Beyond half synchronized systems

Dawoud Ahmadi Dastjerdi¹, Manouchehr Shahamat² 1- Faculty of Mathematical Sciences, Department of Pure Mathematics Email: dahmadi1387@gmail.com

2- Faculty of Mathematical Sciences, Department of Pure Mathematics Email: rezashahamat80@yahoo.com (Corresponding author)

Received: XXX Revised: XXX Accepted: XXX

April 9, 2019

Abstract

In irreducible subshifts, a word m is synchronizing if whenever vm and mw are admissible words, then vmw is admissible as well. A word m is (left) half (resp. weak) synchronizing, when there is a left transitive ray (resp. a left ray) x_{-} such that if $x_{-}m$ and mw are admissible, then $x_{-}mw$ is also admissible. The respective subshifts are called half (resp. weak) synchronized. K. Thomsen in [On the structure of a sofic shift space, American Mathematical Society, 356, Number 9, 3557-3619] considers a synchronized component of a general subshift and investigates the approximation of entropy from inside of this component by some certain SFTs. We, using a rather different approach, show how this result extends to weak synchronized systems.

Keywords and phrases. synchronized, half synchronized, Kreiger graph, Fischer cover, entropy.

1 Introduction

One of the most studied dynamical systems is a subshift of finite type (SFT). An SFT is a system whose set of forbidden blocks is finite [1]; or equivalently, Xis SFT iff there is $M \in \mathbb{N}$ such that any block of length greater than M is synchronizing. A block m is synchronizing if whenever v_1m and mv_2 are both blocks of X, then $v_1 m v_2$ is a block of X as well. If an irreducible system has at least one synchronizing block, then it is called a *synchronized system* and examples are *sofics*: factors of SFT's. Synchronized systems, has attracted much attention and extension of them has been of interest since that notion was introduced [2]. One was via half synchronized systems; that is, systems having half synchronizing blocks. In fact, if for a left transitive point such as rm and mv any block in X one has again $rmv \in X^- = \{x_- := \cdots : x_{-1}x_0 :$ $x = \cdots x_{-1} x_0 x_1 \cdots \in X$, then m is called half synchronizing [2]. Clearly any synchronized system is half synchronized. Dyke (or Dyck!) subshifts and certain β -shifts are non-synchronized but half synchronized systems [3].

Synchronized entropy of a synchronized system

X denoted by $h_{\text{syn}}(X)$ was considered in [4] as a value of exponential rate of change of orbits having a synchronized block. In section (4), we extend this notion to weak synchronized entropy $h_{\text{wsyn}}(X)$ and will show there are some certain SFT's X_k such that $X_k \subseteq X_{k+1}$ and $h_{\text{wsyn}}(X) = \lim_{k \to \infty} h(X_k)$.

2 Background and definitions

This section is devoted to the very basic definitions in symbolic dynamics. The notations has been taken from [1] and [2] for the relevant concepts.

First we present some elementary concept from [1]. Let \mathcal{A} be an alphabet, that is a non-empty finite set. The full shift \mathcal{A} -shift denoted by $\mathcal{A}^{\mathbb{Z}}$, is the collection of all bi-infinite sequences of symbols in \mathcal{A} . Equip \mathcal{A} with discrete topology and $\mathcal{A}^{\mathbb{Z}}$ with product topology. A *block* or *word* over \mathcal{A} is a finite sequence of symbols from \mathcal{A} . It is convenient to include the sequence of no symbols, called the *empty block* which is denoted by ε . If x is a point in $\mathcal{A}^{\mathbb{Z}}$ and $i \leq j$, then we will denote a block of length j - i + 1 by $x_{[i,j]} = x_i x_{i+1} \dots x_j$. If $n \geq 1$, then u^n denotes the

⁰2010 Mathematics Subject Classification: 37B10.

concatenation of n copies of u, and put $u^0 = \varepsilon$. The shift map σ on the full shift $\mathcal{A}^{\mathbb{Z}}$ maps a point x to the point $y = \sigma(x)$ whose *i*-th coordinate is $y_i = x_{i+1}$. By our topology, σ is a homeomorphism. Let \mathcal{F} be the collection of all forbidden blocks over \mathcal{A} . For a full shift $\mathcal{A}^{\mathbb{Z}}$, define $X_{\mathcal{F}}$ to be the subset of sequences in $\mathcal{A}^{\mathbb{Z}}$ not containing any block from \mathcal{F} . A shift space or a subshift is a subset X of a full shift $\mathcal{A}^{\mathbb{Z}}$ such that $X = X_{\mathcal{F}}$ for some collection \mathcal{F} of forbidden blocks.

