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In this paper a new model of Pull-in Voltage for MEMS capacitor with fully clamped diaphragm is presented. This
model not only makes it possible to calculate the exact value of pull-in voltage in a capacitor but also provides the ability
to detect the accurate deflection of a fully clamped diaphragm. By introducing this model, the precise value of pull-in
voltage at the border, between stable and un-stable state, can be calculated. As an advantage of this new achievement,
it is exhibited that the all theoretical equations are fully compatible with simulation results using finite element analysis

(FEA).
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1. INTRODUCTION

MEMS-based capacitive instruments offer
advantages due to their small size, relatively
high sensitivity, batch fabrication capability,
inherently low power consumption and low
noise features. Serious research efforts have
been made to improve the design methodology
and performance of MEMS-based capacitive
instruments [1-3]. As it is well known, bias
voltage is the voltage applied to a capacitor at
normal working condition. Any voltage
exceeding this voltage will reduce the air gap
thickness between the two electrodes of the
capacitor by forcing the movable electrode
which generally works as a diaphragm closer
to the ground plate which is fixed. The voltage
being high enough to pull the movable plate to
a distance equal to one-third of the original air
gap thickness is called Pull- In voltage. This is
known as the highest acceptable voltage which
can be applied to a capacitor without causing
any damage. Consequently any increase above
Pull- In voltage is considered destructive and
should be avoided.

In MEMS based capacitive structures, the
pull-in voltage or the collapse voltage is a
highly critical factor in the design process as it
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can provide a destructive working condition
and result the collapse of the structure.
Previously in a capacitive structure with
clamped diaphragm, the small deflection
model of diaphragm deformation [4] did not
account for nonlinearities associated with the
presence of in-built residual stress in the
diaphragm and predicted unrealistically high
deformation values. In [5], an empirical
method is provided to approximate pull-in
voltage for cantilevers, fixed-fixed beams and
circular diaphragms under -electrostatic
actuation. Naturally, this factor was neglected
that whenever the bias voltage is applied to a
capacitor, an excitation of electrostatic
attraction force is formed which causes a non-
linear behavior in the structure of the capacitor.
This factor has been considered in [6] so as a
result, the large deflection model for a clamped
square diaphragm deflection was introduced.
But still none of mentioned methods could
fulfill the accuracy in calculating the precise
pull-in voltage in capacitive structures. So
essentially it is necessary to formulate a
method to determine the exact pull-in voltage
that accounts for the nonlinear nature of the
design parameters.
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In this paper, we try to design and introduce
a new method that able to detect and evaluate
the exact pull-in voltage of MEMS capacitor
with fully clamped diaphragm. This method
also provides the ability to calculate the
amount of diaphragm deflection.

2. DESIGN CONSIDERATIONS

In capacitive structures, the electrostatic
attraction force pulls the capacitor electrodes
towards each other and thus causes the
diaphragm to deflect up to its maximum limit.
This maximum allowable limit is defined by
the elasticity of the diaphragm material. Any
forces exceeding pull-in voltage will drive the
movable plate to the instability range and
moves it to destructive state. This is defined as
pull-in condition. In this new design, the
destructive limit is proved not to be one-third
of air gap thickness.

In parallel plate capacitors, as the sides are
not fixed and can freely move towards the fixed
plate, the boundary condition is changeable.
Whereas in this new type of capacitor all four
sides of the top diaphragm are fixed. Therefore
the diaphragm 1is stationary and has no
movement. Only the center portion of the
diaphragm gets attracted towards the fixed
plate and gets stretched under electrostatic
attraction force. When a suitable diaphragm
with a high quality material having high elastic
limit is chosen, the deflection will extend
beyond the one third of air gap and it is allowed
to get closer to the fixed plate. With this
difference, the previous methods which were
applied to parallel type capacitors are no longer
applicable for this fully clamped diaphragm.
Thus employing new methods are essential.

