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Abstract: The optimal position and minimum stiffness of an intermediate support is 
implemented to maximize the fundamental natural frequency of a vibrating cantilever 
Euler-Bernoulli beam with tip mass. According to Courant’s maximum-minimum 
theorem, maximum value of the first natural frequency of a beam with a single additional 
rigid internal support, is equal to the second natural frequency of the unsupported beam. 
In literature, for a cantilever beam without tip mass, the optimum position of 
intermediate support was reported as 0.7834L and minimum dimensionless stuffiness as 
266.9. In this paper, the effect of tip mass ratio on optimum location and minimum 
stiffness is investigated. The Finite element method is employed. Cross sectional area is 
uniform and material is homogeneous and isotropic. Numerical results demonstrate that 
as tip mass ratio increases the optimal position moves toward the tip mass and minimum 
stiffness increases. For instance, for tip mass ratio 0.5, optimal position is 0.92L and 
minimum dimensionless stiffness is 284. Optimal position and minimum stiffness are 
presented for various range of mass ratio. In many applications, it is not possible to place 
intermediate support at optimal position; therefore, the minimum stiffness does not exist. 
In these cases, a tolerances zone is considered and related design curves are proposed. 
As a practical example, an agitator shaft is considered and end impeller is modeled as 
tip mass. The effectiveness of the proposed design curves in order to maximize natural 
frequency is shown. A design of an intermediate support is presented; in this example 
the fundamental frequency has increased as much as 300 percent without any change in 
shaft diameter. 
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1 INTRODUCTION 

A beam with a tip mass at its free end is quite often 

applied in several engineering structures such as 

industrial mixers and robotic manipulator. 

Understanding of the modal characteristics of beam with 

tip mass is essential for avoiding resonance. By adding 

an intermediate support, we can improve its modal 

characteristics. 

The supports situation of a structure plays a crucial role 

in the structural dynamic analysis and stability; 

therefore, close attention should be paid to their 

characteristics. Supports are not only expected to hold a 

structure firmly, it is well known that a small number of 

adjustments in supports positions can influence the 

natural frequencies and critical buckling load 

dramatically, therefore, improve the structural 

performance significantly. In addition, it is clear that 

adding new supports, changes the magnitude of 

deformations and structure deflections. 

The most researches that have been carried out in this 

field have merely investigated the effect of an 

intermediate support on the dynamic specification of 

types of beams without tip mass [1-11]. Courant [1] 

showed that adding n kinematical constraint to a system, 

will affect on the eigenvalues and eigenvectors of system 

as follows:  
 

1  niini   

 

i is the i-th eigenvalue of constrained system, and i

is the i-th eigenvalue of the unconstrained system. 

Suppose that the problem of investigating is modal 

analysis of a cantilever beam. Courant theorem state 

that: adding a rigid support (kinematic constants) to each 

location of the beam, will cause the first frequency of the 

constrained beam, to be a value between the first and 

second frequencies of unconstrained beam. From above 

inequality it is obvious that the maximum value of first 

natural frequency is the second natural frequency of 

unconstrained beam. Now the question is, if our goal is 

to increase the first natural frequency of the constrained 

beam, where we should place a rigid supports so that the 

first natural frequency of constrained beam reaches to its 

maximum value? Courant [1] showed that the optimal 

location is the node location of the second mode shape 

of unconstrained beam. For a beam with c-f boundary 

condition which has not tip mass, the optimum position 

is x*= 0.7834L. That is, if we put a rigid support at this 

point, the first natural frequency of the constrained beam 

will be equal to the second natural frequency of 

unconstrained beam. In practical problem, adding a rigid 

support is not possible. Olhoff and Akesson [2] showed 

that if the support stiffness be larger than a minimum 

value, the maximizing of first natural frequency will be 

done and the support is not required be complete rigid. 

They calculated the minimum non-dimensional stiffness 

for a C-F beam as 267 numerically; Wang et.al [3] 

calculated this value 266.87 analytically. References [3-

4] have examined the effect of an intermediate support 

on the natural frequency of an Euler-Bernoulli beam and 

have obtained the optimal support location for 

maximizing the natural frequency of the beam.  

There are many published works which studied the 

effect of concentrated mass on natural frequencies and 

mode shapes for various beam theories [12-16]. 

