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Abstract: In this study, the size-dependent free vibration analysis of a geometrically 
imperfect single-layer graphene sheet (SLGS) is studied by an isogeometric approach 
along with the quasi-3D shear and normal deformation theory. Initial geometric 
imperfections alter the natural frequencies of the graphene sheets that may exist 
inherently or purposely created by researchers. The initial curvature is modelled by an 
analytical function in the governing Equations of the plate. A 4-variable quasi-3D theory 
with a seventh-order distribution function is used to include both shear deformation and 
thickness stretching influences. A weak form of a nonlocal plate for free vibration 
analysis is derived that requires the first-order continuity of the displacement fields. 
Inherent high-order continuity of non-uniform rational B-spline (NURBS) basis 
functions in isogeometric analysis can meet this condition. A comparison between the 
present study and other published works reveals the efficiency and accuracy of the 
proposed method in imperfect SLGS. The results of the present study show a significant 
effect of initial geometric imperfection on the natural frequency of single-layer graphene 
sheets. 
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1 INTRODUCTION 

In recent years, the invaluable mechanical, electrical, 

chemical, and thermal properties of nanostructures have 

encouraged researchers to study and use them in various 

engineering fields such as biomedical, nanocomposite, 

and micro/nano-electromechanical systems 

(MEMS/NEMS) [1]. 

Single-layer graphene sheet (SLGS) is a carbon-based 

nanostructure that has become a useful material in 

sensitive sensors such as nano-resonators, mass sensors, 

and strain sensors due to its unique properties such as 

high resonance frequencies and high elastic modulus, 

[2]. The geometric configuration for the graphene sheet 

has an essential effect on the mentioned properties that 

deformation can change them [3]. The pristine graphene 

sheet can be considered as a flat plate where the carbon 

atoms are inside a perfect hexagonal lattice. But 

different defects may appear in these sheets due to the 

production process. Based on how a defect is formed, it 

can be classified into three groups: adding carbon or 

other atoms (adatoms), eliminating carbon atoms from 

the graphene structure (vacancies) and rearrangement of 

carbon atoms (such as stone-wales) [4]. With the defects 

mentioned above, the graphene sheet remains 2D, 

however researchers [5] have shown that in the presence 

of some other defects, “graphene reshapes to a 3D state 

to minimize its energy”. This out-of-plane defect is 

called the initial geometric imperfection [4]. Although 

the last defect may inevitably occur in a sheet, 

researchers have recently been able to determine the type 

and position of defects using manipulated processes to 

achieve desirable engineered defective graphene sheets 

[6-7]. Since the imperfection can change the mechanical 

properties of graphene sheets, understanding the 

behaviour of the imperfect graphene sheet will help to 

have an optimal design.  

Suleimani et al. [8] analyzed the post-buckling behavior 

of an SLGS that has an initial geometric imperfection. 

Jomezadeh et al. [9] investigated the effects of initial 

configuration for graphene on bending stiffness by 

extracting non-local Equations for a single-layered 

graphene sheet with initial curvature. Jalali et al. [4] 

studied the effect of initial geometric imperfection on 

graphene sheet vibrations using molecular dynamics and 

a continuum approach. They observed that the out-of-

plane defects increased the natural frequencies of 

graphene sheets. Implementing precise and controlled 

experiments at nanoscale is very costly, so researchers 

have turned to numerical simulations and theoretical 

analysis to find mechanical properties of nanostructures. 

