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 ABSTRACT 

 The aim of this paper is to determine the critical buckling load 

for simply supported thin shallow spherical shells made of 

functionally graded material (FGM) subjected to uniform 

external pressure. A metal-ceramic functionally graded (FG) 

shell with a power law distribution for volume fraction is 

considered, where its properties vary gradually through the 

shell thickness direction from pure metal on the inner surface to 

pure ceramic on the outer surface. First, the total potential 

energy functional is obtained using the first-order shell theory 

of Love and Kirchhoff, Donnell-Mushtari-Vlasov kinematic 

equations and Hooke's Law. Then, equilibrium equations are 

derived through the minimization of the total potential energy 

functional by employing the Euler equations. The stability 

equations are derived by application of the adjacent - 

equilibrium criterion. As the nonlinear strain-displacement 

relations are employed, so the presented analysis is nonlinear 

with high accuracy. The Galerkin method is used to determine 

the critical buckling load. The present problem is also analyzed 

numerically by simulating it in Abaqus software. For 

validation, the present analytical results are compared with the 

present numerical results and with the known data in the 

literature. Also, the effects of some important geometrical and 

mechanical parameters on the hydrostatic buckling pressure are 

investigated.        

© 2019 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 N recent years, with the increasing and rapid development of various industries, the advancements in industrial 

machinery and the developments in high-powered engines of aerospace industry, turbines and reactors and other 

machinery, the need for mechanically stronger materials with higher thermal resistance has been felt. In previous 

years, pure ceramic materials were used in the aerospace industry for the coating of the components with high 
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performance. These materials were very good non-conductors but were not resistant enough to residual stress. 

Residual stresses caused many problems such as cavities and cracks in these materials. Layered composites were 

used later to overcome this problem. Thermal stresses also made them chip. Regarding these problems, producing a 

composite material which has high thermal and mechanical resistance and is immune to chipping gained in 

importance. 
In 1939, Von karman and Tsien [1] analytically investigated the buckling of spherical shells subjected to external 

pressure. They derived the governing equations of the system through minimizing the total potential energy. Then 

obtained approximate solution using the Rayleigh-Ritz method. In 1987, Wahhaj Uddin [2] studied the stability of 

general spherical shells under external pressure with various end-conditions. The governing nonlinear differential 

equations for the axisymmetric deformations of spherical shells, were solved exactly by using the method of 

multisegment integration. Numerical results for a few shells, ranging from shallow to hemispherical, were presented 

as examples and compared with the available works of others. In 2000, Zang et al. [3] investigated dynamic non-

linear axisymmetric buckling of laminated cylindrically orthotropic composite shallow spherical shells including 

third-order transverse shear deformation. In 2001, Nie [4] formulated an asymptotic solution for non-linear buckling 

of elastically restrained imperfect shallow spherical shells continuously supported on a non-linear elastic foundation. 

In 2003, Li et al. [5] established the large deflection equation of a shallow spherical shell under uniformly 

distributed transverse loads is with consideration of effects of transverse shear deformation on flexural deformation. 

In 2008, Gupta et al.[6] conducted experiments, simulation as well as analysis of the collapse behavior of thin 

spherical shells under quasi-static loading. In 2008, Sorensen and Jensen [7] carried out an analysis of buckling-

driven delamination of a layer in a spherical, layered shell. In 2010, Hutchinson [8] revealed that cylindrical shells 

under uniaxial compression and spherical shells under equi-biaxial compression display the most extreme buckling 

sensitivity to imperfections.  

In 2010, Darvizeh et al. [9] investigated the thermal buckling of composite shells with selected boundary 

conditions under uniform and linearly distributed thermal load. The theoretical modeling procedure was based on 

semi-analytical finite element method. The effects of important structural parameters such as amount of cut-out at 

apex, fiber angles as well as temperature distributions were taken into consideration. In 2011, Shaterzadeh et al. [10] 

investigated the thermal post-buckling of shells of revolution under the action of uniform thermal load. They also 

considered the effect of initial imperfection. The semi-analytical finite element method was employed to discretize 

the problem. Then, the nonlinear equations were solved by means of the Newton-Raphson algorithm in conjunction 

with the Arc length method. In 2012, Sato et al. [11] studied the critical buckling characteristics of hydrostatically 

pressurized complete spherical shells filled with an elastic medium. In 2014, Boroujerdy and Eslami [12] studied the 

snap-through buckling of shallow clamped spherical shells made of functionally graded material and surface-bonded 

piezoelectric actuators under the thermo-electro-mechanical loading. 