Let $\mathcal{B}_n(X)$ denote the set of all admissible *n*blocks. The *language* of X is the collection $\mathcal{B}(X) = \bigcup_n \mathcal{B}_n(X)$. A shift space X is *irreducible* if for every ordered pair of blocks $u, v \in \mathcal{B}(X)$ there is a block $w \in \mathcal{B}(X)$ so that $uwv \in \mathcal{B}(X)$. A shift space X is called a *shift of finite type* (SFT) if there is a finite set \mathcal{F} of forbidden blocks such that $X = X_{\mathcal{F}}$. A shift of *sofic* is the image of an SFT by a factor code (an onto sliding block code). Every SFT is sofic [1, Theorem 3.1.5], but the converse is not true [1, Page 67].

Let G be a graph with edge set $\mathcal{E} = \mathcal{E}(G)$ and the set of vertices $\mathcal{V} = \mathcal{V}(G)$. The *edge shift* X_G is the shift space over the alphabet $\mathcal{A} = \mathcal{E}$ defined by

$$X_G = \{ \xi = (\xi_i)_{i \in \mathbb{Z}} \in \mathcal{E}^{\mathbb{Z}} : t(\xi_i) = i(\xi_{i+1}) \}.$$

Each edge e initiates at a vertex denoted by i(e) and terminates at a vertex t(e).

A labeled graph is a pair $\mathcal{G} = (G, \mathcal{L})$, where G is a graph with edge set \mathcal{E} , and the labeling $\mathcal{L} : \mathcal{E}(G) \to \mathcal{A}$ assigns to each edge e of G a label $\mathcal{L}(e)$ from the finite alphabet \mathcal{A} . For a path $\pi = \pi_0 \dots \pi_k$, $\mathcal{L}(\pi) =$ $\mathcal{L}(\pi_0) \dots \mathcal{L}(\pi_k)$ is the label of π . By π_u we mean a path labeled u.

Let $\mathcal{L}_{\infty}(\xi)$ be the sequence of bi-infinite labels of a bi-infinite path ξ in G and set

$$X_{\mathcal{G}} := \{\mathcal{L}_{\infty}(\xi) : \xi \in X_G\} = \mathcal{L}_{\infty}(X_G)$$

We say \mathcal{G} is a presentation or cover of $X = \overline{X_{\mathcal{G}}}$. In particular, X is sofic if and only if $X = X_{\mathcal{G}}$ for a finite graph G [1, Proposition 3.2.10].

In this part we collect some information from [2]. Let X be a subshift and $x \in X$. Then, $x_+ = (x_i)_{i \in Z^+}$ (resp. $x_- = (x_i)_{i \leq 0}$) is called right (resp. left) infinite X-ray. Let $X^+ = \{x_+ : x \in X\}$ and $X^- = \{x_- : x \in X\}$. For a left infinite X-ray, say x_- , its follower set is $w_+(x_-) = \{x_+ \in X^+ : x_-x_+ \in X\}$ and for $m \in \mathcal{B}(X)$ its follower set is $w_+(m) = \{x_+ \in X^+ : mx_+ \in X^+\}$. Analogously, we define predecessor sets $\omega_-(x_+) = \{x_- \in X^- : x_-x_+ \in X\}$ and $\omega_-(m) = \{x_- \in X^- : x_-m \in X^-\}$.