Calculating the exact value of pull-in voltage
at the border between stable and unstable state,
is achievable by using MATLAB software in
conjunction with this new mechanical model.
In addition, the graph of deflection versus
voltage indicates that the results are more
accurate and more realistic than the results of
previous methods.
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3. ANALYTICAL
VOLTAGE

A typical capacitive structure with a fully
clamped diaphragm is shown in Fig 2. The air
gap between parallel plates is a distance called
do. The lower plate is a fixed plate and has no
movement, whereas the upper one despite
being fixed its periphery can deflect towards
the lower plate. By applying electrostatic force,
the central region of movable diaphragm will
be attracted to the fixed plate. By this
attraction, the air gap thickness between two
plates of the capacitor is reduced. This

MODEL OF PULL-IN

. L1
movement stops at a point which is gdo from

the upper plate. This is the ultimate point of
motion which can take place in any capacitor

that leaves a final distance of %do between the

two plates. Any force beyond that can cause
destruction. But the capacitor has been
introduced in this paper, which its movable
plate is fully fixed at all sides. By applying any
electrostatic force, the central region of
movable diaphragm will be attracted to the
fixed plate. By this attraction, the air gap
thickness between the two plates of the
capacitor is reduced to less than 2/3 of do.

Movable Plate

s
L

T

Fixed Plate

d

Fig 2. Capacitive structure

In parallel plate capacitors when voltage is applied,
the central capacity is defined as:

_ SOA (l)
C_dO_W

Where ¢€,is permittivity of free space or electric constant
which is equal to 8.854 X 10712, A is the area of
capacitor plate, do is the distance between the two plates
and w is the central deflection of diaphragm
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[7].Electrostatic energy in capacitor is expressed as:
1
Ue=5C & 2)

Where C is the central capacity and V
represents the bias voltage between two
electrodes  (the diaphragm and the
backplate).The electrostatic attraction force F&
between the plates due to the charges on the
plates can be found by differentiating the
stored energy of the capacitor respect to the
position of the movable plate and is expressed
as [6]:

Foo= _du._ _ 4 lCVz _ SDAV22=

EEOAVZ dw dw (2 ) 2 (do-w) 3)

2(do-w)?

Where ¢, is permittivity of free space, A is the area of
capacitor plate, dy is the distance between two plates and
w is the central deflection of diaphragm. Generally,
Euler — Bernoulli theory is used to analyze diaphragm
deflection. Whenever this theory is used for plates with
small thicknesses, the effects of rotational inertia and
shear deformations can be neglected [8].In this method
only the bending force is considered and above
mentioned factors are totally ignored and have no effect
on the results. In this theory the plate is assumed to be
under pure bending force. Therefore the other forces
including shear and tensional forces are zero.
Furthermore, the diaphragm material is isotropic and
homogeneous. The following assumptions are made in
this paper:

1. The thickness of the plate (h) is small
compared to its lateral dimensions.

2. The influence of transverse shear
deformation is neglected. This assumption
implies that the transverse shear strains,
&xz and €,,, are negligible, where z denotes the
thickness direction.

3. The transverse normal strain &,,under
transverse loading can be neglected. The
transverse normal stress o ,,is small and hence
can be neglected compared to the other

components of stress.
The strain energy of the system (Us) can be expressed as:

1
Us = Eﬂfvp [axxexx T Oyy€yy + 022€2z + Oxy€sy + 4

Oyz€yz + Opx€zy|dxdydz

wheree,.is axial strain in a bar or beam.
Exxs Eyyr €22, Exy, €yzand €, are  components
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of strain. In fact, €,, ande,,,, are normal strains
parallel to the x and y axes respectively, and
€xy 18 the shear strain in the xy plane. On the
other hand, ¢ or g,, is axial stress in a bar or
beam. Oxx> Oyy» Ozz, Oxy» Oyz, Oz A€
components of stress. For thin plates subjected
to bending forces (i.e., transverse loads and
bending moments), the direct stress in the z
direction (0,,) is usually neglected. Thus, the
nonzero stress components are
Oxx) Oyy, Oxy, Oy 7 and 0y

It can be noted that in beams, which can be
considered as one-dimensional analogs of
plates, the shear stress gy, will not be present.
As in beam theory, the stresses
Oxx) Oyy, Oxzandoy, are  assumed to vary
linearly and parabolically, respectively, over
the thickness of the plate. The shear stress
Oxyls assumed to vary linearly over the
thickness of the plate. Because of assumptions
2 and 3, the state of stress in a thin plate can be
assumed to be plane stress. Thus, the nonzero
stresses induced in a thin plate are given by
Oxx,0yy, and 0y,.As a result, the strain energy
density (Us,) of the plate can be expressed as:

1
Usg =5 (Oux€xx + Oyy€yy + Oxy€xy) ©)

Integrating (5) over the volume of the plate
(V), the strain energy of bending can be
obtained as:
Us = fff UgodV - U= %fffvp [Jxxexx +
Oyy€yy + axyexy]dV

(6)

Where dV= dAdz denotes the volume of an
infinitesimal element of the plate. The strain
components can be expressed in terms of the
transverse displacement of the middle surface
of the plate, w(x,y),as follows [9]:

ou 2%*w 7
fx T ox T TP ox? @
d 02
e _ v _ w (8)

»=a T e
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ou , v a%w
Exy = 5 + I -2z %0y (9)
ow 0
2z =7~
a
BZu ow v | ow (10)

=—+4— =0, Eyz=$+5 =0

Where u, v, and w denote the components of
displacement parallel to x, y, and z directions,
respectively. On the other hand, Stress and strain
relations are expressed as [10]:

E E
Oxx = 15,2 [exx +veEyy ] 0yy = T-v2 leyy + (11)

E
Ve] 0n = g ey

Where E is Young’s modulus, v is Poisson’s ratio, ¢ is
stress, and € is the strain. As a result, the stress-strain
relations permit stresses to be expressed in terms of the
transverse displacement, w(x,y) as:

E Ez (3%*w
O = 1 [exe vy ] = -5 (55 +
o, (12)
v5s)
E Ez (0%
Oyy =152 [Eyy + vexx] =—1, (6_312 + 13
22) (13)
v dx?
E Ez 0°w

Py T30+ T T +v) oxdy (14)
With substituting oy, 0y, and g, in (6) by stresses
from (1 1) the following equation is achieved:

U= s [, [eke+

2Vs€xx€yy + €2, + (15)
1% E,%y] dxdydz
The index of “s” in above equation denotes the strain
energy. Using Eqgs.((7),(8),(9)) and integrating the
equation in (15) over the plate thickness, (16) will be

obtained. As mentioned before, all lengths of the plate
are equal (a =b).

S { (G w6

Us 2(1 v2 f
a!i“ ) ] aal?’
vs) (a ) ]}d"dy_ (16)

20- st)f Iy [ ()’ (%)4+
H(%) (%) ]d xdy+ 217 17| (B) +

92w, 92w, 92w, _
Vs ax2 dy? (63/2) +2(1
2
Wo
axay) ]dxdy

Where E;is Young’s modulus, v is Poisson’s ratio, and
z was replaced by % (height or the thickness of the plate).
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Each point of the membrane is assumed to move only in
the z direction, and the displacement, w(x, y, t) is
assumed to be very small compared to the dimensions of
the membrane. The above equation leads to equation of
motion. Since the structure is considered at equilibrium,
the time dependent term can be neglected. As this
equation, involves fourth-order partial derivatives with
respect to x and y, we need to specify four conditions in
terms of each of x and y(i.e., two conditions for any
edge) and two conditions in terms of ¢ (usually, in the
form of initial conditions) to find a unique solution of
the problem. If the displacement and velocity of the plate
at ¢ = 0 are specified as wy(x, y)and wy(x, y), the initial
conditions can be expressed as:

W(xryr 0) = WO(X»Y) (17)

Z_Vtv(xryro) =W0(X»Y) (18)

The general boundary conditions that are
applicable for any type of geometry of the plate
can be stated as follows. Let n and s denote the
coordinates in the directions normal and
tangential to the boundary. At a fixed edge, the
deflection and the slope along the normal

o d
direction must be zero: (w=0 and % = 0). For

a simply supported edge, the deflection and the
bending moment acting on the edge about the s
direction must be zero. In this equation D is the
flexural rigidity of the plate which can be
calculated as [11]:

T 12(1 —v?) 19)

Where v is Poisson’s ratio, h is the plate
thickness, and E is Young’s modulus. The
work done by axial forces can be evaluated as:
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- f f J [Ny€y + Nyeyy |dxdydz
Vp

fﬂ { B

N 1(6wo)2
Y12\ oy
%w,

—z— dxdydz

ff (a5

a 2
+N h(ay) }dxdy

Where N.h and N,.h represent the membrane forces.
Consequently, N, and N, are the result of 2 multiplied by
6 (h.o). Furthermore, % is the distance between the two
sheets of the upper plate (m), o is stress and the
dimension of stress is (N / m?).Each material has residual
stress. Since work is equal to the integration of force
with respect to displacement, therefore work done by
electrostatic force is expressed by (21) which is achieved
by substituting electrostatic force (Fg) by (3):
2

