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Abstract: A variety of parameters influence the performance of piezoelectric 
sensors and actuators, such as support and concentrated mass. This paper presents a 
finite element formulation for piezoelectric structures and studies the effect of 
parameters on them. This method was developed based on the Bernoulli-Euler beam 
and the model is considered for use as a beam structure using the Variation Principle. 
The model was used for static and vibration analysis. The effects of support on the 
deflection of the piezoelectric beam were studied. Modal analysis was also carried 
out for the electromechanical coupling and uncoupling beams, and the effect of the 
concentrated mass was deduced. The finite element model was developed with 
FORTRAN programming Language and was implemented with MATLAB software. 
A comparison of the results between the analytical method, engineering software, 
and this program, showed acceptable accuracy.  
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1 INTRODUCTION 

The behavior of piezoelectric structures has been 

extracted by the coupling of electrical and mechanical 

parameters. In order to study this model, the finite 

element method can be applied. Finite element 

formulations for modeling piezoelectric structures have 

been used in many studies. 

The first application of the finite element of the 

piezoelectric model was extracted by Allik and Hughes 

[1]. Zemcik [2] developed a piezoelectric shell element 

and implemented it with ANSYS software. Lazarus [3] 

presented a finite element model for the nonlinear 

vibrations of piezoelectric layered beams with 

application in NEMS. The element for the modeling of 

smart structures was studied by Kogl and Bucalem [4]. 

This element was then used by Lazarus [3]. Piefort and 

Preumont [5] used the Mindlin shell elements for 

piezoelectric materials. The response can respond in the 

low amplitude solution to harmonic excitation; Sebald et 

al. [6] suggested a method to excite the system to jump 

to the high amplitude solution for broadband 

piezoelectric energy harvesting. Erturk and Inman [7] 

investigated the dynamic response, including the chaotic 

response on high-energy orbits of the bistable Duffing 

oscillator with electromechanical coupling. Friswell et al 

[8] proposed a cantilever beam with a tip mass that is 

mounted vertically and excited in the transverse 

direction at its base. This device was highly non-linear 

with two potential wells for large tip masses when the 

beam was buckled. Bendigeri et al [9] developed finite 

elements for the dynamic analysis of a structure with the 

piezoelectric property. An eight nodded isoparametric 

three-dimensional hexahedral element was improved to 

model the coupled electro-mechanical behavior. In this 

work, the effects due to piezoelectric for the developed 

finite element are explained. Ghayour and Jabbari [10] 

presented the effect of support and concentrated mass on 

the performance of a piezoelectric beam actuator and 

frequencies through the finite element method. They 

also developed a new formulation for coupling beam 

elements on the numerical solution of the dynamic 

behavior of nonlinear piezoelectric beams [11]. 

Jabbari et al [12] studied the energy harvesting of a 

multilayer piezoelectric beam in resonance and off-

resonance cases. They showed that the maximum value 

of electric power occurs at the optimum resistive load 

for the selected frequency value and the behavior of 

energy harvesting depends greatly on the excitation 

frequency. 

Jabbari et al [13] presented the experimental and 

numerical results of the dynamic behaviour of a 

nonlinear piezoelectric beam. They showed the effects 

of the excitation velocity and the position of the 

concentrated mass on the output voltage. 

The effect of strain nodes on the energy harvesting of the 

cantilever piezoelectric beam with the vibration mode 

excitation was presented by Jabbari [14]. This research 

showed that the resistive load affects the voltage and 

generated power and the optimum resistive load is 

considered for segmented and continuous electrodes, 

and then the power output is verified. 

Jabbari and Ahmadi [15] studied the electric response of 

piezoelectric beam using the dynamic stiffness method. 

In this research, the dynamic stiffness matrix is 

developed for a two-segmented beam with a tip mass.  