There are three approaches available to researchers to 

implement numerical analysis: molecular dynamics 

(MD) simulation, continuum methods and combined 

continuum and molecular dynamics methods. Since 

molecular dynamics simulation is time-consuming, 

continuum methods have grown significantly in recent 

years. When the specimen size is of the order of internal 

length scale of the material, classical continuum theories 

are no longer appropriate and the use of nonlocal 

theories is essential [9]. Eringen's nonlocal elasticity 

theory [10] is one of the most popular continuum 

theories known, in which the stress at any point in the 

body, besides the strain at that point, depends on the 

strain in all the neighbouring regions in the continuum 

environment. The nonlocal theory considers inter-

atomic forces and applies the internal length scale to the 

stress-strain Equations [11]. This theory can analyse the 

behaviour of large Nano-scale structures without having 

to solve a large number of Equations [12]. This theory, 

when considering the small-scale effects, provides a 

satisfactory analysis in comparison with the molecular 

dynamic’s method [13]. From the continuum 

perspective, an SLGS can be considered as a nanoplate, 

and hence well-known plate theories can be employed to 

investigate the vibration response. Classical Plate 

Theory (CLPT) and first-order shear deformation theory 

are well-known theories in the analysis of small-scale 

structures that are used for thin and moderately thick 

plates, respectively [14-15]. Although the FSDT can be 

used to analyze moderately thick plates, it’s always 

faced with the problem of selecting the shear correction 

factor and the shear locking phenomenon. To avoid 

using the shear correction factors and increase accuracy, 

researchers use various high-order shear deformation 

theories [16], [11]. Higher-order theories often have 

many unknown variables. To reduce the number of 

variables without decreasing the accuracy, 

Senthilnathan et al. [17] developed a Refined Plate 

Theory (RPT) using four independent variables. 

Subsequently, this theory was used in various nanoscale 

problems. The buckling and free vibration analysis of 

orthotropic graphene sheets and nanoplates using RPT 

was examined by Narendar et al. [18]. Also, Shimpi [19] 

and Malekzadeh and Shojaee [12] examined the 

vibrations of a nonlocal rectangular plate using the RPT 

and the DQM approach. Sarrami-Forushani and Azhari 

[11] studied the buckling and vibrations of thick 

rectangular graphene nanoplates using RPT and the 

finite strip method. In the theories mentioned above, the 

effects of thickness stretching are neglected, while these 

effects must be considered in the case of 3D strain 

( 0)z  . For this purpose, high-order shear and normal 

deformation theories named quasi-3D can be used [20]. 

Zenkour [21] presented a four variables quasi-3D theory 

for the static analysis of FGM plates. Subsequently, this 

quasi-3D theory was used to analyze the bending 

behavior of FGM plates using the Navier approach [22]. 

Also, in various papers, the vibrations of plates and 

nanoplates are investigated using polynomial and non-
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polynomial high order shear and normal deformation 

theory [20], [23-25]. In nanoplates modeling using RPT 

and quasi-3D theories, the displacement field requires at 

least C1 continuity, whereas conventional finite element 

methods have C0 continuity and cannot be used easily 

without adding variables [26]. For this purpose, Hughes 

et al. [27] presented a numerical method combining 

computer-aided design and Finite Element Analysis 

(FEA) based on Galerkin's weak form, named 

isogeometric analysis (IGA). In this method, a non-

uniform rational B-spline basis function (NURBS) is 

used to describe the structure and also the solution field 

approximation simultaneously. These B-splines can 

easily meet the requirements of high-order continuity. 

Subsequently, because of unique features such as 

accurate geometry representation, and no need for high-

level meshing and continuity, the IGA is widely used in 

analyzing plates and nanoplates with various plate 

theories such as FSDT [8], RPT, and quasi-3D theory 

[20-23], [25], [28]. 

As mentioned in the literature review, no study has been 

carried out on the nonlocal vibration analysis of SLGS 

with an initial geometric imperfection using the quasi-

3D theory based on the IGA approach. In the present 

work, a four-variables quasi-3d theory is proposed to 

represent the displacement Equations of the plate. The 

initial geometric imperfection is given as a parametric 

function and two types of imperfections (sinusoidal and 

L1 types) are investigated. Using Eringen's nonlocal 

theory, small-scale effects are applied in the stress-strain 

Equation. A discrete system of Equations is extracted 

using the Hamilton principle and is solved by the 

isogeometric method. The effects of the imperfection 

amplitude, nonlocal parameter, plate geometrical 

parameters, and boundary conditions on the 

imperfection sensitivity and natural frequency of SLGS 

have been investigated. The comparison between 

present study and other published works indicates the 

efficiency and accuracy of the proposed method in 

imperfect SLGS. 

2 GOVERNING EQUATIONS 

2.1. Higher-Order Plate Theories 

A rectangular graphene sheet that in the continuum 

approach is assumed as a nanoplate with length a, width 

b, and the uniform thickness h, is depicted in “Fig. 1”. 

If the thickness to side ratio for the nanoplate is very 

small, classical and first-order shear deformation 

theories can be used, but as the thickness increases, these 

theories are not accurate enough due to the lack of the 

shear effects consideration. By taking into account the 

shear effects, higher-order terms appear in the plate 

displacement field. Soldatos [29], using the generalized 

higher-order shear deformation theory, showed the 

displacement field as:  
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Where, u0, v0, and w0 are the mid-plane displacements of 

the sheet along x, y, and z, and ,x y  are rotations 

about yz and xz plane, respectively. As it can be seen, in 

this theory, five variables are used. 