Wy = ff Frwodxdy = ffmwodxdy 2h

Where the displacement of the plate at ¢ = 0 is specified
as wy(x, y) and Wg is the mentioned work. To derive the
equation of motion of a membrane using the extended
Hamilton's principle, the expressions for the strain and
kinetic energies as well as the work done by external
forces are needed. The generalized Hamilton's principle
can be stated as [12]:

§J(T —Ug+Wgg)dt =0 (22)

Where the strain and kinetic energies of the beam can be
found as Us and T, respectively. § denotes the variation
ofthe above function. According to Hamilton’s principle
in mechanical science, energy consumption should be
minimized. Thus, T is set equal to zero. The substitution
of Egs. (16), (20) and (21) into (22) yields the equation
of motion. The result of this expression is sum of two
equations, one of them refers to “structure” and another
one is "boundary conditions". Therefore, all types of
works are included in Hamilton’s equation. Thus the
forces such as electrostatic, axial, forces related to strain
and stress can be accounted. W, denotes axial forces and
Weindicateselectrostatic forces. To get the accurate
equations of motion, Hamilton's principle is used. In this
condition the strain energy is considered by partial
differential equations. As the aim is to get the details of
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strain energy, therefore the extended Hamilton's
principle in form of (23) will be resulted:

5U,

2(1_v2) ff[ 0W0 6(5w0)

(%) 6(6w0) %(%) a(6wg)

ay dy ox \ dy ox
(6WO)2 dwg 3(8wp) dd
ox/ dy 0y xay (23)
02W0 62(6W0) aZWO 62(6W0)
+fo + Vs
0x%  dx? dy?  0dx?

v WO 62(6W0) aZWO 62(5W0)
$ 9x2  0y? dy%  0dy2

aZWO 62(5W0)
+2(1_VS)—6x6y 3y ] xd

By separating the different components of above
equation, two new equations §U; and SU,, will be
resulted (8Ug = 6Us, +6Ug,). In Hamilton's principle,
the target is to get the values of work done by axial
forces ( W,) and electrostatic forces ( Wy) in the form of
partial equations. To achieve it, (21) has been used.
Consequently (24) has been formed as:

ﬂ Z(dO -

Similarly, §W, can be expressed as:

ow, 66w0
_ff [N hor ox Ox
awo aﬁwo]d d

5 Owodxdy (24)

N, h 2
— [N h%5w0| dy — (25)
[IN haw°6w0| du+ [fy [Neh 22 1

Nyh ?] Swodxdy

Considering (22) in a partial form, and the axial forces
as well as work related to stress and electrostatic forces
(Egs.(23),(24),(25)), the equation of movement will be
expressed as:

0* WO 94 _0%wqo 9*wy

b [ 6x4 ax26y2 + 6y4] -
a w0 awo) a wo (6w0)2
a

2(1 1/2) 6x2 6y2

2 222(923)2 +2 (awO) awo)| _
ox \ 0x \ dy ox ady
N, ha wo 92 w0 €V?

h N h oy ay*? - 2(do—wo)?

(26)

Where wy is the displacement of movable plate at t=0and
is no longer equal to do. E is Young’s modulus, h is
thickness, v is Poisson’s ratio, and D is flexural rigidity
of plate. On the other hand, by applying a voltage
between the two electrodes of the capacitor, movable
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electrode will be attracted towards the fixed electrode.
Therefore, a deflection will occur in movable
diaphragm. This deflection (W) that satisfies the
boundary conditions can be expressed as:

0=4
co=4
V=S e
i n=1 an mn( y) (27
& o=t .omm .onm )
=3 dmasinCrn)sin(-y)
m=1 n=1 a

Where W,,,,,(x,y) are the natural modes of
vibration and gq,pare the corresponding
generalized coordinates. This equation denotes
the double Fourier sine series expansions of the
function W(x,y,t) or W. The fundamental or
lowest mode shape of the membrane
corresponds to m =n = 1. In this modal pattern,
the deflected surface of the membrane will
consist of one half of a sine wave in each of the
x and y directions. The higher values of m and
n correspond to mode shapes with m and n half
sine waves along the x and y directions,
respectively. A specific natural frequency is
associated with each combination of m and n
values.

