love waves in the assumed 

model. Major observations of the study has pointed out as follows: 

 Regular interface in upper half-space, heterogeneity present in the upper half-space, sandiness nature of 

lower half-space, initial stress acting in the intermediate layer and the internal friction of the intermediate 

viscoelastic layer are enhancing the phase velocity of the Love wave. 

 Regular interface in lower half-space, wave number of corrugation and initial stress acting in upper and 

lower half-spaces are diminishing the phase velocity of Love wave. 

It is very clear from the study that the corrugated irregular interfaces, heterogeneity, dry sandiness, 

viscoelasticity and initial stress present in the Earth model have prominent impact on the propagation of Love 

waves. Today, Earthquake is considered as unrestrained problem in the path of development, and hence various 

studies in the earthquake-related domain are being carried out to seek to minimize the impact of earthquakes hitting 

vulnerable areas across the globe. The results obtained in this paper give some essential information to seismologists 

about the velocity of Love wave propagation in an Earth’s layer which have properties intermediate between those 

of elastic and viscous (Viscoelastic) with irregular interfaces, and clamped between two dissimilar kind of half-

spaces. These results may play a vital role to understand well and predict the seismic wave behavior at continental 
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margins, mountain roots, etc. In the present study, the considered irregularity is cyclic, so that it can be extended by 

considering the common interfaces as rectangular or parabolic. 
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