2    FORMULATIONS 

The considered FGM shallow spherical shell is made of metal and ceramics, so that its properties gradually vary 

from pure ceramics at the outer surface to pure metal at the inner surface (Fig. 1).  

 

 

 

 

 

 

 

 

 

Fig.1 

A schematic view of the FGM shallow spherical shell. [13] 

 

Voigt notation is used for elastic modulus, but Poisson's ratio is assumed to be constant. The mechanical 

properties variations are assumed to be [14]: 
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where 
mV and 

cV are the volume fraction of metal and ceramics which are defined as follows[4]: 
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In Eqs. (1) and (2), the coordinate z is measured from the middle surface of the shell which varies from –h/2 to 
h/2. The positive direction of z outwards. For the spherical geometry of the considered shell φ, θ and z are 

meridional, circumferential and radial directions respectively which create an orthogonal coordinate system. 

Subscripts m and c stand for metal and ceramic respectively. The parameter k is the power law index for the volume 

fraction for which values greater than or equal to zero can be considered. Substituting Eq. (2) in Eq. (1) gives: 
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where 

 

cm c mE E E   (4) 

 

According to the first-order shell theory of Love and Kirchhoff, the normal and shear strains at the distance z 

from the middle surface of the shell are [15]: 
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where 
i and ij are the normal and shear strains respectively, k 

and k  are the middle surface bending curvatures, 

k  is the middle surface twisting curvature, and the subscript m indicates the middle surface. 

Through the nonlinear kinematics relations, the strains and bending of the middle surface are related to the 

displacement components u, v, and w. Sanders nonlinear kinematics relations for thin spherical shell are presented in 

reference [15]. According to the theory of shallow spherical shells, the DMV nonlinear relations for spherical shell 

are as the simplified form of Eqs. (6): 
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(6) 

 

where   and   are the rotations of the normal vector of the middle surface about the θ and φ axes respectively, 

and: 
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In Fig. 2 are shown the stresses in a segment of the spherical shell. According to the theory of shallow shells, the 

effects of the transverse shear stresses
z and 

z are neglected.  

 

 

 

 

 

 

 

 

 

 

Fig.2 

A view of the stresses in a segment of the spherical shell. 

[16] 

 

Based on the Hooke's Law, the stress-strain relations for spherical shells are as follows [17]: 
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Substituting Eq.(5) and the relation 
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According to the theory of shallow shells, the effects of the transverse shear forces 
zQ

 and zQ  are ignored. 

The force resultants 
ijN  and moment resultants 

ijM  are defined in terms of the stresses through the following 

equations [18]: 
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Substituting Eqs.(9) in Eqs. (10) and calculating the integrals, the force and the moment resultants are obtained 

as functions of strains and curvatures. In general, the total potential energy V of a loaded body is the sum of the 
strain energy U and the potential energy of the applied loads Ω [18]: 

 
V U   (11) 
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Generally, the strain energy U of a three-dimensional body with an arbitrary orthogonal coordinates x, y and z is 

as follows [18]: 

 

 
1

2
x x y y z z xy xy yz yz zx zxU dxdydz                  (12) 

 

Noting that the shallow spherical shells have plane stress and plane strain states, so the strain energy U can be 

written as: 
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ds andds are the differential of the arc length about the θ and φ axes respectively which are: 
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where A and B are the Lame parameters whose values for a spherical shell are A R  and sinB R  . Substituting 

these values in Eq. (14) gives: 
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Substituting the Love-Kirchhoff Eqs. (5), stress-strains Equations of the middle surface (8) and the differential of 

arc length (15) in the strain energy Eq. (13) and then substituting the mechanical properties of the FGM given in 

Eqs. (3) and the DMV kinematic relations given in Eqs. (6) in the resultant equation and calculating the integral with 

respect to coordinate z, yields: 
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Generally, the potential energy Ω of the applied loads for a shell with arbitrary orthogonal coordinates of x, y and 

z which is under three-dimensional pressure of , ,x y zP P P at all its surfaces, is equal to a negative times of the work 

done due to this pressure as the following: 
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Since the pressure is only applied in the z direction and in a negative way, so using Eq. (15) and (17), the 
potential energy due to external hydrostatic pressure Ω  is obtained as the following: 
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Substituting Eqs. (16) and (18) in Eq. (11) yields the total potential energy for the considered shell as follows: 
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where 
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In order to derive the equilibrium equations, according to the principle of the minimum potential energy for static 
problems, the total potential energy V should be minimized. To do so, its variations δV must be set equal to zero. 