Hassannejad et al [16] presented the influence of non-

circular cross-section shapes on the torsional vibration 

of a micro-rod. They demonstrated that the natural 

frequency of the micro-rod is completely affected by the 

shape and aspect ratio of the cross-section. These results 

can be useful in the micro-structure design stage. 

Shameli et al [17] studied free torsional vibration 

analysis of nanorods with non-circular cross-sections. 
They showed that a small reduction can be observed in 

the natural frequencies by increasing cross-sectional 

dimensions. 

The element developed within this paper is considered 

as beam. The node of the beam element has four degrees 

of freedom. The model presented was developed for 

piezoelectric actuators and sensors. The object of this 

research is to study model behavior under variable 

support and the concentrated mass effect on the 

frequency analysis of piezoelectric beam. These 

parameters influence the performance factor for energy 

harvesting. The results of the developed research are 

compared with the results of analytical and engineering 

software. 

2 THE FINITE ELEMENT MODEL FOR THE 

PIEZOELECTRIC BEAM 

The model of the beam is a piezoelectric bimorph which 

can be used as an actuator and sensor. The proposed 

element contains two nodes, and each node has two 

structural degrees of freedom (𝑢, 𝜃), and two electrical 

degrees of freedom φ and ψ (“Fig. 1”). The deflection 

function 𝑢(𝑥) , and electrical potential φ across the beam 

length and thickness are evaluated by “Eq. (1)” [2]. 
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Where {�̂�}, is the displacement vector of the nodes, {�̂�}, 

is the nodes potential, [𝑁𝑢] shows the shape functions of 

structural degrees of freedom (𝑢, 𝜃) and [𝑁𝜑], shows the 

shape functions of electrical degrees of freedom (𝜑, 𝜓). 

The strain S, and the electric field vector {𝐸}, can be 

expressed as “Eq. (2)”.  

 

     ˆˆuS B u E B                                       (2) 

  
Fig. 1 (a): The finite element model of the piezoelectric 

beam, (b): Nodes potential degrees of freedom, and             

(c): Nodes displacement degrees of freedom. 
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Where [𝐵𝑢] and [𝐵𝜑] are the shape function derivatives, 

H is the thickness and h is the element length. The 

motion Equations of a piezoelectric structure are 

obtained with the Hamilton principle. The finite element 

formulation can be derived with motion Equation. (“Eq. 

(5)”, “Eq. (6)”) [3]. 
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Where {𝑆𝑟}, is residual strain, {𝑃𝑟} is residual 

polarization, [𝑐𝐸], is elasticity tensor under a constant 

electric field, [𝑒], is  piezoelectric stress matrix, 
S    

is the dielectric matrix, {𝐷𝑟}: residual displacement of 

electric, E is the electric field, {𝑇𝑟}: residual stress 

tensor, {𝐵}: body load, {𝑡}: surface load, ρ: mass density 

and qv, qs: electric charges per volume and area. 
[𝐾𝑢𝜑] for the series connection of the piezoelectric 

layers is presented in “Eq. (7)”. 
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[𝐾𝑢𝜑] for the series connection of the piezoelectric 

layers is presented in “Eq. (8)”. 
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Where ε, is the permittivity factor. 

For the finite element formulation, the electric potential 

is specified on the external boundary for the Dirichlet 

BC problem. The finite element model has been 

developed with FORTRAN programming Language. 

3 SUPPORT EFFECT ON THE PERFORMANCE OF 

PIEZOELECTRIC BEAM ACTUATOR 

The developed finite element program has been named 

Piezoelectric Beam Analysis (PIBA). The piezoelectric 

beam has two layers.  

 
Fig. 2 Series connection of piezoelectric layers.  

 

The parallel connection of the piezoelectric layers 

represents equal polarities (“Fig. 3”). In this study, the 

conditions of both series and parallel connections are 

used in the model. 
 

 
Fig. 3 Parallel connection of piezoelectric layers. 

  
The series connection of the piezoelectric layers 

represents opposite polarities (“Fig. 2”).  

