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Abstract: This study investigates the fatigue life of a cracked plate subjected to cyclic 

load under linear elastic fracture mechanics, using a numerical method of extended 

isogeometric analysis (XIGA) with a K-refinement approach. XIGA is applied to simulate 

discontinuity problems without meshing and without the necessity for element boundaries 

to be aligned to crack faces. In this method, the crack faces are simulated by discontinuous 

Heaviside functions, whereas the singularity in the stress field at the crack tip is simulated 

by crack tip enrichment functions. The stress intensity factors for the cracks are 

numerically calculated using the interaction integral method. Paris law of fatigue crack 

growth is utilized for predicting the fatigue life of a cracked plate. In the standard finite 

element analysis, there is no refinement method similar to k-refinement. The effect of the 

k-refinement on the accuracy of the values stress intensity factor and fatigue life is 

investigated. To achieve this, the order of Non-uniform rational B-Splines (NURBS) basic 

function is considered as linear, quadratic, and cubic. It is observed that as NURBS orders 

are increased in k-refinement, results are improved, and the error is lower compared with 

the analytical solution. The results show that values of stress intensity factor and fatigue 

life obtained using XIGA are more accurate compared to those obtained by the finite 

element method. In addition, and they are closer to the results of the analytical solution, 

and the XIGA method is more efficient. 
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1 INTRODUCTION 

Investigation of crack propagation through numerical 

analysis is a significant challenge in the field of linear 

elastic fracture mechanics. Because of the singularity of 

the stress at the crack tip, certain elements must be used, 

which significantly slows down the analysis process.  

Also, it requires modifying a mesh to improve element 

boundaries to be aligned to crack faces. To model the 

cracked problem precisely, a number of numerical 

methods such as Finite Element Method )FEM( [1], 

boundary element methods [2], Extended Finite Element 

Method (XFEM) [3-5] and element free method [6-7], 

have been developed in the past years. These methods 

were developed to reduce the computational cost of 

mesh generation and remeshing steps and enable these 

methods to handle crack propagation and discontinuous 

problems with nonconforming meshes and elements. 

In recent years, a powerful numerical method called 

isogeometric analysis (IGA) [8] is used to analyze 

engineering problems which has been presented. This 

method is based on mathematical computational 

processes in modeling computer-aided design (CAD). In 

fact, the basic functions used to create geometry in CAD 

are used to estimate the analysis. This approach has been 

presented to overcome the difficulties of crack 

geometric topological changes and remeshing during 

crack propagation, such as combinative methods for 

crack modeling and analyzing. For example, the B-

spline or NURBS are employed for defining the 

geometry as well as the approximate solution. The exact 

model is preserved, and the remeshing is performed 

without any further communication with the initial CAD 

model. Therefore, there is not a geometric error in the 

sense that the model is exact. This might be the main 

advantage of this method. Construction of the mesh 

itself can be a time-consuming step in the analysis 

process, and if the purpose is to achieve a precise 

solution with a set of refinements, the quality of the 

geometric approximation must also be improved 

simultaneously to obtain the required precision.  

Recently, the IGA was combined with extended finite 

element (XFEM) to analyze the problems involving 

discontinuities linear elastic fracture mechanic. This 

numerical method development is called an extended 

isogeometric analysis (XIGA). The XFEM [9-11] allows 

modeling cracks with an incompatible mesh through the 

introduction of discontinuous enrichment functions. 

Using the level set technique and its simultaneous use in 

XFEM, this method provides a means for propagating 

cracks without re-meshing [12]; optimal convergence 

rates are obtained by introducing tip enrichment 

functions from the asymptotic crack tip displacement 

field [13].  

In order to perform geometric refinement, it is necessary 

to communicate between analytical geometry and 

refinement. The important point is that if the meshing 

encompasses exactly the appropriate geometry of the 

analysis, the refinement can be done at any stage within 

the framework of the analysis, and the need to 

communicate with the geometry of the problem is 

completely eliminated. One of the most interesting 

properties of B-spline and NURBS is the variety of 

techniques in which their basic functions are expanded 

apart from geometry and its parameters. This makes the 

basic refinement techniques in the isogeometric analysis 

lead to further development throughout the refining 

space. So not only do we dominate the size of elements 

and order of the basic functions, but also we can control 

the continuity of the basic functions. This is one of the 

most important features of the isogeometric numerical 

method.  

In other words, once the initial geometry mesh is 

constructed, the mesh can incorporate real geometry, 

and at any stage without problem, geometry with knot 

insertion, order elevation, and k-refinement techniques 

will be completely improved. These techniques will be 

explained further in the following sections. Ghorashi et 

al. [14] analysed local refinement in XIGA on Fracture 

analysis using the T-spline basis functions. Jiming et al. 