Recently, most of the researches are about forced and 

natural vibration on multi-span beams. Researchers have 

studied the axial vibrations of multi-span beams with 

concentrated masses [17], the free vibration of multi-

span beams with flexible constraints [18], the free 

vibration analysis of a uniform multi-span beam 

carrying multiple spring–mass systems [19], the free and 

forced vibration characteristics of Bernoulli-Euler multi-

span beam carrying a number of various concentrated 

elements [20], and dynamic analysis of a multi-span 

beam subjected to a moving force [21]. Optimization of 

location and stiffness of an intermediate support to 

maximize the first natural frequency of a beam with tip 

mass has not been previously investigated. 

The purpose of this paper is finding the optimal position 

of an intermediate elastic support and its minimum 

stiffness in order to maximize the fundamental 

frequency of a beam with tip mass. In many industrial 

applications, adding intermediate support at optimum 

position is not possible because of geometric or process 

restrictions. To overcome this problem a set of design 

curves are presented which is used in a practical 

numerical example.  

This paper is organized as follows. In Section 2, we have 

modeled the problem using Euler-Bernoulli model. In 

Section 3, the finite element model is established. In 

Section 4, we obtained the optimal location of the 

additional support. Finally, in section 5 we solved a 

practical problem using design curve which we have 

presented. 

2 ANALYTICAL MODEL  

Consider a cantilever beam with tip mass. L, E, m, Mtip 

and I denote length, modulus of elasticity, mass density 

per unit length, tip mass and area moment of inertia, 

respectively. As shown in “Fig. 1”, an elastic 

intermediate support with stiffness K0 is located at a 

distance bL from clamp end. Based on Euler-Bernoulli 

theory, the free vibration equation of motion for flexural 

vibration of beam is as follows [22]: 
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Fig. 1 Beam with end mass. 

 

Using separation of variables technique, the 

corresponding eigenvalue problem can be formulated as: 
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Where, Y(x) represents the mode shape function of 

beam. Introducing parameter β: 
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From the solution of “Eq. (2)”, the general solution of 

mode shapes is: 
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Where, x=x*/L and β*= βL. We define the non-

dimensional natural frequencies as β*2 throughout the 

paper either in Euler-Bernoulli model. To obtain 

constant coefficients C1 to C8, and natural frequencies, 

we have four boundary conditions at both ends of the 

beam and four continuity and jump conditions at 

junction point b. At clamped end, the deflection and the 

slope are zero. At the free end, the shear force and the 

bending moment are zero. As a result, the end boundary 

conditions of the beam will be as follows:  
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At the point b, where the elastic support is located, the 

deflection, slope and bending moment are continuous 

and the shear force has a jump. Four boundary 

conditions at junction point are: 
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Ks is non-dimensionalized support stiffness: 
 

EI

LK
K
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0
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Appling eight boundary condition (6) and (7) to “Eqs. 

(4) and (5)” and establishing the corresponding 

characteristics equation, the natural frequencies and 

mode shapes will be found. It is clear that for known 

values of Ks and b, natural frequencies can be obtained 

from characteristic equation. 

3 FINITE ELEMENT MODEL  

Assuming the deformation vector and shape functions of 

Euler Bernoulli beam as follows [23]: 
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ew , e , 1ew  and 1e are deflection and slope at node 

e and e+1, respectively. xe is position of node e and xe+1 

is position of node e+1. Expressing weak form of 

governing equations and imposing boundary condition, 

the finite element equations will be as follows: 

 

0KddM  (12) 

 

Where: 
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Where d is global deformation matrix, and M, and K are 

global mass and stiffness matrix, respectively, and A is 

assembly operator. Elemental matrixes are:  
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Obviously, the presence of elastic support will change 

the stiffness matrix of the corresponding element which 

spring is connected to. Since the elastic support is not 

necessarily located at nodes, the element matrix 

corresponding to the element which the elastic support 

is attached to, will be as follows: 
 

bLx

T
wwe NN


 0

Spring KK (17) 

 
Also tip mass affect on the elemental mass matrix of last 

element. It is clear that following matrix should be added 

to last elemental matrix. 
 

