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Abstract

In irreducible subshifts, a word m is synchronizing if whenever vm and mw are admissible words,
then vmw is admissible as well. A word m is (left) half (resp. weak) synchronizing, when there is a
left transitive ray (resp. a left ray) x− such that if x−m and mw are admissible, then x−mw is also
admissible. The respective subshifts are called half (resp. weak) synchronized. K. Thomsen in [On the
structure of a sofic shift space, American Mathematical Society, 356, Number 9, 3557-3619] considers a
synchronized component of a general subshift and investigates the approximation of entropy from inside
of this component by some certain SFTs. We, using a rather different approach, show how this result
extends to weak synchronized systems.
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1 Introduction

One of the most studied dynamical systems is a sub-
shift of finite type (SFT). An SFT is a system whose
set of forbidden blocks is finite [1]; or equivalently, X
is SFT iff there isM ∈ N such that any block of length
greater than M is synchronizing. A block m is syn-
chronizing if whenever v1m and mv2 are both blocks
of X, then v1mv2 is a block of X as well. If an irre-
ducible system has at least one synchronizing block,
then it is called a synchronized system and examples
are sofics: factors of SFT’s. Synchronized systems,
has attracted much attention and extension of them
has been of interest since that notion was introduced
[2]. One was via half synchronized systems; that is,
systems having half synchronizing blocks. In fact, if
for a left transitive point such as rm andmv any block
in X one has again rmv ∈ X− = {x− := · · ·x−1x0 :
x = · · ·x−1x0x1 · · · ∈ X}, then m is called half syn-
chronizing [2]. Clearly any synchronized system is
half synchronized. Dyke (or Dyck!) subshifts and
certain β-shifts are non-synchronized but half syn-
chronized systems [3].

Synchronized entropy of a synchronized system

X denoted by hsyn(X) was considered in [4] as a
value of exponential rate of change of orbits having
a synchronized block. In section (4), we extend this
notion to weak synchronized entropy hwsyn(X) and
will show there are some certain SFT’s Xk such that
Xk ⊆ Xk+1 and hwsyn(X) = limk→∞ h(Xk).

2 Background and definitions

This section is devoted to the very basic definitions
in symbolic dynamics. The notations has been taken
from [1] and [2] for the relevant concepts.

First we present some elementary concept from
[1]. Let A be an alphabet, that is a non-empty fi-
nite set. The full shift A-shift denoted by AZ, is the
collection of all bi-infinite sequences of symbols in A.
Equip A with discrete topology and AZ with product
topology. A block or word over A is a finite sequence
of symbols from A. It is convenient to include the
sequence of no symbols, called the empty block which
is denoted by ε. If x is a point in AZ and i ≤ j,
then we will denote a block of length j − i + 1 by
x[i, j] = xixi+1 . . . xj . If n ≥ 1, then un denotes the
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concatenation of n copies of u, and put u0 = ε. The
shift map σ on the full shift AZ maps a point x to the
point y = σ(x) whose i-th coordinate is yi = xi+1.
By our topology, σ is a homeomorphism. Let F be
the collection of all forbidden blocks over A. For a
full shift AZ, define XF to be the subset of sequences
in AZ not containing any block from F . A shift space
or a subshift is a subset X of a full shift AZ such that
X = XF for some collection F of forbidden blocks.

Let Bn(X) denote the set of all admissible n-
blocks. The language of X is the collection B(X) =
∪nBn(X). A shift space X is irreducible if for every
ordered pair of blocks u, v ∈ B(X) there is a block
w ∈ B(X) so that uwv ∈ B(X). A shift space X is
called a shift of finite type (SFT) if there is a finite set
F of forbidden blocks such that X = XF . A shift of
sofic is the image of an SFT by a factor code (an onto
sliding block code). Every SFT is sofic [1, Theorem
3.1.5], but the converse is not true [1, Page 67].

Let G be a graph with edge set E = E(G) and the
set of vertices V = V(G). The edge shift XG is the
shift space over the alphabet A = E defined by

XG = {ξ = (ξi)i∈Z ∈ EZ :

t(ξi) = i(ξi+1)}.

Each edge e initiates at a vertex denoted by i(e) and
terminates at a vertex t(e).

A labeled graph is a pair G = (G, L), where G is a
graph with edge set E , and the labeling L : E(G) → A
assigns to each edge e of G a label L(e) from the fi-
nite alphabet A. For a path π = π0 . . . πk, L(π) =
L(π0) . . .L(πk) is the label of π. By πu we mean a
path labeled u.