The beam presented has L=100mm, H=0.5mm, b=1mm 

and is loaded by V=100V in the actuator. The 

piezoelectric layer is taken to be PZT-5H [18]. The 

properties of the piezoelectric material are shown in 

“Table 1”. 

 
 
 

 

 

Table 1 The properties of the piezoelectric material 

piezoelectric stress matrix 

]2c/m[
 

ē  

dielectric permittivity matrix  

ϵ  [F/m] 

elasticity 

constant 

E[GPa]  

Poisson 

ratio ν [-] 

Mass 

density 

]3ρ[kg/m 

1 1

0 0 0

4.4*10 4.4*10 0 

 
 
 

 

12

0 0 0

0 0 0

0 0 106.248*10

 
 
 
  

 
200 0.3 7760 
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Figure 4 shows the deflection of the beam Using voltage 

V=100V (Voltage Driven Electrodes) for the 

Piezoelectric Beam clamped at one end. The Figure 

presents that the displacement of the piezoelectric beam 

has a linear behavior on the length of beam. 

 

Fig. 4 Deflection of a Piezoelectric Beam Clamped at One 

End.  

 

The deflection numerical results of the free end of the 

beam are compared to the analytical method and Ansys 

software results in “Table 2”. The results show PIBA 

results have proper adjustment with Analytical results, 

also the deflection of beam in the parallel case is twice 

the deflection of beam in the series case. 
 

Table 2 Deflection of the free end of the beam 

ANSYS 

result[m] 

Analytical 

result[m] 

PIBA 

result[m] 
 

0.00132 0.00176 0.001755 
Series 

case 

0.00264 0.00352 0.00351 
Parallel 

case 

 

Figure 5 shows the deflection of the beam using voltage 

V=100V (Voltage Driven Electrodes) for the 

Piezoelectric Beam clamped at two ends. The result 

shows that the deflection of a piezoelectric beam 

clamped at two ends has harmonic behavior. The 

deflection direction of the beam changes in the middle 

of the beam. So, the middle of the beam deflection is 

zero. This result is important for the behavior of the 

actuator. 

 

 
Fig. 5 Deflection of a piezoelectric beam clamped at two 

ends. 

Figure 6 shows the deflection of the beam using voltage 

V=100V (Voltage Driven Electrodes) for the 

Piezoelectric Beam clamped at one end and pivoted at 

the other end. The result shows that the Deflection of 

piezoelectric beam clamped at one end and pivoted at the 

other end has harmonic behavior with semi-cycle. The 

maximum deflection is in x=40mm from Clamped 

support. 

 

Fig. 6 Deflection of piezoelectric beam clamped at one 

end and pivoted at the other end. 

 

Figure 7 shows the deflection of the beam using voltage 

V=100V (Voltage Driven Electrodes) for the 

Piezoelectric Beam clamped at one end and with vertical 

translation at the other end. The figure shows that the 

displacement of the piezoelectric beam has parabolic 

behavior on the length of the beam. 

 

Fig. 7 Deflection of piezoelectric beam clamped at one 

end and with vertical translation at the other end. 

4 EFFECTS OF CONCENTRATED MASS ON THE 

ANALYSIS OF PIEZOELECTRIC BEAM FREQUENCY 

The stiffness matrix of the piezoelectric model depends 

on the electrical boundary conditions. The piezoelectric 

coupling parameter can affect Eigen frequencies. The 

concentrated mass and piezoelectric coupling influence 

the result. The structure presented in “Fig. 8” has been 

used for modal analysis. The results of 

electromechanical coupling and uncoupling and the 
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concentrated mass effect (m=0.1gr) are presented in 

“Table 3”. The results of the PIBA program are 

compared to the results of Ansys software. The 

piezoelectric beam element is not available in Ansys. 

 

 
Fig. 8 Piezoelectric model and concentrated mass. 

