Beyond half synchronized systems

Dawoud Ahmadi Dastjerdi¹, Manouchehr Shahamat² 1- Faculty of Mathematical Sciences, Department of Pure Mathematics

Email: dahmadi1387@gmail.com

2- Faculty of Mathematical Sciences, Department of Pure Mathematics Email: rezashahamat80@yahoo.com (Corresponding author)

Received: XXX Revised: XXX Accepted: XXX

April 9, 2019

Abstract

In irreducible subshifts, a word *m* is synchronizing if whenever *vm* and *mw* are admissible words, then *vmw* is admissible as well. A word *m* is (left) half (resp. weak) synchronizing, when there is a left transitive ray (resp. a left ray) x _− such that if x _− m and mw are admissible, then x _− mw is also admissible. The respective subshifts are called half (resp. weak) synchronized. K. Thomsen in [On the structure of a sofic shift space, American Mathematical Society, 356, Number 9, 3557-3619] considers a synchronized component of a general subshift and investigates the approximation of entropy from inside of this component by some certain SFTs. We, using a rather different approach, show how this result extends to weak synchronized systems.

Keywords and phrases. synchronized, half synchronized, Kreiger graph, Fischer cover, entropy.

1 Introduction

One of the most studied dynamical systems is a subshift of finite type (SFT). An SFT is a system whose set of forbidden blocks is finite [\[1](#page-4-0)]; or equivalently, *X* is SFT iff there is $M \in \mathbb{N}$ such that any block of length greater than *M* is synchronizing. A block *m* is *synchronizing* if whenever v_1m and mv_2 are both blocks of X , then v_1mv_2 is a block of X as well. If an irreducible system has at least one synchronizing block, then it is called a *synchronized system* and examples are *sofics*: factors of SFT's. Synchronized systems, has attracted much attention and extension of them has been of interest since that notion was introduced [[2\]](#page-4-1). One was via *half synchronized systems*; that is, systems having *half synchronizing* blocks. In fact, if for a left transitive point such as *rm* and *mv* any block in *X* one has again $rmv ∈ X[−] = {x_− := ··· x_{−1}x₀ :$ $x = \cdots x_{-1}x_0x_1 \cdots \in X$, then *m* is called half synchronizing [[2](#page-4-1)]. Clearly any synchronized system is half synchronized. Dyke (or Dyck!) subshifts and certain *β*-shifts are non-synchronized but half synchronized systems [\[3](#page-4-2)].

Synchronized entropy of a synchronized system

X denoted by $h_{syn}(X)$ was considered in [[4\]](#page-4-3) as a value of exponential rate of change of orbits having a synchronized block. In section (4), we extend this notion to weak synchronized entropy $h_{\text{wsyn}}(X)$ and will show there are some certain SFT's X_k such that $X_k \subseteq X_{k+1}$ and $h_{\text{wsyn}}(X) = \lim_{k \to \infty} h(X_k)$.

2 Background and definitions

This section is devoted to the very basic definitions in symbolic dynamics. The notations has been taken from [\[1](#page-4-0)] and [[2](#page-4-1)] for the relevant concepts.

First we present some elementary concept from [[1\]](#page-4-0). Let *A* be an alphabet, that is a non-empty finite set. The full shift \mathcal{A} -shift denoted by $\mathcal{A}^{\mathbb{Z}}$, is the collection of all bi-infinite sequences of symbols in *A*. Equip *A* with discrete topology and $A^{\mathbb{Z}}$ with product topology. A *block* or *word* over *A* is a finite sequence of symbols from *A*. It is convenient to include the sequence of no symbols, called the *empty block* which is denoted by ε . If *x* is a point in $\mathcal{A}^{\mathbb{Z}}$ and $i < j$, then we will denote a block of length $j - i + 1$ by $x_{[i,j]} = x_i x_{i+1} \dots x_j$. If $n \geq 1$, then u^n denotes the

⁰**2010 Mathematics Subject Classification:** 37B10.

concatenation of *n* copies of *u*, and put $u^0 = \varepsilon$. The *shift map* σ on the full shift $\mathcal{A}^{\mathbb{Z}}$ maps a point *x* to the point $y = \sigma(x)$ whose *i*-th coordinate is $y_i = x_{i+1}$. By our topology, σ is a homeomorphism. Let $\mathcal F$ be the collection of all forbidden blocks over *A*. For a full shift $\mathcal{A}^{\mathbb{Z}}$, define $X_{\mathcal{F}}$ to be the subset of sequences in $\mathcal{A}^{\mathbb{Z}}$ not containing any block from \mathcal{F} . A *shift space* or a *subshift* is a subset X of a full shift $\mathcal{A}^{\mathbb{Z}}$ such that $X = X_F$ for some collection $\mathcal F$ of forbidden blocks.