Lx
T
wwtip

tip
N NNm  M  (18) 

 

Finally, the corresponding eigenvalue problem is: 

 

     0MK 2


 iX  (19) 

 
Vector Xi represents the i-th mode shape, and the natural 

frequencies are the solution of following characteristic 

equation: 
 

     0MKdet 2  (20) 

 
Let us define the non-dimensional tip mass as follow: 
 

beam

tip

M

M
μ  (21) 

4 OPTIMUM POSITION AND MINIMUM STIFFNESS 

Courant’s theorem states if a rigid support is placed in 

the location of the node of second mode of 

unconstrained beam, the first natural frequency of the 

constrained beam is equal to the second natural 

frequency of unconstrained beam. In order to verify the 

Courant theorem, we first obtain the first and second 

natural frequencies of unconstrained beam versus tip 

mass ratio. Figures 2 and 3 show the position of the node 

of second mode. It is known that increasing the tip mass 

decreases the natural frequencies and pushes the node 

toward to tip mass location. 

Figure 4 depicts first natural frequency of constrained 

beam which was imposed by a rigid support at b. Figure 

was plotted for various tip mass ratio. For μ=0, the 

results are completely coincident with [22]. 
Furthermore, as mass ratio increases the optimal 

position approaches toward the end of the beam. This is 

completely agreed with courant’s theorem. Optimum 

position was tabulated in “Table 1”. 

 
Fig. 2 First and second natural frequencies versus tip 

mass, without intermediate support. 

 
 

 
Fig. 3 Location of second mode node of unconstrained 

beam. 

 

 

 
Fig. 4 First natural frequency of constrained beam with a 

rigid support. 

 
Now, we place an elastic support at the optimum 

position. Figure 5 shows the variation of fundamental 

frequency versus support stiffness. As the stiffness of the 

intermediate support increases, the natural frequency 

increases nonlinearly. 
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Table 1 Raised frequency and minimum stiffness for 

different values to mass ratio 

Fundamental 

frequency 

β*2 

Minimum 

Stiffness 

KS 

Optimum 

position 

b 

Mass 

ratio 

μ 

22.03 267 0.78 0 

19.36 233 0.84 0.1 

18.2 235 0.87 0.2 

16.89 284 0.92 0.5 

16.25 394 0.95 1 

15.86 628 0.97 2 

 

For a critical value of stiffness which is called 

"minimum stiffness" and tabulated in “Table 1”, the 

value of the natural frequency equals the second natural 

frequency of unconstrained beam; we call this point 

“knee point”. After knee point, increasing support 

stiffness does not have any effect on natural frequency, 

and it remains constant regardless of any change of 

stiffness. As it is clear from figure, there is knee point. 

Increasing stiffness above this point has no effect on 

fundamental frequency.  

 

 
Fig. 5 Minimum stiffness of cantilever beam with tip 

mass. 

 

In many practical problems because of any geometric or 

process restraint it is not possible to place additional 

support at optimum position. If we put a support in other 

points, the knee point in “Fig. 5” will not appear. In other 

words, as the stiffness increases the fundamental 

frequency increases asymptotically to its maximum 

value. Therefore, we need a criterion to define minimum 

stiffness. We suggest a 5% tolerance zone about the 

maximum value which can be obtained by a rigid 

support at desired position of support.  

Figure 6 shows the tolerance zone for a cantilever beam 

with μ=1 and b=0.5. Considering 5% tolerance, the 

minimum stiffness and natural frequency were obtained 

Ks= 823.9 and (βL)
2
 = 3.2980, respectively.  

After this point, increasing stiffness from 823.9 to 1500 

yields a slight increase in frequency about 0.2. As 

mentioned before since the support position is not at 

optimum position, the stiffness curve has no knee point. 

 

 
Fig. 6 Introducing tolerance zone. 

 

Figure 7 depicts the raised fundamental frequency and 

minimum stiffness versus the location of support. We 

call this figure, design curve. We can extract the raised 

frequency and minimum support for an arbitrary 

position of support from this design curve.  

 

 
Fig. 7 Intermediate support design curve. 

5 A PRACTICAL EXAMPLE  

The industrial agitators are the most important 

equipment, which are used in many industries such as 

food, pharmaceutical, chemical, petrochemical and etc. 