Based on the concepts of the calculus of variations, for zero total potential energy variations (δV = 0), the 

corresponding Euler equations should be applied to the function of Eq. (20). Functional Euler equations like Eq. (19) 

are as follows [4]: 
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Substituting Eq. (20) in Euler Eqs. (21) gives nonlinear equilibrium equations for shallow spherical shells under 

mechanical load. The equilibrium equations for these shells in terms of the force and moment resultants are: 
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Based on the the Adjacent-Equilibrium Criterion, to obtain the stability equations, the displacements are given a 

very small virtual variation [4], so that the displacements of the middle surface in the pre-buckling or equilibrium 

state, caused by the applied loads (no variation is made in the applied loads), and the displacements of the virtual 

middle surface are very small. The displacements of the virtual middle surface result in corresponding changes in 

the force and moment resultants [4], so that the pre-buckling force and moment resultants and the virtual force and 

moment resultants correspond to the displacements of the virtual middle surface. Substituting the force and moment 

resultants and 
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  in the equilibrium Eqs. (22), some of the terms of these equations are removed. 

The pre-buckling rotation of the vector normal to the middle surface about axis φ (i.e. 
0

 ) is zero, due to the 

symmetry of the applied mechanical load. Also, the effect of the pre-buckling rotation of the vector normal to the 

middle surface about axis θ (i.e. 
0

 ) is neglected. So the equations become as the following simple form: 
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Relations (23) are the stability equations for the shallow spherical shells. As mentioned before, the subscripts 1 

and 0 represent the equilibrium and the stability states respectively. In fact, the terms with subscript 0 are obtained 

by solving the equilibrium equations. 

To calculate the pre-buckling force resultants, the membrane solution of the equilibrium equations is considered 

for the sake of simplicity, in other words, the moment resultants are ignored. 

Setting 
0 0

0     and removing the moment resultants expressions, the membrane form of the equilibrium 

Eqs. (22) is obtained: 
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Since the applied hydrostatic pressure is symmetric, so, it can be written that: 
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Regarding that 
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 are equal, simplifying the sum of the third variation of Eq.(25) yields: 
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According to Eq. (25) and Eq. (26) the first and the second variations of Eq. (24) are satisfied. So, the pre-

buckling force resultants for a shell subjected to external hydrostatic pressure are as follows: 
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The simply supported boundary conditions of the problem can be written as the followings: 

 

1,φ 1 1,φφ 1 Lu =v =w =w =0       at       =   (28) 

 

The one-term solution to the stability Eqs. (23) which satisfies the assumed boundary conditions is considered as 

the following [4 and 15]: 
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where / Lm    is the angle between the line perpendicular to the spherical shell and the line passing through the 

border and m=1,2,3,… and n=1,2,3,…are the numbers of the meridional and circumferential waves respectively and 

1 1 1, ,A B C  are constants. 

Substituting the approximate solutions (29) in the stability Eqs. (23) gives a system of equations as follows: 
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where 
ijR are functions of the parameters   and n, the geometrical parameters h and R, the applied load P, the 

mechanical properties of the FGM and the independent variables φ and θ. Errors 
1 2 3, ,E E E  are due to the 

approximate solutions. The Galerkin method is utilized to minimize these errors. The approximate solutions (30) are 

substituted in stability Eq. (24). Then, employing Galerkin minimization technique gives: 
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For the system of Eq. (31) to have a nontrivial solution, where the buckling occurs, the determinant of the 

coefficients matrix of these equations must be set equal to zero: 

 

11 12 13

21 22 23

31 32 33

0

a a a

a a a

a a a

  (32) 

 

By solving Eq. (32), the buckling load is obtained as a function of m and n. The critical buckling load is the 

minimum load achieved through different values of m and n. 

3    NUMERICAL MODELING 

A spherical shell of radius R=1 and meridional angle 30L  and circumferential angle of 360 degrees with the 

mechanical properties as what is given in Table 1., was simulated in Abaqus software. 