Consider the collection of all follower sets $\omega_+(x_-)$ $(X_{\beta})^{-1}$ -ray. Similar reasoning works for $m^{-1}0^{\infty} \in$ as the set of vertices of a graph. There is an edge $(X_{\beta}^{-1})^+$ and so we have $w_+(0^{\infty}m^{-1}) = w_+(m^{-1})$ and from I_1 to I_2 labeled a if and only if there is an $\omega_-(m^{-1}0^{\infty}) = \omega_-(m^{-1})$ which that in turn shows

X-ray x_{-} such that $x_{-}a$ is an X-ray and $I_{1} =$ $\omega_+(x_-), I_2 = \omega_+(x_-a)$. This labeled graph is called the Krieger graph for X. A block $m \in \mathcal{B}(X)$ is synchronizing if whenever um and mv are in $\mathcal{B}(X)$, we have $umv \in \mathcal{B}(X)$. An irreducible shift space X is synchronized system if it has a synchronizing block. A block $m \in \mathcal{B}(X)$ is half synchronizing if there is a left transitive point $x \in X$ such that $x_{[-|m|+1,0]} = m$ and $\omega_+(x_{(-\infty,0]}) = \omega_+(m)$. If X is a half synchronized system with half synchronizing m, the irreducible component of the Krieger graph containing the vertex $\omega_+(m)$ is denoted by X_0^+ and is called the right Fischer cover of X. A shift space that is the closure of the set of sequences obtained by freely concatenating the blocks in a list of countable blocks, called the set of generators, is a *coded system* [1].

3 Weak synchronized systems

Definition 3.1 A shift space X is called right (resp. left) weak synchronized system if there is a block m of X and a point $x \in X$ such that $x_{[-|m|+1,0]} = m$ (resp. $x_{[0,|m|-1]} = m$) and $\omega_+(x_{(-\infty,0]}) = \omega_+(m)$ (resp. $\omega_-(x_{[0,\infty)}) = \omega_-(m)$) that we call m a right weak synchronizing (resp. left) block of X. Then, $\omega_+(m)$ is called a weak synchronized vertex.

Note that if x was left (resp. right) transitive, then by definition, X would be right (resp. left) half synchronized system and so any half synchronized system is a weak synchronized system.

Here, whenever we say "weak synchronizing", we mean the right weak synchronizing.

Example 3.2 Now we present an example of coded weak synchronized system which are not half synchronized and whose any of their blocks are weak synchronizing.

Let X_{β} denote the beta-shift corresponding to $\beta > 1$. We first choose a $1 < \beta \in \mathbb{R}$ such that X_{β} is not synchronized. Let m^{-1} be an arbitrary block in $W(X_{\beta}^{-1})$. First we show that $0^{\infty}m^{-1} \in (X_{\beta}^{-1})^{-1}$ and $m^{-1}0^{\infty} \in (X_{\beta}^{-1})^{+}$.

Since X_{β} is not synchronized and $m \in \mathcal{B}(X_{\beta})$, m is not a synchronizing block for X_{β} where then by [3, Proposition 2.23], $m \subseteq 1_{\beta} = a_1a_2a_3\cdots$. Assume $m = a_{j_m}a_{j_m+1}\cdots a_{j_m+|m|-1}$ (Figure 1) and set $k := \min\{i > j_m + |m| - 1 : a_i > 0\}$. Then, there is a finite path labeled $m0^{k_m - j_m - |m|+1}$ with initial vertex I_{j_m-1} and terminal vertex I_0 . Hence $m0^{\infty}$ is a right infinite X_{β} -ray and so $0^{\infty}m^{-1}$ is a left infinite $(X_{\beta})^{-1}$ -ray. Similar reasoning works for $m^{-1}0^{\infty} \in$ $(X_{\beta}^{-1})^+$ and so we have $w_+(0^{\infty}m^{-1}) = w_+(m^{-1})$ and $\omega_-(m^{-1}0^{\infty}) = \omega_-(m^{-1})$ which that in turn shows

that m^{-1} is a right and left weak synchronizing block labeled v. Then, $\omega_+(x_-vum) = \omega_+(m)$. Thus the for X_{β}^{-1} . But m was arbitrary and so we are done.

