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ABSTRACT: 

This paper presents an optimum network structure based on a BBO tuned adaptive neuro-fuzzy inference system 

(ANFIS) to control an active suspension system (ASS). The unsupervised learning via Biogeography-Based 

Optimization (BBO) algorithm is used to train the ANFIS network. The optimal proportional-integral-derivative 

controller tuned based on the LQR method is used to generate the training data set. ANFIS base on Fuzzy c-means 

(FCM) clustering algorithm is applied to approximate the relationships between the vehicle body (sprung mass) 

vertical input velocity and the actuator output force. BBO algorithm is used to optimize fuzzy c means clustering 

parameters. The numerical simulation results showed that the proposed optimized BBO-FCMANFIS based vehicle 

suspension system has better performance as compared with the optimal LQR-PID controller under uncertainties in 

both of reducing actuator energy consumption and the suppression of the vibration of the sprung mass acceleration, 

with a 43% and 9.5% reduction, respectively. 

 

KEYWORDS: Active Suspension System, Optimal Vibration Control, Biogeography-Based Optimization, Fuzzy c-

means clustering, ANFIS 

 

1.  INTRODUCTION 

     Modern suspension system is one of the 

fundamental components of automotive vehicles. The 

main task of vehicle suspension system (VSS) is to 

provide passengers' comfort by separating passenger 

and vehicular body interactions from oscillations 

caused by road irregularities while still keeping 

continuous wheel-road contact under any condition to 

maximize traction. In general, the three most common 

types of suspension system are: passive suspension 

systems which is also called conventional lumped 

mass-spring-damper system [1], semi-active [2], and 

active suspension systems [2] and [3]. In recent 

decades, ASS has attracted the interest of the scientific 

community because of their advantages over the 

traditional passive suspension systems. The adaptation 

potential of suspension characteristics in the face of 

road unevenness is the main important benefit of using 

an ASS [5]. The main component of an ASS that 

distinguishes it from the conventional passive 

suspension system is the use of an active element called 

actuator which is connected in parallel with the spring 

and damper to exert a desired force between the vehicle 

body (sprung mass) and wheel and suspension 

assembly (unsprung mass). The vehicle control unit is 

used to determine the desired force for controlling the 

dynamic behavior of suspension system in order to 

adapt to road profile, surpass the vibration of sprung 

mass acceleration and thus to achieve riding comfort. 

Over the past decades, various control strategies have 

suggested to improve the vehicle suspension [6], [7], 

[8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18] 

and [19]. In [6], a robust control scheme based on 

FOFPD controller is presented for uncertain and 

nonlinear ASS. In [8], fuzzy fault-tolerant 𝐻∞ control 

scheme is proposed for nonlinear ASS. Some have 

provided an adaptive backstepping-based tracking 

control scheme for nonlinear ASS [13] and [18]. In 

[11], a hybrid ANFIS PID approach is proposed for 

modeling and control of ASS. Some have proposed a 

linear fuzzy logic control method combined with 

genetic algorithm optimization for a half-car model of 

ASS [19], [20]. In [21], a back stepping method is 

presented for ASS. In [22] and [23], the authors used a 

sliding mode control (SMC) method for VASS. In [24] 

and [25], a FSMC controller is designed to control the 

VSS. In [26], a neural network based SMC is proposed 

for VASS. In [27], vehicle body vertical acceleration is 
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minimized by fuzzy logic control scheme. In [28], a 

novel robust neural network control system is presented 

for vibration control of VASS. In [29], a deep learning 

structure is designed to control an ASS. Intelligent 

control is a new interesting area that has recently made 

significant advances in computing technology. ANFIS 

control is one of the most important of intelligent 

control approaches which is a combination of the 

characteristics of an artificial neural network and the 

FLC technique. 

      The neuro-fuzzy system is a powerful tool which 

has been widely employed in various fields of 

engineering and medical sciences [30]. It has been 

shown that neuro-fuzzy controllers can also enhance 

the performance of ASS [31] and [34]. The 

conventional neuro-fuzzy methods utilizes the learning 

algorithms such as the backpropagation algorithm to 

determine the best values for parameters in fuzzy logic 

system [28] and [29]. However, the performance of the 

neuro-fuzzy system can be enhanced by the meta-

heuristic method. In this paper, an optimum network 

structure is presented based on a BBO tuned ANFIS to 

control an ASS. The ANFIS network was trained by the 

BBO unsupervised learning algorithm. The full 

replacement of the traditional optimal LQR-PID 

controller with a BBO tuned ANFIS controller is the 

main contribution of this article. A BBO tuned ANFIS 

control is rarely utilized on its own in the control of 

ASS as presented here. Simulation results show the 

effectiveness of the proposed optimized BBO-

FCMANFIS controller over the optimal LQR-PID 

controller under uncertainties in terms of improving 

actuator power consumption and the suppression of the 

vibration of the sprung mass acceleration, and as a 

result riding comfort. The main objectives of the 

present work are as follows:  

i. Design an optimum network structure based 

on a BBO tuned ANFIS system to improve the 

performance of a nonlinear ASS. 