Let $\mathcal{B}_n(X)$ denote the set of all admissible *n*blocks. The *language* of *X* is the collection $\mathcal{B}(X) =$ $∪_nB_n(X)$. A shift space *X* is *irreducible* if for every ordered pair of blocks $u, v \in \mathcal{B}(X)$ there is a block $w \in \mathcal{B}(X)$ so that $u w v \in \mathcal{B}(X)$. A shift space *X* is called a *shift of finite type* (SFT) if there is a finite set *F* of forbidden blocks such that $X = X_{\mathcal{F}}$. A shift of *sofic* is the image of an SFT by a factor code (an onto sliding block code). Every SFT is sofic [[1](#page-4-0), Theorem 3.1.5], but the converse is not true [[1,](#page-4-0) Page 67].

Let *G* be a graph with edge set $\mathcal{E} = \mathcal{E}(G)$ and the set of vertices $V = V(G)$. The *edge shift* X_G is the shift space over the alphabet $A = \mathcal{E}$ defined by

$$
X_G = \{ \xi = (\xi_i)_{i \in \mathbb{Z}} \in \mathcal{E}^{\mathbb{Z}} :
$$

$$
t(\xi_i) = i(\xi_{i+1}) \}.
$$

Each edge *e* initiates at a vertex denoted by *i*(*e*) and terminates at a vertex *t*(*e*).

A labeled graph is a pair $\mathcal{G} = (G, \mathcal{L})$, where *G* is a graph with edge set \mathcal{E} , and the labeling $\mathcal{L} : \mathcal{E}(G) \to \mathcal{A}$ assigns to each edge e of G a label $\mathcal{L}(e)$ from the finite alphabet *A*. For a path $\pi = \pi_0 \dots \pi_k$, $\mathcal{L}(\pi) =$ $\mathcal{L}(\pi_0) \dots \mathcal{L}(\pi_k)$ is the label of π . By π_u we mean a path labeled *u*.

Let $\mathcal{L}_{\infty}(\xi)$ be the sequence of bi-infinite labels of a bi-infinite path ξ in G and set

$$
X_{\mathcal{G}} := \{ \mathcal{L}_{\infty}(\xi) : \ \xi \in X_G \} = \mathcal{L}_{\infty}(X_G).
$$

We say *G* is a *presentation* or *cover* of $X = \overline{X_g}$. In particular, *X* is sofic if and only if $X = X_G$ for a finite graph G [\[1](#page-4-0), Proposition 3.2.10].

In this part we collect some information from [[2](#page-4-1)]. Let *X* be a subshift and $x \in X$. Then, $x_{+} = (x_{i})_{i \in Z^{+}}$ (resp. $x_{-} = (x_i)_{i \le 0}$) is called right (resp. left) infinite *X*-ray. Let $X^+ = \{x_+ : x \in X\}$ and *X*[−] = {*x*^{*−*} : *x* ∈ *X* }. For a left infinite *X*-ray, say *x*^{*−*}, its follower set is $w_+(x_-) = \{x_+ \in X^+ : x_- x_+ \in X\}$ and for $m \in \mathcal{B}(X)$ its follower set is $w_+(m) = \{x_+ \in$ X^+ : $mx_+ \in X^+$. Analogously, we define predecessor sets $\omega_-(x_+) = \{x_- \in X^- : x_-x_+ \in X\}$ and *ω−*(*m*) = *{x[−] ∈ X[−]* : *x−m ∈ X−}*.