The shell thickness is considered as 0.0005, the loading as hydrostatic type and the boundary conditions as 

simply supported. The grain size was assigned as 0.03 and Medial axis and Quad dominated type of mesh were 

applied. A view of the loaded shell can be seen in Fig. 3. The solution was defined as static and buckling and the 

problem was solved. The first buckling mode of the FGM spherical shell with the parameter / 0.003h R   obtained 

by Abaqus simulation is shown in Fig. 4. 

 

 

 

 

 

 

 

 

 

Fig.3 

A view of the simply supported spherical shell subjected to 

hydrostatic pressure. 

  

 

 

 

 

 

 

 

 

 

 

Fig.4 

The first buckling mode of the FGM spherical shell with 

parameter / 0.003.h R   

 
 

 

Table 1 

The elastic modulus of a type of steel and ceramics. 

Steel (elastic modulus)(GPa) Ceramics (elastic modulus)(GPa) 

202.97 361.3 
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4    RESULTS AND DISCUSSION  

In this section, firstly, the critical buckling pressure of the steel spherical shells is determined. After that, the 

classical buckling load of steel and FGM spherical shells for different values of the parameters such as 

dimensionless parameter /h R  is attained. Then, the dimensionless critical buckling pressure versus dimensionless 

parameter /h R  for isotropic (steel) shallow spherical shells with different values of L  is determined. Finally, the 

numerical modeling of the problem is examined using Abaqus software and the numerical results are compared with 

the analytical results. 

Poisson's ratio of steel and ceramics are assumed to be 0.3. Simply supported boundary conditions are 

considered for the shell. In the graphs, the results of the hydrostatic buckling pressure are presented. 

It should be noted that the classical buckling pressure of a shallow spherical shell is given in Ref. [17] as: 
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3 1
cl

E h
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 
  
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(33) 

This parameter is used to nondimensionalize some results of the present paper. 

In Fig. 5 is compared the results of the present research with the results of reference [8] for the shallow spherical 

shells made of pure isotropic material (metal) for which mE E . In this figure is depicted the dimensionless critical 

hydrostatic pressure versus the dimensionless parameter /h R  for different values of L . As it can be observed, 

there are good agreements between the results. Also, it is concluded that the classical buckling hydrostatic pressure 

given by expression (33), has more reliability for the larger values of L . The most accurate value is for the 

complete spherical shell. 

 

 

 

 

 

 

 

 

 

 

 

Fig.5 

The dimensionless critical hydrostatic pressure versus the 

dimensionless parameter /h R  for isotropic (steel) shallow 

spherical shells with different values of .L  

 

The critical hydrostatic pressure versus the dimensionless parameter /h R  for steel shallow spherical shells 

with 30 , 20 , 10L L L      is shown in Fig. 6. It is seen that, by increasing the values of L , the values of the 

present results and those of Ref. [8] become closer. 

In order to further validate the soundness of the presented analytical modeling, the analytical results are 

compared with the results obtained numerically by Abaqus simulation. In Fig. 7 are shown the hydrostatic buckling 

pressure versus the dimensionless parameter /h R  curves obtained by the analytical method and Abaqus simulation 

for spherical FG shells with k=2, Em=202.97e9 Pa and Ec=361.3e9 Pa. As it can be observed, there is an excellent 

agreement between the results which confirms the validity and the accuracy of the presented analysis. 

In Fig. 8 is shown the dimensionless critical hydrostatic pressure versus the dimensionless parameter /h R  for 

the shallow spherical shells with 10L   made of steel, ceramic, and FG material for different values of the power 

law indices k. It is observed that by increasing the power law index, the critical hydrostatic pressure decreases. The 

dimensionless critical hydrostatic pressure of the FGM spherical shells is larger than that of the steel ones but it is 

less than that of the ceramic ones. 
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Fig.6 

The dimensionless critical hydrostatic pressure versus the 

dimensionless parameter /h R  for isotropic (steel) shallow 

spherical shells with different values of .L  

  

 

 

 

 

 

 

 

 

 

 

Fig.7 

The hydrostatic buckling pressure of FGM spherical shells 

versus the dimensionless parameter / .h R  

  

 

 

 

 

 

 

 

 

Fig.8 

The dimensionless critical hydrostatic pressure versus the 

dimensionless parameter /h R  for the steel, the ceramic, 

and the FGM shallow spherical shells with different power 

law indices k. 