ii. Full replacement of the traditional optimal 

LQR-PID controller with a BBO tuned ANFIS 

controller. 

iii. Comparison of the effectiveness of the 

proposed optimized BBO-FCMANFIS 

method with the conventional optimal LQR-

PID controller under road disturbance and 

parameters’ uncertainties. 

      The rest of this paper is structured as follows: The 

material and method is addressed in Section 2. The 

proposed optimized BBO-FCMANFIS method is 

introduced in Section 3. Simulation results are provided 

in Section 4. Eventually, the conclusions are given in 

Section 5. 

 

2.  MATERIAL AND METHOD 

2.1.  Quarter car modelling 

This section presents a dynamic model of a 

nonlinear ASS. The dynamic vehicle model is a two 

Degree Of Freedom (DOF) quarter-car (QC) of ASS. It 

is a double mass-spring-damper system consists of two 

masses (sprung and unsprung mass) which is coupled 

to each other via a spring and a damper as depicted in 

Fig. 1. 

 

 
Fig. 1. A nonlinear two DOF quarter-car active 

suspension model. 

 

       The following assumptions are made for a 

nonlinear QC model: 

Assumption 1: A nonlinear spring-damper system 

model is considered for the suspension system. 

Assumption 2: There will be no rotational motion in the 

wheel and the body. 

Assumption 3: The dynamic behavior of the spring-

damper model is nonlinear. 

Assumption 4: The tire and road surface are always in 

contact and the effect of friction is considered as a 

linear damper in the vehicle active suspension 

modeling. 

      The dynamic equations of a nonlinear two DOF QC 

model of ASS are given as follows [35]: 
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      where ms represents the sprung mass, mus 

represents the unsprung mass, ks and bs are the spring 

stiffness and damping coefficient of damper of ASS, 

respectively. kus  and bus represent tyre stiffness and 
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tyre damping coefficient, respectively. Fa represents the 

actuator force which it is exerted to sprung mass and 

unsprung mass, p > 0 represents the nonlinear 

damping force index (see [36]). The common linear 

form of damping force is obtained by setting  p = 1. 

By choosing the state vector as 𝑥(𝑡) = [𝑥𝑠(𝑡) −
𝑥𝑢𝑠(𝑡)  �̇�𝑠(𝑡)  𝑥𝑢𝑠(𝑡) − 𝑥𝑟(𝑡)  𝑥𝑢𝑠(𝑡)]𝑇 the state-space 

representation of nonlinear QC model is given by:
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(2) 

 

      where 𝑥1  is the vertical deflection of suspension 

system (𝑥𝑠 − 𝑥𝑢𝑠), 𝑥2  is the vertical velocity of sprung 

mass �̇�𝑠  , 𝑥2 is the wheel displacement (𝑥𝑢𝑠 −  𝑥𝑟), and 

𝑥4 is the vertical velocity of the wheel �̇�𝑢𝑠. The 

actuator force 𝐹𝑎 is the control input signal 𝑢 and �̇�r 

represents the external disturbance input. The first 

output of ASS is the suspension deflection (𝑥𝑠 − 𝑥𝑢𝑠), 

and the second output of ASS is the vehicle body 

acceleration �̈�𝑠. The parameters of the QC model are 

given in Table 1. 

 

Table 1. Physical parameters of suspension system. 
Parameter Description Value 

ms Sprung mass 2.45 (kg) 

mus Unsprung mass 1 (kg) 

ks Stiffness of the car suspension 900 (N/m) 

kus Stiffness of the tyre 2500 (N/m) 

bs Suspension damping coefficient 7.5 (Ns/m) 

bus Tyre damping coefficient 1 (Ns/m) 

p Nonlinear damping force index 3 

  

 

2.2.  Passive Suspension System 

The passive suspension system can be considered as 

the open loop response of the system by choosing 𝐹𝑎 =
0 in (2). In this situation, the suspension system 

receives no control signal from the actuator. 