Consider the collection of all follower sets $\omega_+(x^-)$ as the set of vertices of a graph. There is an edge from I_1 to I_2 labeled a if and only if there is an X-ray x _− such that x _− a is an X-ray and I_1 = $\omega_{+}(x_{-})$, $I_2 = \omega_{+}(x_{-}a)$. This labeled graph is called the *Krieger graph* for *X*. A block $m \in \mathcal{B}(X)$ is *synchronizing* if whenever *um* and *mv* are in $\mathcal{B}(X)$, we have $umv \in \mathcal{B}(X)$. An irreducible shift space X is *synchronized system* if it has a synchronizing block. A block $m \in \mathcal{B}(X)$ is *half synchronizing* if there is a left transitive point $x \in X$ such that $x_{[-|m|+1, 0]} = m$ and $\omega_{+}(x_{(-\infty,0]}) = \omega_{+}(m)$. If X is a half synchronized system with half synchronizing *m*, the irreducible component of the Krieger graph containing the vertex $\omega_+(m)$ is denoted by X_0^+ and is called the *right Fischer cover* of *X*. A shift space that is the closure of the set of sequences obtained by freely concatenating the blocks in a list of countable blocks, called the set of generators, is a *coded system* [[1\]](#page-4-0).

3 Weak synchronized systems

Definition 3.1 *A shift space X is called* right *(resp.* left*)* weak synchronized system *if there is a block m* $of X$ *and a point* $x \in X$ *such that* $x_{[-|m|+1,0]} = m$ $(r \exp \cdot x_{[0, |m|-1]} = m)$ *and* $\omega_+(x_{(-\infty, 0]}) = \omega_+(m)$ $(resp. \omega_-(x_{[0,\infty)}) = \omega_-(m))$ *that we call m a* right weak synchronizing *(resp. left) block of X. Then,* $\omega_{+}(m)$ *is called a* weak synchronized vertex.

Note that if x was left (resp. right) transitive, then by definition, *X* would be right (resp. left) half synchronized system and so any half synchronized system is a weak synchronized system.

Here, whenever we say "weak synchronizing", we mean the right weak synchronizing.

Example 3.2 *Now we present an example of coded weak synchronized system which are not half synchronized and whose any of their blocks are weak synchronizing.*

Let X_{β} *denote the beta-shift corresponding to* β > 1*.* We first choose a 1 < $\beta \in \mathbb{R}$ such that X_{β} is *not synchronized. Let m−*¹ *be an arbitrary block in W*(X_{β}^{-1})*. First we show that* $0^{\infty}m^{-1} \in (X_{\beta}^{-1})^{-}$ *and* $m^{-1}0^{\infty} \in (X_{\beta}^{-1})^{+}.$

Since X_{β} *is not synchronized and* $m \in \mathcal{B}(X_{\beta})$, *m is not a synchronizing block for X^β where then by* [*3*, *Proposition 2.23*], $m \subseteq 1_{\beta} = a_1 a_2 a_3 \cdots$ *Assume* $m = a_{j_m} a_{j_m+1} \ldots a_{j_m+|m|-1}$ $m = a_{j_m} a_{j_m+1} \ldots a_{j_m+|m|-1}$ $m = a_{j_m} a_{j_m+1} \ldots a_{j_m+|m|-1}$ *(Figure 1) and set* $k := \min\{i > j_m + |m| - 1 : a_i > 0\}$ *. Then, there is a* finite path labeled $m0^{k_m-j_m-|m|+1}$ with initial ver*tex* I_{j_m-1} *and terminal vertex* I_0 *. Hence* $m0^\infty$ *is a right infinite* X_{β} *-ray and so* $0^{\infty}m^{-1}$ *is a left infinite* $(X_{\beta})^{-1}$ -ray. Similar reasoning works for $m^{-1}0^{\infty}$ ∈ $(X_{\beta}^{-1})^+$ *and so we have* $w_+(0^{\infty}m^{-1}) = w_+(m^{-1})$ *and* ω ^{*−*}($m^{-1}0^{\infty}$) = ω _−(m^{-1}) *which that in turn shows*

*that m−*¹ *is a right and left weak synchronizing block for* X_{β}^{-1} *. But m was arbitrary and so we are done.*