 
Table 3 The results of electromechanical coupling, uncoupling, and concentrated mass effect (m=0.1[gr]) 

Mode4[Hz] Mode3[Hz] Mode 2[Hz] Mode 1[Hz] 

Structure model 
Ansys PIBA Ansys PIBA Ansys PIBA Ansys PIBA 

2483 2403 1246 1226 440 437 
 

69.91 
69.3 

Beam without 

coupling and 

mass 

 1429  1030  375  60.5 

Beam with 

coupling and 

without mass 

2163 2097 1032.6 1017 329.3 327.5 34.67 34.4 

Beam without 

coupling and with 

mass (X=100mm) 

 1384  831  287.2  30.5 

Beam with 

coupling and 

mass (X=100mm) 

2337 2264 989.07 977.6 408.5 406.3 48.8 48.4 

Beam without 

coupling and with 

mass (X=70mm) 

 1186  900.7  343.3  41.2 

Beam with 

coupling and 

mass (X=70mm) 

1976 1926 1245.7 1226 300.3 298.8 60.05 59.5 

Beam without 

coupling and with 

mass (X=50mm) 

 1163  869.3  279.7  51.7 

Beam with 

coupling and 

mass (X=50mm) 

1932 1882 868.9 856.7 382.9 380.2 69.49 68.9 

Beam without 

coupling and with 

mass (X=20mm) 

 1331  792.3  327.4  60.0 

Beam with 

coupling and 

mass (X=20mm) 

 
 

 

The effect of concentrated mass position on Eigen 

frequencies is shown in “Figs. 9-12” (mode 1- 4). 

Numerical results showed that the frequency of a 

piezoelectric beam is lower than that of an uncoupling 

beam. The reason for this problem is the coupling matrix 

of piezoelectric in the stiffness matrix of the beam. 

 

 
Fig. 9 The effect of position of concentrated mass on the 

first Eigen frequency. 
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Fig. 10 The effect of position of concentrated mass on the 

second Eigen frequency. 

 

Fig. 8 The effect of position of concentrated mass on the 

third Eigen frequency. 

 

Fig. 8 The effect of position of concentrated mass on the 

fourth Eigen frequency. 

 

As a second analysis, the position of the concentrated 

mass was set to vary. Frequency analysis was extended 

to examine concentrated mass. The results showed a 

change in Eigen frequency with the position of mass. 

Comparisons of the coupling and uncoupling beams 

indicate that the first and second Eigen frequencies 

change similarly for both models, but changes in the 

third and fourth Eigen frequencies are discordant for the 

two models. The reason for this problem is the positive 

and negative elements in the piezoelectric matrix. 

5 CONCLUSIONS 

A finite element program for analyzing the behavior of 

piezoelectric structures has been presented in this article. 

The beam element is based on the Euler-Bernoulli 

theory. The electrical boundary conditions of a closed 

circuit were considered in a static solution, and electric 

potentials were applied on the upper and lower beam 

faces. The model was loaded with electrical and 

mechanical forces and the results were compared to the 

analytical method and ANSYS software. The 

discrepancy was negligent. 

The present work was used to study a piezoelectric beam 

under a variety of boundary conditions. The effects of 

support on the deflection of the piezoelectric beam 

would be considerable for actuator structures.  

Modal analysis of the beam was also presented. This 

analysis was carried out for a coupling and uncoupling 

beam. Numerical results showed that the frequency of a 

piezoelectric beam is lower than that of an uncoupling 

beam. 

As a second analysis, the position of the concentrated 

mass was set to vary. Frequency analysis was extended 

to examine concentrated mass. The results showed a 

change in Eigen frequency with the position of mass. 

Comparisons of the coupling and uncoupling beams 

indicate that the first and second Eigen frequencies 

change similarly for both models, but changes in the 

third and fourth Eigen frequencies are discordant for the 

two models. The reason for this problem is the positive 

and negative elements in the piezoelectric matrix. 
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