 

2.3.  Active Suspension System 

The passive suspension system can be turned to an 

active suspension includes an actuator that can supply 

active force regulated by an optimal PID controller 

algorithm [37]. In this control scheme, two QC 

suspension parameters namely the vertical deflection of 

suspension system (𝑥𝑠 −  𝑥𝑢𝑠) and the sprung mass 

vertical velocity �̇�𝑠 are fedback to the controllers to 

reduce the impact of road irregularities. The block 

diagram representation of control is shown in Fig. 2.  

 

 
Fig. 2. Closed-loop control system of ASS. 
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To achieve the best robust performance for both 

PID controllers, Auto tuning has been accomplished by 

using the MATLAB simulation software. The optimum 

gain values of the PID controllers are given in Table 2.. 

 

Table 2. Tuned gain values of PID controllers 
 

Controller 
KP KI KD 

PID 
Controller 

I 

100.9862 0.5621 0.0163 

 PID 
Controller 

II 

100.9862 0.4137 0.0030 

 

 

3.  BBO TUNED ANFIS 

3.1.  Training of ANFIS 

Training, testing, and validation are the three main 

stages of training procedure. In this work, we used a 

random portions of the same data to generate the 

training and testing data. Thus, we used 70% of the 

data set for training and hold out 30% of the data set for 

testing. Data set using an actual road profile were used 

for validation. In this paper, a training data set is used 

to create an initial fuzzy inference system (FIS) in 

which, the hybrid optimization algorithm has been used 

to adjust membership functions. The aforementioned 

closed loop optimal PID controller scheme is used to 

achieve the training data. Data collection is generated 

by considering a double mass-spring-damper system as 

a QC model of ASS in the face of a random road 

profile excitation. The actuator force 𝐹𝑎 is employed as 

target data while suspension deflection (𝑥𝑠 −  𝑥𝑢𝑠) and 

sprung mass vertical velocity �̇�𝑠 are used as input 

variables data to the ANFIS. In this paper, the 

following first order Sugeno model fuzzy inference 

with two inputs is used for ANFIS: 

𝑅𝑢𝑙𝑒 𝑖: If suspension deflection is 𝐴𝑖 and sprung 

mass velocity is  𝐵𝑖 , then  𝑢 = 𝑓(𝑥𝑠 −  𝑥𝑢𝑠, �̇�𝑠). 

 

3.2.  Adaptive Neuro-Fuzzy Inference controller 

The adaption potential of ANFIS makes it suitable 

for learning control. ANFIS has been employed in 

various fields of science and it has good capability and 

effectiveness in system identification, state estimation, 

and control. In this work, an optimized BBO tuned 

ANFIS model is used to control an ASS. The training 

data sets are: the actuator force signal, the suspension 

displacement, and the sprung mass vertical velocity 

data points per millisecond. The training data set was 

used to train the ANFIS for modeling the dynamic 

behavior of the optimal PID controller. Thus, the 

ultimate goal is that the ANFIS will be able to estimate 

the appropriate actuator force signal to minimize the 

sprung mass vertical acceleration under unknown road 

unevenness. The proposed optimized BBO-

FCMANFIS controller scheme is depicted in Fig. 3. 

 

 

 
Fig. 3. Block diagram representation of proposed optimized BBO-FCMANFIS controller scheme. 

 

The proposed optimized BBO-FCMANFIS 

controller is shown in Fig. 3. A typical architecture of 

ANFIS is depicted in Fig. 4. As can be seen from Fig. 

4, the ANFIS structure has two inputs (the suspension 

deflection and the sprung mass velocity) and one output 

(the actuator force signal). Moreover, the ANFIS has 

five layers which is detailed in [32] . For a first order 

Sugeno fuzzy inference model, a typical rule set with 

two fuzzy IF-THEN rules of Takagi and Sugeno's type 

is as follows: 

Rule 1: If 𝑥 is A1 and 𝑦 is B1, then  𝑓1 = 𝑝1𝑥 +
𝑞1𝑦 + 𝑟1 

Rule 2: If 𝑥 is A2 and 𝑦 is B2, then  𝑓2 = 𝑝2𝑥 +
𝑞2𝑦 + 𝑟2 
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Where Ai and Bi are the antecedent part in the fuzzy 

sets and 𝑓𝑖 is the consequent part in the fuzzy sets. 𝑝𝑖 ,   

𝑞𝑖 and 𝑟𝑖 are the node outputs of the updated linear 

consequent parameters. 