4 Weak synchronized entropy

Let $H = (\mathcal{V}, \mathcal{E})$ be a connected graph. For each pair of vertices $I, J \in \mathcal{V}$, let $r_n(I, J)$ denote the number of paths of length *n* starting at *I* and ending at *J*. Then,

$$
h(H) = \limsup_{n \to \infty} \frac{1}{n} \log r_n(I, J)
$$

is independent of *I, J*, and it is called the *Gurevic entropy* of H [\[5](#page-4-5)]. For any synchronized system X , the *synchronized entropy* $h_{syn}(X)$ is defined by

$$
h_{\text{syn}}(X) = \limsup_{n} \frac{1}{n} \log(|\{a \in \mathcal{B}_n(X) : \text{ } \text{mam} \in \mathcal{B}(X)\}|),
$$

where $m \in \mathcal{B}(X)$ is an arbitrary synchronizing block $[6]$ $[6]$. In 2004, Thomsen in $[6]$ proves that it is equal to the topological entropy of the system.

Now let *X* be a weak synchronized system and let $WH(X)$ denote the set of weak synchronizing blocks for *X*. For $m \in \text{WH}(X)$, denote by $(X_m)_0^+$ the maximal irreducible component of the Krieger graph *X* containing the vertex $\omega_{+}(m)$. Note that irreducible components are countable labeled graphs and so $\mathcal{L}((X_m)_0^+)$ is a coded system.

Let *m* be a weak synchronizing block for *X*. Fix *m* and *x* provided by the definition of weak synchronizing. Notice that *x[−]* terminates at *m* and set

$$
h(m, X) :=
$$

$$
\limsup_{n \to \infty} \frac{1}{n} \log |\{a \in \mathcal{B}_n(X) : \omega_+(x_{-}am) = \omega_+(m)\}|.
$$

A block $m \in \text{WH}(X)$ is called *residual weak synchronizing* if there is a finite path π_m in $(X_m)_0^+$ labeled *m* such that $\omega_{+}(m) = t(\pi_m)$. For example in Example $3.2 \, m := 0$ $3.2 \, m := 0$ is a residual weak synchronizing block for X_{β}^{-1} such that it is not a half synchronizing of X_{β}^{-1} .

Proposition 4.1 *Let m be an arbitrary residual weak synchronizing block for X Then,*

$$
h(m, X) = h((X_m)_0^+).
$$

Proof. Let *x* be a point in *X* provided by the definition of weak synchronizing. Pick a finite path π_m in $(X_m)_0^+$ labeled *m* such that $\theta := \omega_+(m) = t(\pi_m)$ (Figure [2\)](#page-4-7). Set $\delta := i(\pi_m)$). Let π_u be a finite path in $(X_m)_0^+$ labeled *u* such that $i(\pi) = \theta$, $t(\pi) = \delta$. Suppose that τ is an arbitrary cycle from θ to θ in $(X_m)_0^+$

labeled *v*. Then, $\omega_+(x_vum) = \omega_+(m)$. Thus the number of cycles of length $|v|$ from θ to θ is at most

$$
|\{a \in \mathcal{B}_{|v|+|u|}(X) : \omega_+(x_{-}am) = \omega_+(m)\}|.
$$

This means that $h(X_0^+) \leq h(m, X)$. Conversely, let $a \in \mathcal{B}_n(X)$ such that $\omega_+(x_{-}a_m) = \omega_+(m)$. Then, there is a cycle C_a in $(X_m)_0^+$ labeled *am* and initialing at $\theta = \omega_+(m)$ and so

$$
|\{a \in \mathcal{B}_n(X) : \omega_+(x_{-}am) = \omega_+(m)\}|
$$

is at most as large as the number of cycles of length $n + |m|$ based at $\theta = \omega_+(m)$. Thus $h(m, X) \leq$ $h((X_m)_0^+).$

□

Let $RW(X)$ denote the set of residual weak synchronizing blocks for *X* and set

$$
\mathcal{H}_X := \{ h((X_m)_0^+) : m \in \text{RW}(X) \}.
$$

Then, it is natural to define the *weak synchronized entropy* $h_{\text{wsyn}}(X)$ to be

$$
h_{\text{wsyn}}(X) = \sup \mathcal{H}_X.
$$

If *m* is a synchronizing block of *X*, then

$$
\{a \in \mathcal{B}_n(X) : \omega_+(x_{-}am) = \omega_+(m)\}
$$

=
$$
\{a \in \mathcal{B}_n(X) : \text{ }mam \in \mathcal{B}(X)\}
$$

and so

$$
h(m, X) = h_{\text{wsyn}}(X) = h_{\text{syn}}(X) = h(X_0^+).
$$

Thus

$$
\sup\{h((X_m)_0^+): m \in \text{RW}(X)\} = h(X_0^+).
$$

Thomsen in [[6\]](#page-4-6) considers a synchronized component *X* of a general subshift and proves that

$$
\sup\{h(A) : A \subseteq X \text{ is an irreducible SFT}\}\
$$

$$
= h(X_0^+) = h_{\text{syn}}(X). \tag{1}
$$

Now we will extend this notion to weak synchronized with a new and shorter proof which naturally will imply (1) (1) as well.