Let L∞(ξ) be the sequence of bi-infinite labels of
a bi-infinite path ξ in G and set

XG := {L∞(ξ) : ξ ∈ XG} = L∞(XG).

We say G is a presentation or cover of X = XG . In
particular, X is sofic if and only if X = XG for a finite
graph G [1, Proposition 3.2.10].

In this part we collect some information from [2].
Let X be a subshift and x ∈ X. Then, x+ = (xi)i∈Z+

(resp. x− = (xi)i≤0) is called right (resp. left)
infinite X-ray. Let X+ = {x+ : x ∈ X} and
X− = {x− : x ∈ X}. For a left infinite X-ray, say x−,
its follower set is w+(x−) = {x+ ∈ X+ : x−x+ ∈ X}
and for m ∈ B(X) its follower set is w+(m) = {x+ ∈
X+ : mx+ ∈ X+}. Analogously, we define prede-
cessor sets ω−(x+) = {x− ∈ X− : x−x+ ∈ X} and
ω−(m) = {x− ∈ X− : x−m ∈ X−}.

Consider the collection of all follower sets ω+(x−)
as the set of vertices of a graph. There is an edge
from I1 to I2 labeled a if and only if there is an

X-ray x− such that x−a is an X-ray and I1 =
ω+(x−), I2 = ω+(x−a). This labeled graph is called
the Krieger graph for X. A block m ∈ B(X) is syn-
chronizing if whenever um and mv are in B(X), we
have umv ∈ B(X). An irreducible shift space X is
synchronized system if it has a synchronizing block.
A block m ∈ B(X) is half synchronizing if there is a
left transitive point x ∈ X such that x[−|m|+1, 0] = m
and ω+(x(−∞, 0]) = ω+(m). If X is a half synchro-
nized system with half synchronizing m, the irre-
ducible component of the Krieger graph containing
the vertex ω+(m) is denoted by X+

0 and is called the
right Fischer cover of X. A shift space that is the
closure of the set of sequences obtained by freely con-
catenating the blocks in a list of countable blocks,
called the set of generators, is a coded system [1].

3 Weak synchronized systems

Definition 3.1 A shift space X is called right (resp.
left) weak synchronized system if there is a block m
of X and a point x ∈ X such that x[−|m|+1, 0] = m
(resp. x[0, |m|−1] = m) and ω+(x(−∞, 0]) = ω+(m)
(resp. ω−(x[0,∞)) = ω−(m)) that we call m a right
weak synchronizing (resp. left) block of X. Then,
ω+(m) is called a weak synchronized vertex.

Note that if x was left (resp. right) transitive, then by
definition, X would be right (resp. left) half synchro-
nized system and so any half synchronized system is
a weak synchronized system.

Here, whenever we say “weak synchronizing”, we
mean the right weak synchronizing.

Example 3.2 Now we present an example of coded
weak synchronized system which are not half synchro-
nized and whose any of their blocks are weak synchro-
nizing.

Let Xβ denote the beta-shift corresponding to β >
1. We first choose a 1 < β ∈ R such that Xβ is
not synchronized. Let m−1 be an arbitrary block in
W (X−1

β ). First we show that 0∞m−1 ∈ (X−1
β )− and

m−10∞ ∈ (X−1
β )+.

Since Xβ is not synchronized and m ∈ B(Xβ),
m is not a synchronizing block for Xβ where then
by [3, Proposition 2.23], m ⊆ 1β = a1a2a3 · · · . As-
sume m = ajmajm+1 . . . ajm+|m|−1 (Figure 1) and set
k := min{i > jm + |m| − 1 : ai > 0}. Then, there is
a finite path labeled m0km−jm−|m|+1 with initial ver-
tex Ijm−1 and terminal vertex I0. Hence m0∞ is a
right infinite Xβ-ray and so 0∞m−1 is a left infinite
(Xβ)

−1-ray. Similar reasoning works for m−10∞ ∈
(X−1

β )+ and so we have w+(0
∞m−1) = w+(m

−1) and

ω−(m
−10∞) = ω−(m

−1) which that in turn shows
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that m−1 is a right and left weak synchronizing block
for X−1

β . But m was arbitrary and so we are done.