 

The dimensionless critical hydrostatic pressure versus the dimensionless parameter /h R  for FGM shallow 

spherical shells with k=2 and different values of L  is shown in Fig. 9. According to this figure, it is concluded that 

for FGM shallow spherical shells, the values of the critical hydrostatic pressure and the classical one become closer 

for the larger value of L . 

In Fig. 10 is presented the dimensionless critical hydrostatic pressure of FGM shallow spherical shells versus the 

dimensionless parameter /h R  for different values of the power law index k. As this figure show, by increasing the 

value of the dimensionless parameter /h R , the dimensionless critical hydrostatic pressure is almost increased. As 

Fig. 10 shows, the dimensionless critical hydrostatic pressure of FGM spherical shells is less than that of ceramic 

ones and is larger than that of steel ones. Moreover, it is seen that as the power law index k increases, the 

dimensionless critical hydrostatic pressure decreases. 

The hydrostatic buckling pressure of FGM spherical shells versus the dimensionless parameter /h R  for the 

values of 10 ,20 ,30L   and k=2 is presented in Fig. 11. As it is seen, the increase of the dimensionless parameter 

/h R , results in the increase of the hydrostatic buckling pressure.  



Buckling Analysis of Functionally Graded Shallow….                                654 
 

© 2019 IAU, Arak Branch 

In Fig. 12 is shown the hydrostatic buckling pressure of FGM spherical shells versus the power law index k for 

different values of the dimensionless parameter /h R . As it is observed, by increasing the power law index k, the 

hydrostatic buckling pressure considerably decreases from k=0 to k=1 and after that it decreases slightly. Also, at a 

specific value of the power law index k, the hydrostatic pressure increases as the dimensionless 

parameter /h R increases. 

 

 

 

 

 

 

 

 

 

Fig.9 

The dimensionless critical hydrostatic pressure versus the 

dimensionless parameter /h R  for FGM shallow spherical 

shells with different values of .L  

  

 

 

 

 

 

 

Fig.10 

The dimensionless critical hydrostatic pressure of FGM 

shallow spherical shells versus the dimensionless 

parameter /h R  for different values of the power law 

indices k. 

  

 

 

 

 

 

 

 

 

 

Fig.11 

The hydrostatic buckling pressure of FGM spherical shells 

versus the dimensionless parameter /h R  for different 

values of .L  

  

 

 

 

 

 

 

 

Fig.12 

The hydrostatic buckling pressure of FGM spherical shells 

versus the power law index k for different values of the 

dimensionless parameter /h R . 

 

In Fig. 13 is presented the hydrostatic buckling pressure of FGM spherical shells with k=2 and / 0.005h R   

versus the parameter cmE for different values of L . As it is seen, by increasing the parameter cmE , the hydrostatic 

buckling pressure of FGM spherical shells increases. Also, by increasing the values of L , the hydrostatic buckling 
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pressure decreases so that their values become close to each other. In Fig. 13, the parameter 
mE  is kept constant as 

200 9mE e Pa   but the value of 
cE varies from 250e9 Pa to 450e9 Pa, increasing a value of 50e9 Pa in each step. 

 

 

 

 

 

 

 

 

 

 

 

Fig.13 

The hydrostatic buckling pressure of FGM spherical shells 

versus the parameter .cmE  

5    CONCLUSIONS 

In this paper, the buckling analysis of simply-supported shallow FGM spherical shells subjected to hydrostatic 

loading is carried out. The equilibrium and stability equations of FGM shallow spherical shells are obtained. 

Derivations are based on the first-order shell theory of Love and Kirchhoff, the Donnell-Mushtari-Vlasov (DMV) 

kinematic equations and Hooke's Law. The following main conclusions are drawn: 

1. Increasing the power law index k, causes the critical hydrostatic pressure to decrease. 

2. The dimensionless critical hydrostatic pressure of FGM shallow spherical shells is less than that of ceramic 

ones and is larger than that of steel ones. 

3. Increasing the dimensionless parameter /h R , results in the increase of the hydrostatic buckling pressure. 

4. As the parameter cmE  increases, the hydrostatic buckling pressure of FGM spherical shells is increased. 
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