Proposition 4.2 *Let X be a weak synchronized system and RW(X)* $\neq \emptyset$ *. Then,*

$$
t_0 := \sup\{h(A) : \exists m \in RW(X) \text{ such that } A \subseteq \mathcal{L}((X_m)_0^+) \text{ is an irreducible SFT}\} = h_{wsyn}(X).
$$

Proof. Let $A \subseteq \mathcal{L}(X_m)_0^+$ be an irreducible SFT for some $m \in \text{RW}(X)$. Then, $h(A) = h_{syn}(A) \le$ $h((X_m)_0^+)$ and this implies $t_0 \leq h_{\text{wsyn}}(X)$.

It suffices to show that $h_{\text{wsyn}}(X) \le t_0$. Fix $\epsilon' > 0$ and choose $m \in \text{RW}(X)$ and $0 < \epsilon < \epsilon'$ such that

$$
h_{\text{wsyn}}(X) - \epsilon' \le h\left((X_m)_0^+ \right) - \epsilon. \tag{2}
$$

Set

$$
C_n := \{ C : C \text{ is a cycle in } (X_m)_0^+ \text{ starting at } \omega_+(m), |C| = n \}.
$$

Let ${n_k}$ be an increasing sequence of natural numbers such that

$$
h((X_m)^+_0) - \epsilon < \lim_{k} \frac{1}{n_k} \log |C_{n_k}| \le h((X_m)^+_0).
$$

Thus by (2) (2) ,

$$
h_{\text{wsyn}}(X) - \epsilon' < \lim_{k} \frac{1}{n_k} \log |C_{n_k}| \le h((X_m)_0^+). \tag{3}
$$

Now set $C_{n_k} := \{C_1^k, \ldots, C_{j_k}^k\}$ and

$$
H_1 := C_1^1 \cup \dots \cup C_{j_1}^1,
$$

\n
$$
H_2 := H_1 \cup C_1^2 \cup \dots \cup C_{j_2}^2, \dots,
$$

\n
$$
H_k := H_{k-1} \cup C_1^k \cup \dots \cup C_{j_k}^k.
$$

Then, for all $k \in \mathbb{N}$,

$$
|C_{n_k}| \leq |\{C : C \text{ is a cycle in } H_k
$$

starting at $\omega_+(m), |C| = n_k\}|.$

We shall need the following lemma.

Lemma 4.3 $\lim_{k} \frac{1}{n_k} \log |C_{n_k}| \leq \lim_{k} h(X_{H_k})$.

Proof. All $(X_{H_k})'s$ are irreducible sofic and $h(X_{H_k}) = h(H_k)$ by [[6,](#page-4-6) Lemma 3.1]. So it suffices to show that $\lim_k \frac{1}{n_k} \log |C_{n_k}| \leq \lim_k h(H_k)$.

Let $\lim_{k} h(H_k) < \lim_{n_k} \frac{1}{n_k} \log |C_{n_k}|$. Set $r :=$ $\lim_{k} \frac{1}{n_k} \log |C_{n_k}| - \lim_{k} h(H_k)$. Thus

$$
\lim_{k} h(H_k) < \lim_{k} \frac{1}{n_k} \log |C_{n_k}| - \frac{r}{3}.\tag{4}
$$