Weak synchronized entropy 4

Let $H = (\mathcal{V}, \mathcal{E})$ be a connected graph. For each pair of vertices $I, J \in \mathcal{V}$, let $r_n(I, J)$ denote the number of paths of length n starting at I and ending at J. Then.

$$h(H) = \limsup_{n \to \infty} \frac{1}{n} \log r_n(I, J)$$

is independent of I, J, and it is called the *Gurevic* entropy of H [5]. For any synchronized system X, the synchronized entropy $h_{syn}(X)$ is defined by

$$h_{\text{syn}}(X) = \lim_{n} \sup_{n} \frac{1}{n} \log(|\{a \in \mathcal{B}_{n}(X) : mam \in \mathcal{B}(X)\}|),$$

where $m \in \mathcal{B}(X)$ is an arbitrary synchronizing block [6]. In 2004, Thomsen in [6] proves that it is equal to the topological entropy of the system.

Now let X be a weak synchronized system and let WH(X) denote the set of weak synchronizing blocks for X. For $m \in WH(X)$, denote by $(X_m)_0^+$ the maximal irreducible component of the Krieger graph X containing the vertex $\omega_{+}(m)$. Note that irreducible components are countable labeled graphs and so $\mathcal{L}((X_m)_0^+)$ is a coded system.

Let m be a weak synchronizing block for X. Fix m and x provided by the definition of weak synchronizing. Notice that x_{-} terminates at m and set

$$h(m, X) := \lim_{n \to \infty} \sup_{n} \frac{1}{n} \log \left| \{ a \in \mathcal{B}_n(X) : \omega_+(x_- am) = \omega_+(m) \} \right|.$$

A block $m \in WH(X)$ is called *residual weak syn*chronizing if there is a finite path π_m in $(X_m)_0^+$ labeled m such that $\omega_+(m) = t(\pi_m)$. For example in Example 3.2 m := 0 is a residual weak synchronizing block for X_{β}^{-1} such that it is not a half synchronizing of X_{β}^{-1} .

Proposition 4.1 Let *m* be an arbitrary residual weak synchronizing block for X Then,

$$h(m, X) = h((X_m)_0^+).$$

Proof. Let x be a point in X provided by the definition of weak synchronizing. Pick a finite path π_m in $(X_m)_0^+$ labeled m such that $\theta := \omega_+(m) = t(\pi_m)$ (Figure 2). Set $\delta := i(\pi_m)$). Let π_u be a finite path in $(X_m)_0^+$ labeled u such that $i(\pi) = \theta$, $t(\pi) = \delta$. Suppose that τ is an arbitrary cycle from θ to θ in $(X_m)^+_0$

number of cycles of length |v| from θ to θ is at most

$$|\{a \in \mathcal{B}_{|v|+|u|}(X) : \omega_+(x_-am) = \omega_+(m)\}|.$$

This means that $h(X_0^+) \leq h(m, X)$. Conversely, let $a \in \mathcal{B}_n(X)$ such that $\omega_+(x_-am) = \omega_+(m)$. Then, there is a cycle C_a in $(X_m)_0^+$ labeled am and initialing at $\theta = \omega_+(m)$ and so

$$|\{a \in \mathcal{B}_n(X) : \omega_+(x_-am) = \omega_+(m)\}|$$

is at most as large as the number of cycles of length n + |m| based at $\theta = \omega_+(m)$. Thus $h(m, X) \leq$ $h((X_m)_0^+).$

Let RW(X) denote the set of residual weak synchronizing blocks for X and set

$$\mathcal{H}_X := \{h((X_m)_0^+) : m \in \mathrm{RW}(X)\}.$$

Then, it is natural to define the weak synchronized entropy $h_{wsyn}(X)$ to be

$$h_{\mathrm{wsyn}}(X) = \sup \mathcal{H}_X.$$

If m is a synchronizing block of X, then

$$\{a \in \mathcal{B}_n(X) : \omega_+(x_-am) = \omega_+(m)\} \\ = \{a \in \mathcal{B}_n(X) : mam \in \mathcal{B}(X)\}\$$

and so

$$h(m, X) = h_{wsyn}(X) = h_{syn}(X) = h(X_0^+).$$

Thus

$$\sup\{h((X_m)_0^+) : m \in RW(X)\} = h(X_0^+).$$

Thomsen in [6] considers a synchronized component X of a general subshift and proves that

$$\sup\{h(A) : A \subseteq X \text{ is an irreducible SFT}\} = h(X_0^+) = h_{\text{syn}}(X).$$
(1)

Now we will extend this notion to weak synchronized with a new and shorter proof which naturally will imply (1) as well.