 

 
Fig. 1 Single-layer graphene Sheet: (a): Hexagonal lattice, 

and (b): Continuum model. 

 

Senthilnathan [17] has introduced a refined plate theory 

(RPT) which uses four unknown variables: 
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Where, wb and ws are the bending and shear 

deformations of the plate in the z-direction, respectively, 

and g(z)=f(z)-z. In the plate theories mentioned above, 

the effect of thickness stretching in the z-direction is not 

considered. To overcome this shortcoming, Zenkour 
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[21] presented a quasi-3D plate theory which has four 

unknown variables: 
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The refined plate theory (“Eq. (2)”) can be obtained by 

replacing ( ) 1z   and f(z)=g(z) in “Eq. (3)”. Different 

distribution functions have been used in various papers. 

In “Table 1”, some of these functions are given based on 

the RPT and quasi-3D theory. 

 
Table 1 Distribution functions used in various papers 

Ф(z) f(z) 𝜀𝑧 Model 

1 ℎ 𝑠𝑖𝑛ℎ (
𝑧

ℎ
) − 𝑧 𝑐𝑜𝑠ℎ (

1

2
) =0 Soldatos RPT [29] 

1 
7

8
𝑧 −

2

ℎ2 𝑧3 +
2

ℎ4 𝑧5 =0 Nguyen RPT [30] 

1 tan-1(sin(πz/h)) =0 Nguyen RPT [31] 

1

8
 f ʹ (z) 

𝜋

ℎ
𝑧 −

9𝜋

5ℎ3
𝑧3 +

28𝜋

25ℎ5
𝑧5 ≠ 0 Nguyen Quasi-3D [20] 

1

12
 f ʹ (z) ℎ 𝑠𝑖𝑛ℎ (

𝑧

ℎ
) −

4𝑧3

3ℎ2 𝑐𝑜𝑠ℎ (
1

2
) ≠ 0 Zenkour Quasi-3D [22] 

3

20
 f ʹ (z) −8𝑧 +

10

ℎ2
𝑧3 +

6

5ℎ4
𝑧5 +

8

7ℎ6
𝑧7 ≠ 0 Nguyen Quasi-3D [23] 

𝑓 ʹ(𝑧) 
ℎ

𝜋
𝑠𝑖𝑛 (

𝜋𝑧

ℎ
) ≠ 0 Thai Quasi-3D [32] 

k𝑐𝑜𝑠ℎ2(𝑘𝑧/ℎ) 

−ℎ𝑐𝑜𝑠ℎ2 (
𝑘
2

)

√(1 +
𝑘2

4
) − 1

(𝑠𝑖𝑛ℎ−1 (
𝑘𝑧

ℎ
) − (

𝑘𝑧

ℎ
)) ≠0 Gupta Quasi-3D [35] 

 

In the presence of the initial geometric imperfection, the 

plate will become three-dimensional. Assuming that the 

initial geometric imperfection in the nanoplate exists 

only in the transverse direction, the displacement 

Equation can be corrected as follows [4], [8]: 
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Where, ( , )iw x y  denotes the initial geometric 

imperfection function in the nanoplate. 

2.2. Size-Dependent Plate Theory 

By using Eringen's nonlocal elasticity theory, the stress-

strain relations are simplified in the following way: 
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 (5) 

Where, 2

0 0( )e a   is the small-scale parameter (e0 and 

a0 are respectively the material constant, and the internal 

characteristic length) and 2  is the Laplacian operator. 