 

 
Fig. 4. ANFIS architecture. 

 

3.3.  Fuzzy c-means clustering algorithm 

In this section, fuzzy c-means (FCM) clustering 

method is used to formulate an ANFIS. FCM algorithm 

is a technique of clustering in which each data point 

can belong to more than one cluster through varying 

degrees of membership from 0 to 100 percent.  

Allowing gradual memberships is the main advantage 

of FCM clustering in which it provides the opportunity 

to deal with data points that belong to multiple clusters 

at the same time. This method is frequently used in 

pattern recognition applications. In FCM clustering 

method the aim is to minimize the following objective 

function: 

1
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1

, 1
C

m

m i
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j j
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j

J u x c m
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where the number of data points is determined 

by N, the number of clusters is represented by C, fuzzy 

partition matrix exponent is determined by m which is 

used to control the degree of fuzzy overlap and it must 

be greater than 1. The degree of membership of xi in 

the cluster m is determined by uij, xi represents the ith 

data point, the center of the jth  cluster is indicated by 

cj, and the similarity between any measured data and 

the center is determined by ‖∗‖ which can be defined 

by any norm expressing. An iterative optimization of 

the above objective function is employed for fuzzy 

partitioning in which the update of membership uij and 

the cluster centers cj are as follows: 
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This iteration will stop when 𝑚𝑎𝑥𝑖𝑗(|𝑢𝑖𝑗
(𝑘+1)

−

𝑢𝑖𝑗
(𝑘)

|) < 𝜖 where 𝜖 represents a termination criterion 

between 0 and 1 to stop the iterative process and 𝑘 

represent the iteration step  . The algorithm consists of 

the following steps: 

 

Step 1: Randomly initialize the cluster membership 

values (initialize 𝑈 = [𝑢𝑖𝑗] matrix, 𝑈(0)). 

Step 2: At 𝑘 − 𝑠𝑡𝑒𝑝: Calculate the cluster centers:  

𝐶(𝑘) = [𝑐𝑗] with 𝑢(𝑘)  𝑐𝑗 =
∑ 𝑢𝑖𝑗

𝑚𝑁
𝑖=1  𝑥𝑖

∑ 𝑢𝑖𝑗
𝑚𝑁

𝑖=1

. 

Step 3: Update 𝑈(𝑘) and 𝑈(𝑘+1) according to the 

following: 

 

𝑢𝑖𝑗 =
1

∑ (
‖𝑥𝑖−𝑐𝑗‖

‖𝑥𝑖−𝑐𝑘‖
)

2

𝑚−1𝐶
𝑘=1

 

Step 4: Calculate the 𝐽𝑚. 

Step 5: Repeat steps 2 − 4 until 𝐽𝑚 reaches a 

specified maximum number of iterations. 

 

3.4.  BBO tuning of FCM-ANFIS 

In this section, the BBO tuning of the ANFIS 

parameters is explained. The antecedent and the 

consequent parameters are two parameter types of the 

ANFIS structure that have to be tuned. The Gaussian 

function is chosen for membership functions which it is 

given by (5): 
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where 𝑐𝑖 represents the centers of membership 

functions, i. e. mean (𝜇), 𝑎𝑖 is the standard deviation 

(𝜎), and 𝑏𝑖  is a tunable parameter. The antecedent 

parameters of membership functions are illustrated by  

(𝑎𝑖,𝑏𝑖,𝑐𝑖) while the consequent parameters are 

illustrated by (𝑝𝑖 ,𝑞𝑖,𝑟𝑖). The process of fuzzy modeling 

of the system has been accomplished by the 

identification of the FIS parameters to estimate a 

suitable form of the dynamics behavior of the system. 

The parameters of Gaussian membership functions are 

central value 𝑐 and the width 𝜎. After the primary 

structure is determined for the fuzzy system, then, the 

center of every membership function 𝑐, is tuned by the 

BBO. The standard deviation of the Gaussian 

membership function 𝜎 was specified by the learning 

algorithm. As consequence, to achieve the best fuzzy 

model, the parameters of membership function are 

optimized over the BBO algorithm. The optimal FIS 

will be obtained by considering the following root 

mean squared error (RMSE) as an objective function: 
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where 𝑝 is the total number of the samples, 𝑧𝑡
𝑗
  and  

𝑧𝑜𝑢𝑡
𝑗

  are the target output and the predicted model 

output of 𝑗𝑡ℎ sample, respectively. 𝐽(𝑖)  denotes the 

fitness value of 𝑖𝑡ℎ individual. 