As the displacement takes place at the center portion of
the structure, W (x = %, b= g) is the basic parameter in
above calculation, thussin(g)will be resulted in

(27).Consequently the value of W is equal to qms. The
mentioned structure works in a multi-mode manner, but
only one mode has been considered in this study (first
mode).So by considering m =n =1, the above equation
changes to (28):

W= i4z°°=4 . Ama 1mb 28)
= s Lines q11 sin( a 2) sin( b 2) =dq11
m=

Ny is set to zero (Ny, = 0), and as a result, this factor
does not exist in the equation of motion. To reduce the
amount of errors, dimensionless elements should be
selected No dimensional parameters defined as:

Y 5 _ W 54 _ €a*V?
= == W=—,Vn*=
¢= !77 b’ do’ 2chd} ’

p—2 N, = Ep(jg : 29)
cha 2(1-vp)a’c
Where W is the displacement and Wrepresents the
dimensionless quantity. £and n will be used instead of x
and y. Also, Dcan be expressedin terms of flexural
rigidity (D), stress (o), thickness (h) and length (a).
Similarly, N, can be expressed in terms of Young’s
modulus (E,), Poisson’s ratio (v,),stress (o),length (a),

and the distance between the two electrodes(dy).By
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substituting above dimensionless elements in the
equation of motion (26), the following equation is
obtained:

do0*W . dy 0*W_ dy0*W

a4— 654 aZbZ 65261/)2 b4 an4

E,hd} |3 02W (oW’
2(1—v2) |a* 9% \ 9¢
302W (aw\" 1 a (oW (oW’ 30
5152\ 3| Tazpzae\ 3 \ o (30)
b* on? \ on a?b?0¢é\ 0¢ \ on
1 9 [[(aW\* oW o, W
a?b2on\\ 0¢ | on a2 9é&2
do aZW 60[/2
=Ny sho—a= o0 72
b2 an?  2d2(1—W)

After reorganizing above elements, and dividing
equation by ¢ and h, and then after multiplying both
sides to a2, a new equation is obtained. Furthermore, by

defining D =

the equation appears in its new form. Then it is
continued by inserting W as dimensionless displacement,
and inserting derivatives of W. The final equation is
simplified as follows:

31

4 2

2n% + D (%) nt + (%)

N

2 2 2 2 .
XD st [P+ 2D ()

a? m\2
+—= (—) sinmné sin rré sin nmy sin sy
T

2 2 2 2 2 2 az
_Nx Z Z Z Z Z Z mn9rsqjk [(mn)Z + b_z(n”)z]
m=1n=1r=1s=1j=1k=1

(

3m2rj sin mré cos rmé cos jmé sinnmy sin swy sin kwy +

4
a . . . . .
3 Fnzsk sinmmné sin rre€ sin jmé sin nwy cos sy cos knn
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2
a
+ Bz (m?sk sin mn€ sin rre€ sin jmé sin ny cos sy cos knn

+ mrsk cos mné cos rré sin jmé sin nmn cos swn cos knn
+ mjsk cos mné sinrné cos jmé sin nmn cos smn cos kmn
+ mrnk cos mnté cos rné sin jmé cos nnn sin swn cos knn
+ mrsk cos mné cos rné sin jmé sin nmn cos swn cos knn
+ mrk? cos mré cos rn€ sin jwé sinnmn sin swn sin kmn)

3m2rj sin mmé cos rné cos jmé sin oné sin ewé
sin nmn sin swy sin knn sin pry sin fry

at
+3 Fn 25k sin mn€ sinrmé sin ju€ sin oné sin ené
sin nmn cos smn cos knn sin prtn

2
i
m?2sk sinmmné sinrné sin oné sin jé sin emwé

sin nmn cos smn cos knn sin pry sin fry
+mrsk cos mmé cos rré sin oné sin jré sin ené
sin nmn cos sy cos knn sin pry sin frn
+mrnk cos mné cos rré sin on€ sin jré sin ené
cos nmn sin swn cos kny sin prn sin frn
+mrsk cos mné cos rré sin o€ sin jré sin ené
sin nmn cos smn cos knn sin pry sin fry
+mrk? cos mné cos rmé sin jn€ sin on€ sin ené
sin nmy sin sty sin kny sin prn sin frn )