Using “Eq. (5)”, nonlocal constitutive Equations for a 

nonlocal plate can be expressed by: 
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If the quasi-3D theory is used, the elastic constants for 

the state 0z   will be [21]: 
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However, if the RPT is used, the elastic constants for the 

plane stress state ( 0)z   can be written as: 
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Using “Eq. (4)”, the Von Karman [22] strain-

displacement relationship at a chosen point on the sheet 

can be described as: 
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The stress resultants can be considered as: 
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Now using Eqs. (9) to (11), Eq. (6) can be rewritten as 

stress resultants: 
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Where the material matrices are: 
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In which: 
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And also, the strain tensor b  is: 
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 
 
 
 
 
 







  (16) 

 

To derive the governing Equations of the graphene 

sheet, Hamilton's principle is expressed as: 

 

 
0

0
t

U V T dt       (17) 

 

The variation of strain energy can be expressed by: 
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  (18) 

 

Also, the variation of work done by external forces is: 

 
 

2

2

( ) ( ( ) )

h

b s i
h

A
V

V q w dV q w z w w dzdA   


        (19) 

Since 0iw   and q=0, therefore: 

 

2

2

( ( ) )

( ( ) ) 0
2

h

b s
h

A

b s

A

V q w z w dzdA

h
q w w dA

   

  


   

  

 



  (20) 

 

The variation of kinetic energy can also be written as: 

 
 

T

V

T u udV      (21) 

 

Considering 0 , , 0 , ,                                0
T

b s b s b s
x x y yu u w w v w w w w   

 
, 

the above Equation can be expressed as: 
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 

  (22) 

 

“Eq. (22)” can be simply rewritten as: 

 
 

T

V

T u udVm     (23) 

 

In which the mass matrix is defined as: 

 

0

0
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0 0
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  (24) 

 

           

1 2 3 4 5 6 7 8

2 222

2

, , , , , , ,

(1, , , , , , , )

h

h

I I I I I I I I

z z f z zf z f z Ф z Ф z dz





  (25) 

 

The governing Equations for the plate in the 

displacement form can be obtained by inserting “Eqs. 

(18), (20), and (23)” in “Eq. (17)”, and then integrating 

by parts and sorting gives: 
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  (26) 

 
After inserting “Eqs (10) to (15)” in “Eq. (26)”, the 

above Equations must be pre-multiplied by

0 0, , ,b su v w w    , respectively and integrated by part in 

a region to extract the nonlocal weak form. Readers can 

refer to [20] for further explanation. The nonlocal weak 

form for the free vibration problem is summarized in the 

following: 

 

..
2

(( ) (( )

( )

b T b b s T s s

A A

T T

A

D dA D dA

u u mu dA

   

  

 

 

 


  (27) 

 

As it can be seen from “Eq. (27)”, the plate transverse 

deflection variables (wb, ws) appear in the form of third-

order derivatives due to the nonlocal effects and are 

accompanied by the Laplacian operator. So, the 

interpolation functions in the conventional finite 

element method must have at least a third-degree 

derivative and satisfy the C1 continuity, which cannot 

easily be accomplished. Therefore, the isogeometric 

approach along with NURBS basis functions can be used 

well to solve nonlocal SLGS Equations using RPT and 

quasi-3D theory. 

3 IGA FOR FREE VIBRATION PROBLEM 

3.1. Summary of NURBS Basis Functions 

The NURBS basis functions are applied in both 

modeling geometries and finite element analysis in IGA. 

In one dimensional parametric space ( [0,1])  , 

NURBS basis functions are composed of a set of non-

decreasing real numbers 

1( ) 1 0, 2, , }, , 1{ i n pK            , that are called 

knot vectors (
i , p, n are knots, the polynomial order, 

and the number of basis functions, respectively), and a 

set of control points. 

Each B-spline has a C∞ continuity inside the knot space 

and a Cp-1continuity at a single knot. The continuity at a 

knot where repeats k times, is Cp-k. The i’th B-spline 

basis function is written as the following recursive form 

[23]: 
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 (28) 

 

The two-dimensional basis functions are obtained by the 

tensor product of two one-dimensional B-spline basis 

functions as: 

 

     , ,,I i p j qN N N      (29) 

 

Where,  ,i pN   and  ,j qN   are the B-spline basis 

functions with an order of p in the ξ direction and order 

of q in the η direction, respectively. Fig. 2 shows the B-

spline basis functions. 

 

 
Fig. 2 Cubic basis functions for open non-uniform knot 

vector 𝜉 = {0,0,0,0,
1

5
,

2

5
,

3

5
,

4

5
, 1,1,1,1}. 

 

B-spline basis functions cannot accurately represent 

cone shapes like circles and ellipses. Using NURBS, 

these shapes can be displayed accurately. Two 

dimensional NURBS basis function for a NURBS 

surface can be derived from the following Equation: 
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  (30) 
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In which WI shows the two-dimensional weight function.  