 

3.5.  Biogeography-based optimization algorithm 

BBO technique is an evolutionary algorithm (EA) 

that was introduced by Dan Simon for the first time 

[38]. BBO algorithm optimizes a function by 

stochastically and iteratively trying to improve 

candidate solutions. The algorithm is founded based on 

the phenomenon of migration of animals to different 

habitats. In general, habitats that are suitable sites for 

geographical species have high habitat suitability index 

(HSI). This index is determined by the housing 

variables called suitability index variables (SIVs). 

Therefore, HSI is a function of SIVs. the immigration 

and emigration rate are respectively 𝜆 and 𝜇 which are 

determined by the number of species in a habitat (or 

HSI). High HSI habitat resembles feasible solution 

while, solution degrades with low HSI habitat. The 

biological diversity of the population is increased by 

application of mutation in BBO. The immigration 𝜆 and 

emigration rate (𝜇) are given by (7) and (8), 

respectively. 

( )
(1 )i

k i
I

n
 = −  

(7) 

 

 

( )
( )i

k i
E

n
 =  

(8) 

 

where 𝐼 and 𝐸 are respectively the highest rates of 

immigration (𝜆) and emigration rate (𝜇) that responses 

can get. 𝑘(𝑖) represents the number of species for the  

𝑖𝑡ℎ habitat which is between 1 and 𝑛. 𝑛 represents the 

maximum number of species that the habitat can 

support. For a condition, where 𝐸 = 𝐼 = 1 , we have 

1i i + =  
(9) 

 

The flowchart of BBO is depicted in Fig. 5. 

 

 
 

Fig. 5. Flowchart of the BBO algorithm. 

 

4.  SIMULATION RESULTS      

Simulations are carried out using 

SIMULINK/MATLAB R2016a. ANFIS controller is a 

function of suspension deflection (𝑥𝑠 − 𝑥𝑢𝑠) and 

sprung mass vertical velocity �̇�𝑠. The main parameters 

of BBO algorithm are chosen as follows: 𝑃𝑜𝑝.  𝑆𝑖𝑧𝑒 =
50, 𝑀𝑎𝑥. 𝐼𝑡𝑒𝑟. 𝑁𝑜 = 250, 𝐾𝑒𝑒𝑝 𝑅𝑎𝑡𝑒 = 0.2 , and 
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𝐼𝑛𝑖𝑡. 𝑀𝑢𝑡. 𝑃𝑟𝑜𝑏. = 0.1. BBO algorithm was used to 

adjust the parameters of ANFIS by using FCM 

clustering method. The convergence of cost function is 

shown in Fig. 6. 

 
Fig. 6. Convergence rate of the BBO algorithm. 

 

The road profile is set to a 3 (𝐻𝑧) square waveform 

of 0.02 (𝑚) amplitude for simulating worst case 

scenario. The road profile is applied to the QC model 

of ASS. Simulations are accomplished for ASS, ASS 

with BBO tuned FCMANFIS and ASS with the optimal 

PID controller to evaluate their performances. 

 

4.1.  Under ideal conditions 

Fig. 7 and Fig. 8 show the simulation results. As 

can be seen from the Fig. 8, in uncontrolled passive 

system the vertical sprung mass displacement has 

significant fluctuations during the whole simulation 

time so that the maximum overshoot is close to 100% 

which causes severe vibrations that negatively impact 

on passengers' health. However, the proposed 

optimized BBO-FCMANFIS controller has better 

performance over the passive system and the optimal 

LQR-PID controller in terms of reducing actuator 

power consumption and the suppression of the 

vibration of the sprung mass acceleration, and as a 

result riding comfort.  

 
Fig. 7. Transient responses of the system include sprung mass position comparison and un-sprung mass position  

comparison. 

 

 
Fig. 8. Transient responses of the system include actuator force suspension comparison and body acceleration 

comparison. 
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4.2.  Under parameters’ uncertainties 

Next, the impacts of variations in system model 

parameters such as the sprung mass (m_s), suspension 

stiffness (k_s), and damping coefficient of damper 

(b_s) on the system response is evaluated. Thus, the 

sprung mass was increased to 5.5 (kg); suspension 

stiffness and damper were decreased to 800 (N/m) and 

5.5 ((N.s)/m), respectively. The other remaining 

parameters of the system was assumed unchanged. To 

evaluate the robustness of the proposed BBO-

FCMANFIS controller, this modified model was used 

to perform simulations. The results were very similar to 

those was obtained in Fig. 7 and Fig. 8 with a very 

slight difference, which demonstrates successful model 

fitting. 