~

2 2 2

SOINPININX

k=10=1p=1

manqukqop [(mn)z
(nﬂ)z]

(3m?rj sinmn€ cos rné cos jmé sin omwé
sin nmn sin swy sin knn sin prn)

at
+3 x n?sk (sinmn& sinrné sin jé sin on
sin nmn cos sty cos kmn sin prn)

a2
b2
m?2sk sin mmé sin € sin oné sin jwé
sin nmn cos smtn cos knn sin prty
+mrsk cos mné cos rré sin o€ sin jmé
sin nmn cos smn cos knn sin pry
+mjsk cosmné sin rmé sin oné cos jmé
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sin nmn cos sty cos knn sin pry
+mrnk cos mné cos rné sin on€ sin jwé
cos nmn sin stn cos knn sin pry
+ mrsk cos mné cos rré sin on€ sin jmé
sin nmn cos sty cos knn sin pry
+mrk? cos mré cos rr€ sin jmé sin omé
sin nmy sin sty sin knn sin prn)
=V
The final equation (31) is pull-in voltage and qm =
qn1 (gmis either q;; or the displacement, w).

4. RESULTS AND DISCUSSION

Since the instrument’s sensitivity, frequency
response, noise properties, etc. depend on the bias
voltage, it is necessary to obtain the pull-in voltage.
To illustrate the mentioned model of pull-in voltage
evaluation, a fully-clamped capacitive structure
with device parameters in Table 1 has been used.
Since the instrument’s sensitivity, frequency
response, noise properties, etc. depend on the bias
voltage, it is necessary to obtain the pull-in voltage.
To illustrate the mentioned model of pull-in voltage
evaluation, a fully-clamped capacitive structure
with device parameters in Table 1 has been used.

Table 1. Device parameters

(a) |Diaphragm side length| 2400 pm
(1) Diaphragm thickness 2 um
(do) Air gap thickness 4 um
(E) Young’s modulus 170 GPa
(o) Residual stress 13 MPa
(v) Poisson’s ratio 0.22

The graph of voltage versus deflection (Eq.(31)) is
plotted using MATLAB software (see Fig 3). This
curve shows the exact pull- in point which it is an
important factor. As can be seen in Fig 3, despite

qii(w) is éof air gap, the pull-in phenomena has not
yet taken place. This curve indicates clearly that the
pull-in voltage occurs at 13 volt. As can be seen,
the deflection is more than gof air gap. By

simulating this structure using Intellisuite software,
the pull-in voltage is 13.58 V (see Fig 4). It can be
seen that the simulation outcome matches with the
theoretical results.
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Fig 3. Voltage versus deflection in MATLAB
(theoretical results).
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Lk
- —
05 _--_-—--"“-ﬂ
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358, 16221

25 Simulated pull-in
voltage= 13.58v

Deflection(pm)

Voltage (Volt)
Fig 4. Voltage-Deflection graph

In earlier researches, the criterion which the structure

collapses is at one - third of air gap(m=

1.33micrometer).As can be seen in Fig 3, which
utilizes MATLAB software, the boundary between
stable and unstable zone occurs where the movement is

more than %of the air gap (1.7 micrometer). So the

former criterion is not applicable any more. In this case
the value of Pull-in Voltage is 13 volt. This structure has
also been simulated with Intellisuite software as shown
in Fig 4. In this illustration, the value of voltage which
causes the structure go to unstable state is 13.58 volt.
Therefore, the proposed theory is considered to be quite
close to simulated results.

5. CONCLUSION

In this paper, an analytical model for calculating
deflection and Pull-in voltage of MEMS capacitor with
fully-clamped membrane is presented. The calculated
results using MATLAB are quite compatible with
simulation results. This model shows that the critical

Vol. 5, No. 3, Sep. 2016

point where the collapse happens is not at one-third
of air gap. In previous works, when the diaphragm
is moving towards the fixed plate, the movable
electrode is collapsed to the fixed plate where the
distance between them becomes tow third of
original gap. In this research, it has been proved
that the rules which were previously denoted for
borders are not applicable. When four sides of the
structure are fixed, the structure goes under a
tensile force. This interpretation is shown in Fig 3,
and proves that the distance of one- third of air gap
18 not criteria, since the mentioned structure will be
unstable at a distance more than one- third of air

gap.
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