3.2. Quasi-3D Nanoplate Formulation Based on 

NURBS Basis Function 

The displacement variables using NURBS basis 

functions can be interpolated as follows: 

 

    
1

, ,
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I I
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Where, 
0 0        b s

Iu u v w w 
 

 is the degrees of freedom 

vector associated with the control point I, and m × n is 

the number of basis functions. Using “Eq. (31)”, the in-

plane, normal and shear strains “Eq. (10)” can be 

rewritten as: 
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Also, according to “Eq. (9)”,  we can write: 
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The free vibration Equations in matrix form can be 

obtained by inserting “Eqs. (32), (33)” in “Eq. (27)”: 

 

    2 0K M u    (34) 

 

In which the general stiffness and mass matrices are: 
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Where: 
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4 NUMERICAL RESULTS AND DISCUSSION 

In this section, the vibration behavior of a geometrically 

imperfect graphene sheet has been investigated. 

Numerical integrations have been implemented using 

4×4 Gaussian quadrature points with cubic NURBS 

elements. A seventh-order polynomial distribution 

function f(z) is chosen to satisfy the zero-traction 

boundary conditions at the top and bottom surfaces of 

the plate. Therefore, there is no need to select the shear 

correction factor. The coefficients are obtained by 

performing the optimization method in such a way that 

the difference between present results and results from 

other researchers are minimized. 



21                                  Heidar Fazeli et al. 

  

 

 
3 5 7

2 4 6

'

11 11 7

8 6 20

)
1

( ) (
3

z z z z
f

h h

z z

z

f

h

 

   
  (37) 

 

The boundary conditions on the edges of the plate are 

considered as: 

 

Simply supported (S): 

 

0

0

0 0,

0 0,

b s

b s

v w w at x a

u w w at y b

   
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  (38) 

 

Clamped (C): 

 

0 0

, , , ,

0

0

b s

b b s s
x y x y

u v w w

w w w w
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 




 at all edges  (39) 

 

The Dirichlet boundary conditions can easily be applied 

in the same way as traditional FEM. For normal slopes 

e.g.,  𝑤𝑏
,𝑥 ,  𝑤𝑏

,𝑦 , 𝑤𝑠
,𝑥 and 𝑤𝑠

,𝑦, Auricchio et al. [33] 

presented a simple and appropriate solution. In addition 

to displacements at the boundary control points, they 

imposed zero values for transverse bending and shear 

displacements adjacent to the boundary control points. 

To investigate the convergence, a pristine square SLGS 

with Young modulus E=1.06 TPa, thickness h=0.34 nm, 

density ρ=
3

2250
kg

m
, and a width of a=10 nm is used. 

Both localized (μ=0) and nonlocalized (μ=1) 

assumptions, and simply supported boundary conditions 

(SSSS) are implemented. The fundamental frequencies 

for several elements are given in “Table 2”. To carry out 

the best comparison with existing papers, a refined plate 

theory is used. 

 
Table 2 Convergence of fundamental frequency (THZ) for 

pristine SLGS (a=10, ν=0.25) 

𝜇 = 1 𝜇 = 0   

0.062979 0.068915 7 × 7 

Element Mesh 

0.062978 0.068914 9 × 9 

0.062978 0.068913 11 × 11 

0.062978 0.068913 13 × 13 

0.062981 0.068917 RPT [11] 

0.063172 0.069126 CPT [34] 

 

As it can be seen, responses converge after applying 11 

grid points. Therefore, in continuing this study, a mesh 

of 11×11 cubic NURBS elements is used in the 

numerical calculations. This mesh and the 

corresponding control points are shown in “Fig. 3”. 

 

 
Fig. 3 Control point net and element mesh for SLGS. 

 

To verify the present results, first a nonlocal pristine 

graphene sheet (without geometric imperfection) and 

then a localized imperfect graphene sheet are analyzed, 

and the results are compared with published papers. A 

pristine graphene sheet with the specifications 

mentioned before and a length of 5 nm and 10 nm are 

considered. Simply supported boundary condition is 

applied, and results for different aspect ratios and 

nonlocal parameters are shown in “Table 3”.  