Design of industrial mixers can be divided into two 

parts. The first part is process design and the second part 

is mechanical design. In process design, vessel 

dimensions, impeller types, rotating speed of shaft, 

material of mechanical parts and required power of 

motor will be selected according to media and chemical 
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considerations. The main objects of mechanical design 

are design of vessel details, shaft, sealing system and 

bearing assembly. We focus on shaft design. Figure 8 

shows a typical shaft-impeller system. 

 

 
Fig. 8 A typical shaft-impeller system. 

 
 

 
Fig. 9 Intermediate support detail. 

 

It is obvious that the shaft diameter will affect on the size 

of mechanical seal and bearing assembly system. 

Increasing the shaft diameter can greatly increase 

construction costs. In designing of shaft, in addition to 

strength considerations such as yield and fatigue, the 

vibrational issues should be considered. 

In many practical cases, the dominant phenomena to 

select appropriate shaft diameter is the resonance 

problem. This means that the required diameter to avoid 

resonance is greater than the required diameter for 

avoiding yield and Fatigue failure. In this paper, by 

adding an intermediate support, we have significantly 

reduced the required diameter of shaft to improve its 

fundamental frequency. Obviously, the intermediate 

support cannot be quite rigid. Therefore, the main 

purpose of this is to find the intermediate support 

position and its minimum stiffness so that fundamental 

frequency rises as high as possible. We consider the 

support configuration as following “Fig. 9”. It has three 

connecting bar and an appropriate bushing system. 

We have modeled the shaft-impeller system as a 

cantilever beam, with tip mass. The moment of inertia of 

impeller has eliminated. We employed finite element 

method. Since the shaft is long enough, we use the Euler-

Bernoulli model. As explained in the previous section, 

the intermediate support can be modeled as shown in 

“Fig. 10”.  
 

 
Fig. 10 Model of intermediate support. 

 

If we use round bars as connecting bars, the relation 

between rod diameter and support stiffness can be 

written as follows: 
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The equivalent stiffness for above model is 1.5K. After 

determining minimum stiffness of support in next 

sections, we can evaluate the rod diameter using “Eq. 

(22)”. Consider a typical mixer which is a used in a 

pharmaceutical company. The agitator basic data are as 

shown in “Table 2ˮ. 
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Table 2 Agitators Specifications 

2  Tank diameter, m 

3700  Shaft length, mm 

300 Shaft speed, rpm 

3 Electromotor power, kW 

207 Modulus of elasticity, GPa 

7800 Density, kg.m-3 

120 Allowable stress, MPa 

0.7 Mass ratio 

 

To avoid fatigue and yield failure, the required diameter 

of shaft is 47 mm. in this condition the design factor is 

1.2. Using “Fig. 4” with mass ratio of 0.7, the non-

dimensional fundamental frequency will be 1.79 then 

using “Eq. (3)” we will have: 

 

rpm279
EI

A)L/79.1(

π

30

EI

m

π

30 24

1 


  

 

It is too close to shaft speed. For smooth drive we prefer 

that fundamental frequency be at least 30% over than 

shaft speed i.e. 390 rpm. If we increase shaft diameter 

from 47 to 66 mm, the natural frequency will be 392 rpm 

and safety factor increases from 1.2 to 3.34; it means 

heavier shaft and larger mechanical seal and bearings 

which are undesired. Now let us add an intermediate 

support at the middle of shaft i.e. b=0.5; from design 

curve in “Fig. 7”, we can find the raised non-

dimensional fundamental frequency 4.1 and minimum 

stiffness 780SK . Therefore, natural frequency will 

increase to 899 rpm which is far enough from shaft 

speed. 
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The minimum diameter of connecting rod is 3.4 mm; 

therefore, we will choose 30 mm which is more 

practical. 

6 CONCLUSIONS  

In many of practical problems in agitator design, 

especially those have long shafts; the dominant 

phenomenon in shaft design is resonance avoiding 

design. In this paper, we presented a method for 

increasing natural frequency in order to distance it from 

shaft speed. Using the idea of Courant’s maximum-

minimum theorem, we imposed an additional constraint 

to beam. We have developed a design curve. We can 

obtain the raised frequency and minimum stiffness of 

intermediate support by various values of mass ratio and 

arbitrary location of intermediate support. A numeric 

practical example was solved. In this example, we raised 

the frequency to very high level without any change in 

shaft diameter. 
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