4 Weak synchronized entropy

Let H = (V, E) be a connected graph. For each pair
of vertices I, J ∈ V, let rn(I, J) denote the number
of paths of length n starting at I and ending at J .
Then,

h(H) = lim sup
n→∞

1

n
log rn(I, J)

is independent of I, J , and it is called the Gurevic
entropy of H [5]. For any synchronized system X,
the synchronized entropy hsyn(X) is defined by

hsyn(X) =

lim sup
n

1

n
log(|{a ∈ Bn(X) : mam ∈ B(X)}|),

where m ∈ B(X) is an arbitrary synchronizing block
[6]. In 2004, Thomsen in [6] proves that it is equal to
the topological entropy of the system.

Now let X be a weak synchronized system and
let WH(X) denote the set of weak synchronizing
blocks for X. For m ∈ WH(X), denote by (Xm)+0
the maximal irreducible component of the Krieger
graph X containing the vertex ω+(m). Note that
irreducible components are countable labeled graphs

and so L((Xm)+0 ) is a coded system.
Let m be a weak synchronizing block for X. Fix

m and x provided by the definition of weak synchro-
nizing. Notice that x− terminates at m and set

h(m, X) :=

lim sup
n→∞

1

n
log |{a ∈ Bn(X) : ω+(x−am) = ω+(m)}| .

A block m ∈ WH(X) is called residual weak syn-
chronizing if there is a finite path πm in (Xm)+0 la-
beled m such that ω+(m) = t(πm). For example in
Example 3.2 m := 0 is a residual weak synchronizing
block for X−1

β such that it is not a half synchronizing

of X−1
β .

Proposition 4.1 Let m be an arbitrary residual
weak synchronizing block for X Then,

h(m, X) = h((Xm)+0 ).

Proof. Let x be a point in X provided by the def-
inition of weak synchronizing. Pick a finite path πm

in (Xm)+0 labeled m such that θ := ω+(m) = t(πm)
(Figure 2). Set δ := i(πm)). Let πu be a finite path in
(Xm)+0 labeled u such that i(π) = θ, t(π) = δ. Sup-
pose that τ is an arbitrary cycle from θ to θ in (Xm)+0

labeled v. Then, ω+(x−vum) = ω+(m). Thus the
number of cycles of length |v| from θ to θ is at most

|{a ∈ B|v|+|u|(X) : ω+(x−am) = ω+(m)}|.

This means that h(X+
0 ) ≤ h(m, X). Conversely, let

a ∈ Bn(X) such that ω+(x−am) = ω+(m). Then,
there is a cycle Ca in (Xm)+0 labeled am and initial-
ing at θ = ω+(m) and so

|{a ∈ Bn(X) : ω+(x−am) = ω+(m)}|

is at most as large as the number of cycles of length
n + |m| based at θ = ω+(m). Thus h(m, X) ≤
h((Xm)+0 ).

□

Let RW(X) denote the set of residual weak syn-
chronizing blocks for X and set

HX := {h((Xm)+0 ) : m ∈ RW(X)}.

Then, it is natural to define the weak synchronized
entropy hwsyn(X) to be

hwsyn(X) = supHX .

If m is a synchronizing block of X, then

{a ∈ Bn(X) : ω+(x−am) = ω+(m)}
={a ∈ Bn(X) : mam ∈ B(X)}

and so

h(m, X) = hwsyn(X) = hsyn(X) = h(X+
0 ).

Thus

sup{h((Xm)+0 ) : m ∈ RW(X)} = h(X+
0 ).

Thomsen in [6] considers a synchronized compo-
nent X of a general subshift and proves that

sup{h(A) :A ⊆ X is an irreducible SFT}
= h(X+

0 ) = hsyn(X). (1)

Now we will extend this notion to weak synchro-
nized with a new and shorter proof which naturally
will imply (1) as well.

Proposition 4.2 Let X be a weak synchronized sys-
tem and RW(X) ̸= ∅. Then,

t0 := sup{h(A) : ∃m ∈RW(X) such that

A ⊆ L((Xm)+0 ) is an irreducible SFT} = hwsyn(X).
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Proof. Let A ⊆ L
(
(Xm)+0

)
be an irreducible SFT

for some m ∈ RW(X). Then, h(A) = hsyn(A) ≤
h((Xm)+0 ) and this implies t0 ≤ hwsyn(X).