Proposition 4.2 Let X be a weak synchronized system and $RW(X) \neq \emptyset$. Then,

$$t_0 := \sup\{h(A): \exists m \in RW(X) \text{ such that} \\ A \subseteq \mathcal{L}((X_m)_0^+) \text{ is an irreducible } SFT\} = h_{wsyn}(X).$$

Proof. Let $A \subseteq \mathcal{L}((X_m)_0^+)$ be an irreducible SFT for some $m \in \mathrm{RW}(X)$. Then, $h(A) = h_{\mathrm{syn}}(A) \leq h((X_m)_0^+)$ and this implies $t_0 \leq h_{\mathrm{wsyn}}(X)$.

It suffices to show that $h_{\text{wsyn}}(X) \leq t_0$. Fix $\epsilon' > 0$ and choose $m \in \text{RW}(X)$ and $0 < \epsilon < \epsilon'$ such that

$$h_{\text{wsyn}}(X) - \epsilon' \le h\left((X_m)_0^+\right) - \epsilon.$$
(2)

 Set

$$C_n := \{C : C \text{ is a cycle in } (X_m)_0^+$$

starting at $\omega_+(m), |C| = n\}.$

Let $\{n_k\}$ be an increasing sequence of natural numbers such that

$$h((X_m)_0^+) - \epsilon < \lim_k \frac{1}{n_k} \log |C_{n_k}| \le h((X_m)_0^+).$$

Thus by (2),

$$h_{\text{wsyn}}(X) - \epsilon' < \lim_{k} \frac{1}{n_k} \log |C_{n_k}| \le h((X_m)_0^+).$$
 (3)

Now set $C_{n_k} := \{C_1^k, \ldots, C_{j_k}^k\}$ and

$$\begin{aligned} H_1 &:= C_1^1 \cup \dots \cup C_{j_1}^1, \\ H_2 &:= H_1 \cup C_1^2 \cup \dots \cup C_{j_2}^2, \dots, \\ H_k &:= H_{k-1} \cup C_1^k \cup \dots \cup C_{j_k}^k. \end{aligned}$$

Then, for all $k \in \mathbb{N}$,

$$|C_{n_k}| \le |\{C: C \text{ is a cycle in } H_k \\ \text{starting at } \omega_+(m), |C| = n_k\}|.$$

We shall need the following lemma.

Lemma 4.3 $\lim_k \frac{1}{n_k} \log |C_{n_k}| \le \lim_k h(X_{H_k}).$

Proof. All $(X_{H_k})'s$ are irreducible sofic and $h(X_{H_k}) = h(H_k)$ by [6, Lemma 3.1]. So it suffices to show that $\lim_k \frac{1}{n_k} \log |C_{n_k}| \leq \lim_k h(H_k)$.

Let $\lim_k h(H_k) < \lim_k \frac{1}{n_k} \log |C_{n_k}|$. Set $r := \lim_k \frac{1}{n_k} \log |C_{n_k}| - \lim_k h(H_k)$. Thus

$$\lim_{k} h(H_k) < \lim_{k} \frac{1}{n_k} \log |C_{n_k}| - \frac{r}{3}.$$
 (4)