 

4.3.  Simulation results with actual road data 

Power Spectral Density (PSD) values are 

commonly used for the classification of road 

unevenness [37]. The real road data like a standard 

normal distribution with standard deviation 2 (cm) as 

depicted in Fig. 9. 

 

 
Fig. 9. Road input unevenness. 

 

The simulation results are shown in Fig. 10 and Fig. 

11. To evaluate the effectiveness of the proposed BBO-

FCMANFIS controller, the RMS values of the four 

variables of ASS were calculated as depicted in Table 

2. As it can be seen from these values, the BBO-

FCMANFIS uses an average of 0.6547 (𝑁), while the 

optimal PID controller uses an average of 1.1504 (𝑁). 

This represents that the BBO-FCMANFIS controller 

consumes 43% less energy than the optimal PID 

controller. This energy saving is very important for 

electric vehicles. Moreover, the vertical acceleration of 

the sprung mass is the main important parameter that is 

very effective in passenger comfort. Rapid variations of 

acceleration are more significant over the variations of 

displacement or velocity. Thus, it plays main role in 

minimizing the vertical acceleration of vehicle body. 

As shown in Fig. 11, the BBO-FCMANFIS controller 

has better performance as compared with the optimal 

PID controller in term of suppressing the peaks and the 

troughs. The obtained RMS values are  0.5167 (
𝑚

𝑠2) for 

the BBO-FCMANFIS controller and 0.5708 (
𝑚

𝑠2) for 

the optimal PID controller which means that the BBO-

FCMANFIS controller provide a lower vertical body 

acceleration over the optimal PID controller with a 

reduction of 9.5%. Therefore, the presented optimized 

BBO-FCMANFIS controller has better performance 

over the optimal LQR-PID controller in the presence of 

the real road input data in terms of reducing actuator 

energy consumption and the suppression of the 

vibration of the sprung mass acceleration, and as a 

result riding comfort. 

 

Table 3. Comparison of two controllers based on 

the RMS values of the time responses with the real road 

data. 

  

Controller 
𝑥𝑠  (𝑚) 𝑥𝑢𝑠 (𝑚) �̈�𝑠 (

𝑚

𝑠2
) 𝐹𝑎 (𝑁) 

 Passive 0.0

031 

0.01

15 

0.8

786 

0 

PID 0.0

027 

0.01

14 

0.5

708 

1.1

504 

BBO-

FCMANFIS 

0.0

025 

0.01

02 

0.5

167 

0.6

547 

 

The PSD of the body acceleration is used to 

evaluate the quality of vehicle ride which is depicted in 

Fig. 12 for passive, PID, BBO-FCMANFIS based ASS 

under the road disturbance input data. As it can be seen 

from Fig. 12, the acceleration of sprung mass is 

suppressed by two controllers in the lower frequency 

band, approximately between 0.4 (𝐻𝑧) to 9 (𝐻𝑧). 

Thus, the proposed BBO-FCMANFIS has good 
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performance in counter with the road disturbance 

profile. 

 

 
Fig. 10. Transient responses of the closed loop suspension system include sprung mass position comparison and 

un-sprung mass position comparison with actual road data. 

 

 
Fig. 11. Transient responses of the closed loop suspension system include actuator force suspension comparison 

and body acceleration comparison. 

 

 
Fig. 12. PSD of body acceleration with random input. 
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5.  CONCLUSION 

In this research an optimum network structure based 

on a BBO tuned ANFIS was proposed to improve the 

performance of an ASS. To illustrate the efficiency and 

the robustness of the proposed control strategy, real-

time simulation was conducted in MATLAB/Simulink. 

Simulation results illustrate that the proposed BBO-

FCMANFIS outperforms the optimal PID controller in 

both ideal and uncertainties conditions. Moreover, 

simulation was performed with actual road profiles. 

Simulation results show that the proposed BBO-

FCMANFIS controller has lower energy consumption 

than the optimal PID controller with a reduction of 

43% which is significant and very important for electric 

vehicles. Besides, The proposed BBO-FCMANFIS 

controller provide a lower overall body acceleration 

over the optimal PID controller with a reduction of 

9.5% which positively impact on  the safety, health, 

and comfort of passengers. 

 

REFERENCES 
[1] M. M. Elmadany, A. EI-Tamimi, “On a subclass of 

nonlinear passive and sear-active damping for 

vibration isolation, ” Comput Struct, vol. 36, pp. 921-

931, 1990. 