 
Table 3 Fundamental frequencies (THZ) of SSSS pristine 

SLGS(ν=0.25) 

CPT [34] 
RPT 

[11] 

Present 

quasi-

3D 

Present 

RPT 

𝑏

𝑎
 a 𝜇 

0.276505 
0.27320

1 

0.27889
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0.27321

2 
1 5 0 

0.172833 
0.17153
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0.17529

6 

0.17151

4 
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0.153636 
0.15260
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0.15598

3 

0.15258

3 
3   

0.069126 
0.06891

7 

0.07052
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0.06891

3 
1 10  

0.043208 
0.04312
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0.04414

0 

0.04312

0 
2   

0.038409 
0.03834
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0.03924
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0.03833

7 
3   

0.206694 
0.20422
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0.20848

2 

0.20423

3 
1 5 1 

0.141425 
0.14036
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0.14344
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0.14034

6 
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0.128090 
0.12723
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0.13004
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0.12721
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0.063172 
0.06298
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0.06444

7 

0.06297
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1 10  

0.040767 
0.04068

9 

0.04164

6 

0.04068
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The fundamental frequencies obtained using present 

RPT and quasi-3D methods are compared with the 

results from other researchers. Results are in good 

agreement with the RPT [11] and CPT [34]. Due to 

stretching effects, Quasi-3D theory gives larger 

responses than RPT and CPT. For thinner sheets (a = 

10), frequencies for different plate theories are very 

close to each other, while in thicker sheets (a = 5), they 

are somewhat different. As the nonlocal parameter 

increases, the fundamental frequency decreases due to a 

decrease in the sheet stiffness.  

In the presence of initial geometric imperfection, the 

plate is no longer a sheet and becomes three-

dimensional. Therefore, in this case, “Eq. (4)” along 

with geometric imperfection-function is used. Although 

the imperfection function can exist in various forms, to 

study the amplitude, frequency and defect location 

parametrically, the initial geometric imperfection is 

represented as a three-dimensional surface as [35]: 

 

 
   

   

1 1

2 2

, ( ) cos(

h

)

( )cos( )sec

c ci

c c

x x x x
w x y h sech

a a

y y y y

b b

  


  

 


 

 (40) 

 

Where, ξ is the amplitude to thickness ratio, (xc, yc) is the 

position of the bulge maximum amplitude, 
1 2( , )   are 

imperfection half wave numbers in the x and y 

directions, respectively and 
1 2( , )   determine the 

localize degree of imperfection. In “Eq. (41)”, 

hyperbolic functions determine the extension of the 

bulge, and trigonometric functions generate bulges with 

a maximum value in (xc, yc). Therefore, they create a 

wide range of initial geometric imperfection modes [35]. 

Two of these imperfections are shown in “Fig. 4”.  
 

 

(a): Sine type: 1 2 1 20,   1,         0.5c cx y

a b
   

 

(b): L1 type: 1 2 1 25,   1,       0.5c cx y

a b
   

Fig. 4 Sinusoidal and L1 type imperfection modes. 

 

Fig. 5 shows variations of the imperfection sensitivity 

with imperfection amplitude (ξ) for a square SLGS with 

a Poisson ratio of 0.16. Imperfection sensitivity is 

defined as | | 100S
 



 
  , where , 

, are the 

fundamental frequencies for perfect and imperfect 

SLGS, respectively. The sinusoidal imperfection type 

and SSSS boundary condition are considered here. As 

shown, the imperfection sensitivity increases with an 

increase in imperfection amplitude, since the stiffness 

and consequently the natural frequency of the plate 

increases. If the bulge maximum amplitude value 

approaches the plate thickness ( 1)  , then the natural 

frequency will reach twice the natural frequency of the 

perfect SLGS. Also, a greater thickness to side ratio 

gives a higher imperfection sensitivity. The amount of 

this increase is more visible for larger imperfection 

amplitudes.  

 
Fig. 5 Effect of imperfection amplitude on imperfection 

sensitivity for local square SLGS. 

 

The variations of imperfection sensitivity for 

geometrically imperfect square SLGS with imperfection 

amplitude ‘ξ’ and the nonlocal parameter are depicted in 

“Fig. 6”. 
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(a) 

 
(b) 

Fig. 6 Effect of imperfection amplitude on imperfection 

sensitivity for square SLGS (a=2 nm). 