Set

$$C_{i, n_k} := \{C : C \text{ is a cycle in } H_i \\ \text{starting at } \omega_+(m), |C| = n_k \}$$

and so $\lim_k \frac{1}{n_k} \log |C_{i,n_k}| \leq h(H_i)$. But $h(H_i) \leq \lim_k h(H_k)$. Hence

$$\lim_{k} \frac{1}{n_k} \log |C_{i,n_k}| \le \lim_{k} h(H_k)$$

and so by (4), $\lim_k \frac{1}{n_k} \log |C_{i,n_k}| < \lim_k \frac{1}{n_k} \log |C_{n_k}| - \frac{r}{3}$. Thus for each i > 0, there is k_i such that $k_i < k_{i+1}$ and

$$\frac{1}{n_{k_i}} \log |C_{i, n_{k_i}}| < \lim_k \frac{1}{n_k} \log |C_{n_k}| - \frac{r}{3}.$$
 (5)

Since $\frac{1}{n_{k_i}} \log |C_{n_{k_i}}| \le \frac{1}{n_{k_i}} \log |C_{i, n_{k_i}}|$ for all i, by (5),

$$\frac{1}{n_{k_i}} \log |C_{n_{k_i}}| < \lim_k \frac{1}{n_k} \log |C_{n_k}| - \frac{r}{3}.$$

Hence

$$\lim_{i} \frac{1}{n_{k_i}} \log |C_{n_{k_i}}| \le \lim_{k} \frac{1}{n_k} \log |C_{n_k}| - \frac{r}{3}.$$
 (6)

But

$$\lim_{i} \frac{1}{n_{k_{i}}} \log |C_{n_{k_{i}}}| = \lim_{k} \frac{1}{n_{k}} \log |C_{n_{k}}|$$

and so by (6),

$$\lim_k \frac{1}{n_k} \log |C_{n_k}| \le \lim_k \frac{1}{n_k} \log |C_{n_k}| - \frac{r}{3}$$

that is absurd.

Completing the proof of Proposition 4.2. By Lemma 4.3 and by (3),

$$h_{\mathrm{wsyn}}(X) - \epsilon' < \lim_{k} h(X_{H_k})$$

and so there is $k_0 \in \mathbb{N}$ such that

$$h_{\text{wsyn}}(X) - \epsilon' < h(X_{H_{k_0}}) \le h((X_m)_0^+)$$

Where the last equality is satisfied because $h(H_{k_0}) = h(X_{H_{k_0}})$ and H_{k_0} is a subgraph of $(X_m)_0^+$. But all C_j^i meet at $\omega_+(m)$ and so $X_{H_{k_0}}$ is an irreducible sofic. Thus by [6, Theorem 3.2], there is an irreducible SFT $A \subseteq X_{H_{k_0}} \subseteq \mathcal{L}((X_m)_0^+)$ such that

$$h_{\text{wsyn}}(X) - \epsilon' < h(A) < h(X_{H_{k_0}}).$$
 (7)

But by definition of t_0 , $h(A) \leq t_0$ and so by (7), $h_{\text{wsyn}}(X) - \epsilon' \leq t_0$ and we are done.

An immediate consequence of the above proposition is

Corollary 4.4 Suppose X is an irreducible subshift. If X is weak synchronized and $h_{wsyn}(X) = h(X)$, then X is almost sofic.

Figure 1: The subgraph H of \mathcal{G}_{β} with $1_{\beta} = a_1 a_2 a_3 \dots$, where $l := j_m + |m|$.

Figure 2: The subgraph of $(X_m)_0^+$.

References

- D. Lind and B. Marcus, An introduction to symbolic dynamics and coding, Cambridge Univ. Press. 1995.
- [2] D. Fiebig and U. Fiebig, Covers for coded systems, Contemporary Mathematics, 135, 1992, 139-179.
- [3] T. Meyerovitvh, Tail invariant measures of the Dyke-shift and non-sofic systems, M.Sc. Thesis, Tel-Aviv university, 2004.
- [4] U. Jung, On the existence of open and bicontinuous codes, Trans. Amer. Math. Soc. 363 (2011), 1399-1417.
- [5] K. Thomsen, On the ergodic theory of synchronized systems, Ergod. Th. Dynam. Sys. 356 (2006) 1235-1256.
- [6] K. Thomsen, On the structure of a sofic shift space, American Mathematical Society, 356, Number 9, 3557-3619.