[2] M. Geravand and N. Aghakhani, “Fuzzy sliding 

mode control for applying to active vehicle 

suspentions, ” WSEAS Trans Syst Control, vol. 5, pp. 

48-57, 2007. 

[3] W. Sun, J. Li, Y. Zhao, and H. Gao, “Vibration 

control for active seat suspension systems via 

dynamic output feedback with limited frequency 

characteristic, ” Mechatronics, vol. 21, pp. 250-260, 

2010. 

[4] M. Senthil kumar, “Genetic algorithm-based 

proportional derivative controller for the 

development of active suspension system," Inf 

Technol Control, vol. 36, pp. 58-67, 2007. 

[5] G. Priyandoko, M. Mailah, and H. 

Jamaluddin,“Vehicle active suspension system using 

skyhook adaptive neuro-active force control, ” 

Mech Syst Signal Process, vol. 23, pp. 855-868, 2009. 

[6] S. Kumar, K. P. S. Rana, J. Kumar et al., “Self-tuned 

robust fractional order fuzzy PD controller for 

uncertain and nonlinear active suspension system, 

” Neural Comput & Applic, vol. 30, pp. 1827-1843, 

2018. 

[7] A. A. Aldair, E. B. Alsaedee, and T.Y. Abdalla, 

“"Design of ABCF Control Scheme for Full Vehicle 

Nonlinear Active Suspension System with 

Passenger Seat, ” Iran J Sci Technol Trans Electr 

Eng, vol. 43, pp. 289-302, 2019. 

[8] J. Mrazguaa, E. Houssaine-Tisssira, and M. Ouahi, 

“Fuzzy Fault-Tolerant H∞ Control Approach for 

Nonlinear Active Suspension Systems with 

Actuator Failure, ” Procedia Comput Sci, vol. 148, 

pp. 465-474, 2019. 

[9] J. Na, Y. Huang, X. Wu et al.,  “Adaptive Finite-

Time Fuzzy Control of Nonlinear Active 

Suspension Systems With Input Delay, ” IEEE 

Trans Cybern, vol. 50, pp. 2639–2650, 2019. 

[10] Y. Qin, J.J. Rath, C. Hu et al., “Adaptive nonlinear 

active suspension control based on a robust road 

classifier with a modified super-twisting algorithm, 

” Nonlinear Dyn, vol. 97, pp. 425-2442, 2019. 

[11] D. Singh, “Modeling and control of passenger body 

vibrations in active quarter car system: a hybrid 

ANFIS PID approach, ” Int J Dynam Control, vol. 6, 

pp. 1649-1662, 2018. 

[12]  D. Singh, “Whole body active vibration control of 

passenger biodynamics in quarter car model under 

random road excitations using ANFIS gain tuned 

PID-super twisting control, ” Int J Dynam. Control, 

vol. 8, pp.999–1012, 2020. 

[13] Q. Wang, Y. Zhao, H. Xu et al., “Adaptive 

backstepping control with grey signal predictor for 

nonlinear active suspension system matching 

mechanical elastic wheel, ” Mech Syst Signal 

Process, vol. 131, pp. 97-111, 2019. 

[14] S. Liu, T. Zheng, D. Zhao et al., “Strongly perturbed 

sliding mode adaptive control of vehicle active 

suspension system considering actuator 

nonlinearity, ”  Veh Syst Dyn (2020), 

10.1080/00423114.2020.1840598   

[15] Sy. Dzung Nguyen, B. Danh-Lam, S.B. Choi, “Smart 

dampers-based vibration control -Part 2: 

Fractional order sliding control for vehicle 

suspension system,” Mech Syst Signal Process, vol. 

148, (2021), 

https://doi.org/10.1016/j.ymssp.2020.107145 

[16] [16] P. Swethamarai, P. Lakshmi,“ "Adaptive-fuzzy 

fractional order PID controller-based active 

suspension for vibration control,” IETE J Res 

(2020), 

https://doi.org/10.1080/03772063.2020.1768906 

[17] M. J. Mahmoodabadi and N. Nejadkourki, "Optimal 

fuzzy adaptive robust PID control for an active 

suspension system," Aust J Mech Eng (2020), 

https://doi.org/10.1080/14484846.2020.1734154 

[18] H. Pang, X. Zhang, Z. Xu, “Adaptive backstepping-

based tracking control design for nonlinear active 

suspension system with parameter uncertainties 

and safety constraints,” ISA Trans, vol. 88, pp. 23-

36, 2019. 