Set

$$
C_{i, n_k} := \{ C : C \text{ is a cycle in } H_i
$$

starting at $\omega_+(m), |C| = n_k \}$

and so $\lim_{k} \frac{1}{n_k} \log |C_{i,n_k}| \leq h(H_i)$. But $h(H_i) \leq$ $\lim_k h(H_k)$. Hence

$$
\lim_{k} \frac{1}{n_k} \log |C_{i, n_k}| \le \lim_{k} h(H_k)
$$

 $\lim_{k} \frac{1}{n_k} \log |C_{i, n_k}| < \lim_{k} \frac{1}{n_k} \log |C_{n_k}| \frac{r}{3}$. Thus for each $i > 0$, there is k_i such that $k_i < k_{i+1}$ and

$$
\frac{1}{n_{k_i}} \log |C_{i, n_{k_i}}| < \lim_{k} \frac{1}{n_k} \log |C_{n_k}| - \frac{r}{3}.\tag{5}
$$

Since $\frac{1}{n_{k_i}} \log |C_{n_{k_i}}| \le \frac{1}{n_{k_i}} \log |C_{i, n_{k_i}}|$ for all *i*, by [\(5](#page-3-2)),

$$
\frac{1}{n_{k_i}} \log |C_{n_{k_i}}| < \lim_{k \to \infty} \frac{1}{n_k} \log |C_{n_k}| - \frac{r}{3}.
$$

Hence

$$
\lim_{i} \frac{1}{n_{k_i}} \log |C_{n_{k_i}}| \le \lim_{k} \frac{1}{n_k} \log |C_{n_k}| - \frac{r}{3}.
$$
 (6)

But

$$
\lim_i \frac{1}{n_{k_i}} \log |C_{n_{k_i}}| = \lim_k \frac{1}{n_k} \log |C_{n_k}|
$$

and so by (6) (6) ,

$$
\lim_k \frac{1}{n_k} \log |C_{n_k}| \le \lim_k \frac{1}{n_k} \log |C_{n_k}| - \frac{r}{3}
$$

that is absurd. \Box

Completing the proof of Proposition [4.2.](#page-2-1) By Lemma 4.3 and by (3) (3) ,

$$
h_{\text{wsyn}}(X) - \epsilon' < \lim_{k} h(X_{H_k})
$$

and so there is $k_0 \in \mathbb{N}$ such that

$$
h_{\text{wsyn}}(X) - \epsilon' < h(X_{H_{k_0}}) \le h((X_m)_0^+).
$$

Where the last equality is satisfied because $h(H_{k_0}) =$ $h(X_{H_{k_0}})$ and H_{k_0} is a subgraph of $(X_m)_0^+$. But all C_j^i meet at $\omega_{+}(m)$ and so $X_{H_{k_0}}$ is an irreducible sofic. Thus by $[6,$ $[6,$ Theorem 3.2], there is an irreducible SFT $A \subseteq X_{H_{k_0}} \subseteq \mathcal{L}((X_m)_0^+)$ such that

$$
h_{\text{wsyn}}(X) - \epsilon' < h(A) < h(X_{H_{k_0}}). \tag{7}
$$

But by definition of t_0 , $h(A) \leq t_0$ and so by ([7](#page-3-6)), $h_{\text{wsyn}}(X) - \epsilon' \le t_0$ and we are done. □

An immediate consequence of the above proposition is

Corollary 4.4 *Suppose X is an irreducible subshift. If X* is weak synchronized and $h_{wsyn}(X) = h(X)$, then *X is almost sofic.*

Figure 1: The subgraph *H* of \mathcal{G}_{β} with $1_{\beta} = a_1 a_2 a_3 \dots$, where $l := j_m + |m|$.

Figure 2: The subgraph of $(X_m)_0^+$.

References

- [1] D. Lind and B. Marcus, *An introduction to symbolic dynamics and coding*, Cambridge Univ. Press. 1995.
- [2] D. Fiebig and U. Fiebig, *Covers for coded systems, Contemporary Mathematics*, 135, 1992, 139-179.
- [3] T. Meyerovitvh, *Tail invariant measures of the Dyke-shift and non-sofic systems*, M.Sc. Thesis, Tel-Aviv university, 2004.
- [4] U. Jung, *On the existence of open and bicontinuous codes*, Trans. Amer. Math. Soc. 363 (2011), 1399-1417.
- [5] K. Thomsen, *On the ergodic theory of synchronized systems*, Ergod. Th. Dynam. Sys. 356 (2006) 1235-1256.
- [6] K. Thomsen, *On the structure of a sofic shift space*, American Mathematical Society, 356, Number 9, 3557-3619.