It suffices to show that hwsyn(X) ≤ t0. Fix ϵ′ > 0
and choose m ∈ RW(X) and 0 < ϵ < ϵ′ such that

hwsyn(X)− ϵ′ ≤ h
(
(Xm)+0

)
− ϵ. (2)

Set

Cn := {C : C is a cycle in (Xm)+0
starting at ω+(m), |C| = n}.

Let {nk} be an increasing sequence of natural num-
bers such that

h((Xm)+0 )− ϵ < lim
k

1

nk
log |Cnk

| ≤ h((Xm)+0 ).

Thus by (2),

hwsyn(X)− ϵ′ < lim
k

1

nk
log |Cnk

| ≤ h((Xm)+0 ). (3)

Now set Cnk
:=

{
Ck

1 , . . . , C
k
jk

}
and

H1 := C1
1 ∪ · · · ∪ C1

j1 ,

H2 := H1 ∪ C2
1 ∪ · · · ∪ C2

j2 , · · · ,
Hk := Hk−1 ∪ Ck

1 ∪ · · · ∪ Ck
jk
.

Then, for all k ∈ N,

|Cnk
| ≤ |{C : C is a cycle in Hk

starting at ω+(m), |C| = nk}|.

We shall need the following lemma.

Lemma 4.3 limk
1
nk

log |Cnk
| ≤ limk h(XHk

).

Proof. All (XHk
)′s are irreducible sofic and

h(XHk
) = h(Hk) by [6, Lemma 3.1]. So it suffices

to show that limk
1
nk

log |Cnk
| ≤ limk h(Hk).

Let limk h(Hk) < limk
1
nk

log |Cnk
|. Set r :=

limk
1
nk

log |Cnk
| − limk h(Hk). Thus

lim
k

h(Hk) < lim
k

1

nk
log |Cnk

| − r

3
. (4)

Set

Ci, nk
:= {C : C is a cycle in Hi

starting at ω+(m), |C| = nk}

and so limk
1
nk

log |Ci, nk
| ≤ h(Hi). But h(Hi) ≤

limk h(Hk). Hence

lim
k

1

nk
log |Ci, nk

| ≤ lim
k

h(Hk)

and so by (4), limk
1
nk

log |Ci, nk
| < limk

1
nk

log |Cnk
|−

r
3 . Thus for each i > 0, there is ki such that ki < ki+1

and

1

nki

log |Ci, nki
| < lim

k

1

nk
log |Cnk

| − r

3
. (5)

Since 1
nki

log |Cnki
| ≤ 1

nki
log |Ci, nki

| for all i, by (5),

1

nki

log |Cnki
| < lim

k

1

nk
log |Cnk

| − r

3
.

Hence

lim
i

1

nki

log |Cnki
| ≤ lim

k

1

nk
log |Cnk

| − r

3
. (6)

But

lim
i

1

nki

log |Cnki
| = lim

k

1

nk
log |Cnk

|

and so by (6),

lim
k

1

nk
log |Cnk

| ≤ lim
k

1

nk
log |Cnk

| − r

3

that is absurd. □

Completing the proof of Proposition 4.2. By
Lemma 4.3 and by (3),

hwsyn(X)− ϵ′ < lim
k

h(XHk
)

and so there is k0 ∈ N such that

hwsyn(X)− ϵ′ < h(XHk0
) ≤ h((Xm)+0 ).

Where the last equality is satisfied because h(Hk0) =
h(XHk0

) and Hk0 is a subgraph of (Xm)+0 . But all C
i
j

meet at ω+(m) and so XHk0
is an irreducible sofic.

Thus by [6, Theorem 3.2], there is an irreducible SFT
A ⊆ XHk0

⊆ L((Xm)+0 ) such that

hwsyn(X)− ϵ′ < h(A) < h(XHk0
). (7)

But by definition of t0, h(A) ≤ t0 and so by (7),
hwsyn(X)− ϵ′ ≤ t0 and we are done. □

An immediate consequence of the above proposi-
tion is

Corollary 4.4 Suppose X is an irreducible subshift.
If X is weak synchronized and hwsyn(X) = h(X), then
X is almost sofic.
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I0 Ijm−1 Il−1 Ik−1 Ik
a1···ajm−1 m 0k−l ak

0

0

Figure 1: The subgraph H of Gβ with 1β = a1a2a3 . . ., where l := jm + |m|.

δ θ
m

u

v

Figure 2: The subgraph of (Xm)+0 .
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