 

The sinusoidal imperfection type with a=2 nm is 

considered. In the SSSS boundary condition, for ξ<0.7, 

the imperfection sensitivity is independent of the 

nonlocal parameter. In this state, classical continuum 

and nonlocal theories give the same results. For higher 

imperfection amplitude, imperfection sensitivity 

decreases with increasing nonlocal parameter. For large 

imperfection amplitude (ξ>1.4), the imperfection 

sensitivity for nonlocal SLGS decreases. In local plates, 

with increasing d, the stiffness of the sheet and 

consequently the natural frequency always increases. In 

nonlocal sheets, with increasing ξ, the sheet stiffness as 

well as the natural frequency increase. But for larger ξ, 

the stiffness-softening phenomenon occurs in the sheet 

and the natural frequency of the sheet begins to decrease 

again. Also, the imperfection sensitivity for the large 

nonlocal parameter is less affected by the imperfection 

amplitude, while at lower nonlocal parameters, 

especially for the local plate, its effect is more visible. In 

the CCCC boundary condition, the variation of 

imperfection sensitivity is somewhat similar to SSSS, 

but it depends on the nonlocal parameter over a wider 

range of ξ and is independent of this parameter for ξ<0.3. 

Also, imperfection sensitivity in SLGS with clamped 

edges is lower than simply-supported edges. In other 

words, the geometric imperfection has less effect on the 

natural frequency of the clamped geometrically 

imperfect SLGS.  

The effects of the imperfection extension parameter (δ) 

on imperfection sensitivity for SSSS and CCCC 

boundary conditions are shown in “Fig. 7”. The results 

are depicted for several imperfection amplitudes ξ. As 

shown for the SSSS boundary condition, an increase in 

δ, which indicates a greater concentration of 

imperfection at the center of the nanoplate, decreases the 

imperfection sensitivity while decreasing δ and 

approaching to sinusoidal type, the imperfection 

sensitivity increases. When δ tends to large values, the 

imperfection sensitivity converges to a constant value 

for all ξ. For the CCCC boundary condition, as δ 

increases, the imperfection sensitivity increases first and 

then starts decreasing, so that the maximum value of 

imperfection sensitivity for all ξ occurs near δ=3. 

 

 
(a) 

 
(b) 

Fig. 7 Effect of imperfection extension parameter on 

imperfection sensitivity of square SLGS (a=2 nm). 

 

Variations of frequency parameter (for geometrically 

imperfect SLGS) with imperfection amplitude and a/h 
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ratio, for both clamped and simply supported boundary 

conditions, are shown in “Fig. 8”.  

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 8 The variation of frequency parameter of square 

SLGS with side to thickness ratio. 

 

Both local 0   and nonlocal plates ( 0)   are 

considered. The non-dimensional frequency parameter 

is considered as  2 2ˆ 1 )// (a h E     . It is observed 

that for both SSSS and CCCC boundary conditions, the 

frequency parameter for each ξ increases first with 

increasing side to thickness ratio and then converges to 

a constant value. Also, the frequency parameter 

increases with increasing ξ for all side to thickness 

ratios. The change in the frequency parameter between 

ξ=0 and ξ =1, for the SSSS boundary condition, is 

greater than that for the CCCC boundary condition. 

Therefore, it can be seen that  the CCCC boundary 

condition reduces the effects of the geometric 

imperfection on the frequency parameter. Also, it can be 

seen that for the same boundary condition, the frequency 

parameter value in the non-local plate is less than that 

for the local plate. Another important point is that the 

non-local parameter at lower a/h has a greater effect on 

the frequency parameter. In other words, the geometric 

imperfection has a more significant effect on thick 

plates. 

The effect of aspect ratio on the frequency parameter for 

nonlocal SLGS, for several imperfection amplitudes, is 

shown in “Fig. 9” for CCCC and SSSS boundary 

conditions. As it can be seen, the frequency parameter 

value decreases with increasing the aspect ratio. Also, 

the change in the frequency parameter between ξ=0 and 

ξ=1 decreases with increasing the aspect ratio. In other 

words, decreasing the aspect ratio results in greater 

effect of geometric imperfection on the non-dimensional 

frequency parameter. 
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(a) 

 
(b) 

Fig. 9 Effect of aspect ratio on nondimensional frequency 

parameter of nonlocal SLGS (a/h=10). 

 

As results show, the natural frequency of geometrically 

imperfect graphene sheets is significantly influenced by 

the nonlocal parameter. Therefore, it is necessary to use 

the appropriate value for this parameter. Ansari et al. 

[36] obtained the nonlocal parameter for pristine SLGS 

for simply supported and clamped boundary conditions. 