[19] Y. Kuo and T. Li, “GA based Fuzzy PI/PD 

controller for automotive active suspension 

system,” IEEE Trans Ind Electron, vol. 46, pp.1051-

1056, 1999. 

[20] J. Feng  and F. Yu, “GA-based PID and fuzzy logic 

controller for active vehicle suspension system,” Int 

J Automot Technol, vol. 4, pp. 181-191, 2003. 

[21] J. S. Lin and I. Kanellakopoulos, “Nonlinear design 

of active suspension,” IEEE Control Syst, vol. 17, pp. 

45-59, 1997. 

[22] C. Kim and P. I. Ro, “A sliding mode controller for 

vehicle active suspension systems with 

nonlinearities,” Proc IMechE Part D: J Autom. Eng, 

vol. 212, pp. 79-92, 1998. 

[23] T. Yoshimura, A. Kume, M. Kurimoto, et 

al.,“Construction of an active suspension system of 

a quarter car model using the concept of sliding 

mode control,” J Sound Vib, vol. 239, pp. 187-199, 



Majlesi Journal of Telecommunication Devices                                                                 Vol. 11, No. 1, March 2022 

 

53 

 

2001. 

[24] S. J. Huang and W. C. Lin, “Adaptive fuzzy 

controller with sliding surface for vehicle 

suspension control,” IEEE Trans Fuzzy Syst, vol. 11, 

pp. 550-559, 2003. 

[25] J. Lin, R. J. Lian, C. N. Huang, , et al., “Enhanced 

fuzzy sliding mode controller for active suspension 

systems,”  Mechatronics, vol. 19, pp. 1178-1190, 

2009. 

[26] S. J. Huang and W. C. Lin, “A neural network based 

sliding mode controller for active vehicle 

suspension,” Proc IMechE Part D: J Autom Eng, vol. 

221, pp. 1381-1397, 2007. 

[27] F. J . D’Amato and D. E. Viassolo, “Fuzzy control 

for active suspensions, ” Mechatronics, vol. 10, pp. 

897-920, 2000. 

[28] I. Eski and S. Yıldırım, “Vibration control of vehicle 

active suspension system using a new robust neural 

network control system,” Simulat Model Pract 

Theor, vol. 17, pp. 778-793, 2009. 

[29] A. Konoiko, A. Kadhem, I. Saiful, et al., "Deep 

learning framework for controlling an active 

suspension system,” J Vib Control, vol. 25, pp. 2316-

2329, 2019. 

[30] Y. Zhang and A. Kandel  "Compensatory neurofuzzy 

systems with fast learning algorithms," IEEE Trans 

Neural Netw Syst vol. 9, pp. 80-105, 1998. 

[31] A .A. Aldair, W. J. Wang, “Design an intelligent 

controller for full vehicle nonlinear active 

suspension systems, ” Int J Smart Sens Intell Syst, 

vol. 4, pp. 224-243, 2011. 

[32] R. Kothandaraman and L. Ponnusamy, "PSO tuned 

adaptive neuro-fuzzy controller for vehicle 

suspension systems, ” J Adv Info, vol. 3, pp. 57-63  ,

2011. 

[33] R. Kalaivani and P. Lakshmi, “Adaptive neuro-fuzzy 

controller for vehicle suspension system, ”  in Proc. 

2013 IEEE International Conference on Advanced 

Computing (ICAC), Chennai, India, 18-20 Dec. 2013. 

[34] U. Rashid, M. Jamil, and S. Gilani, “LQR based 

training of adaptive neuro-fuzzy controller, ” J 

Intell Fuzzy Syst, vol. 54, pp. 311-322  ,2016. 

[35] M. Cui, L. Geng, and Z. Wu, “Random Modeling 

and Control of Nonlinear Active Suspension," Math 

Probl Eng, (2017), 

https://doi.org/10.1155/2017/4045796 

[36] S. Yan, E. L. Dowell, and B. Lin, “Effects of 

nonlinear damping suspension on nonperiodic 

motions of a flexible rotor in journal bearings,” 

Nonlinear Dyn, vol. 78, pp. 1435–1450 ,2014. 

[37] G.D. Nusantoro and G. Priyandoko, “PID state 

feedback controller of a quarter car active 

suspension system,” J Basic Appl Sci Res, vol. 1, pp. 

2304-2307, 1994. 

[38] D. Simon, “Biogeography based optimization, ”  

IEEE Trans Evol Comput,  vol. 12, pp. 702-713, 2008

 