They proposed 1.41 (SSSS) and 0.87 (CCCC) for zigzag 

and 1.34 (SSSS) and 0.74 (CCCC) for armchair SLGS. 

Jalali et al. [4] compared the fundamental frequency for 

the pristine SLGS obtained from the continuum 

approach with that derived from the molecular dynamics 

method to find the appropriate nonlocal parameter and 

then used this parameter to analyze the geometrically 

imperfect SLGS. 

In the present study, to find the appropriate nonlocal 

parameter value for geometrically imperfect SLGS, the 

fundamental frequencies of a pristine and localized 

imperfect (δ1=δ2=5, ξ=1) SLGS are investigated and 

shown in Table 4. The errors relative to molecular 

dynamics (MD) results reported by Jalali et al. [4] are 

also shown in the table. At µ=1.34, the error for both 

pristine and localized SLGS are acceptable and this 

value for the nonlocal parameter can be used to analyze 

imperfect SLGS. 
 

Table 4 Fundamental frequencies (THZ) for pristine and 

localized imperfect SLGS (a=2 nm, SSSS) 

 Imperfection    

L1 Type Pristine Theory 𝜇 

2.142 1.580 Present Study 0 

2.068 1.510 Jalali [4]  

0.794(7%) 0.609(4%) Present Study 1.16 

0.784(6%) 0.584(0%) Jalali [4]  

0.764(3%) 0.584(0%) Present Study 1.27 

0.746(1%) 0.573(2%) Present Study 1.34 

0.729(1%) 0.560(4%) Present Study 1.41 

0.740 0.584 MD Jalali [4]  

 

“Table 5” presents the fundamental frequencies for 

sinusoidal and localized imperfect SLGS for the case of 

simply supported and clamped boundary conditions. 

 
Table 5 Fundamental frequencies (THZ) for SLGS with 

sinusoidal (δ=0) and localized (δ=5) imperfection (a=2 nm) 

   µ    

1.41 1.34 1.16 0 ξ B.C 𝛿 

0.855 0.874 0.930 2.440 0.7 

SSSS 

0 

0.919 0.941 1.007 3.069 1  

0.947 0.970 1.038 3.612 
1.2

5 

 

0.950 0.974 1.044 3.965 1.5  

1.026 1.050 1.121 3.295 0.7 

CCCC 

 

1.085 1.112 1.191 3.830 1  

1.101 1.128 1.207 4.330 
1.2

5 

 

1.092 1.119 1.200 4.643 1.5  

0.673 0.688 0.733 1.930 0.7 

SSSS 

5 

0.729 0.746 0.795 2.142 1  

0.766 0.784 0.835 2.302 
1.2

5 

 

0.795 0.814 0.868 2.446 1.5  

1.005 1.029 1.097 3.108 0.7 

CCCC 

 

1.062 1.088 1.166 3.391 1  

1.061 1.087 1.165 3.605 
1.2

5 

 

1.054 1.080 1.158 3.796 1.5  

5 CONCLUSIONS 

The size-dependent free vibration analysis and 

imperfection sensitivity for an imperfect SLGS via 

NURBS-based IGA, together with the quasi-3D 

deformation theory, has been examined. The initial 

geometric imperfection was modeled by inserting an 

analytical function in the governing Equations. Results 

show an excellent frequencies comparison for thin 

SLGS and different frequency values for thick SLGS. 
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The natural frequencies derived for clamped plates are 

less sensitive to geometric imperfection than simply 

supported plates. As the nonlocal parameter increases, 

the stiffness of the sheet and consequently the natural 

frequency decreases. The imperfection sensitivity for 

small values of imperfection amplitude is almost 

independent of the nonlocal parameter, while for larger 

values, it reduces by increasing the nonlocal parameter. 

For a large nonlocal parameter, changes in imperfection 

amplitude have an insignificant effect on imperfection 

sensitivity, whereas, for a small nonlocal parameter, 

imperfection sensitivity is susceptible to imperfection 

amplitude variations. By increasing the value of the 

imperfection extension parameter δ, the imperfection 

sensitivity decreases and converges to a constant value 

for all imperfection amplitudes. Frequencies for perfect 

and imperfect SLGS for different nonlocal parameters 

were extracted, and by comparing with the existing MD 

analysis, an appropriate and best fit nonlocal parameter 

value is found. 
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