[15] investigated fracture behavior of single and 

multiple cracks in two-dimensional solids by an adaptive 

XIGA based on locally refined B-splines. They have 

shown the effectiveness of this method in several 

examples. 

One of the equipments used in the industry is a plate or 

other 2D structures. All the plates do not have a 

homogeneous structure during their manufacturing 

process, and structural defects such as holes and cracks 

are almost inevitable. The presence of cracks reduces the 

structural strength, and it causes a fracture. Therefore, it 

is very important to examine and analyze their fracture 

behavior. To investigate cracks in plates, several 

numerical methods such as boundary element methods 

[16], coupled FEM and EFG method [17-20], and 

extended finite element method [21-22] have been 

developed to solve the cracked plate problems. 

Menouillard and Belytschko [23] have reported that the 

accuracy of the stress intensity factor can also be 

developed by combining a meshfree method with the 

crack tip enrichment. Tanaka et al. [24-25] improved a 

meshfree method in terms of reproducing kernel particle 

method to numerically evaluate the moment intensity 

factor of Mindlin-Reissner plate. Tran et al. [26], used 

isogeometric analysis for the static, dynamic, and 

buckling response of plates. Yuan et al. [27], 

investigated Mode I stress intensity factors for cracked 

special-shaped shells under bending. Nguyen et al. [28] 

proposed the Symmetric Galerkin Boundary Element 

Method (SGBEM) based on the isogeometric method 

and the basic functions of NURBS, for two dimensional 

fracture problems. The results of this study showed that 
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the use of NURBS basic functions instead of Lagrangian 

functions leads to better accuracy and convergence in the 

solutions but in general this method has high 

computational cost due to the solution of dual integrals. 

Verhoosel et al. [29-30], applied the concept of knot 

insertion to create a discontinuous displacement field. 

Hao et al. [31] used an isogeometric method for buckling 

analysis in variable-stiffness composites. In this type of 

composite, the discontinuity of the elements due to the 

variability of the stiffness is reported in the finite 

element method. Therefore, the isogeometric method is 

used in buckling analysis of the composite sheet, and the 

excellent accuracy of the results compared to the finite 

element method is shown. Tran et al. [32], by combining 

the XIGA and high-order deformation theory (HSDT) 

on the plates, developed a new and effective formulation 

for vibration analysis in cracked FGM plates. Bhardwaj 

et al. [33-34] used the XIGA to perform fracture analysis 

of cracked plates under static loading and different 

boundary conditions. Nguyen et al. [35], used XIGA for 

the analysis of the thickness cracks in thin-shell 

structures. The intricacy of the enrichment strategy and 

the computational costs significantly reduced. Kumar et 

al. [36], Investigated the crack tip plastic zones by the 

extended isogeometric analysis by studying the effect of 

holes on the shape and size of crack tip plastic zones. 

Considering the literature, it is obvious that no studies 

has been reported on the investigation of the fatigue life 

of a cracked plate subjected to cyclic load and also 

evaluation of the effect of k-refinement on fatigue life. 

In this research, the extended isogeometric analysis 

(XIGA) with the k-refinement approach is applied to 

investigate the fatigue life of a cracked plate subjected 

to cyclic load. Toward this purpose, the crack faces are 

simulated by discontinuous Heaviside functions, while 

the singularity in the stress field at the crack tip is 

simulated by crack tip enrichment functions. The order 

of NURBS basic function is taken as linear, quadratic, 

and cubic to implement K-refinement. In numerical 

examples, considering the geometry, boundary, and 

loading condition are used to validate this method. 

This paper is organized as follows: In Section 2, the 

isogeometric analysis is introduced and B-spline and 

NURBS basic functions, refinement in IGA and 

formulation of IGA for the 2D problem are defined. In 

Section 3, Level set method is described and the 

formulation of extended isogeometric analysis for crack 

simulation is presented. Section 4 represents the 

interaction integral method for computing the stress 

intensity factor. The fatigue crack growth and fatigue 

life are expressed in Section 5. Section 6 describes 

various numerical examples for investigation of the 

stress intensity factor, the fatigue life of the cracked plate 

and the effect of the K-refinement on them to verify the 

accuracy of the method. Finally, conclusions are 

presented in section 7. 

2 ISOGEOMETRIC ANALYSIS METHOD 

2.1 B-Splines and Non-Uniform Rational B-Splines 

(NURBS) 

The B-spline basic function of orders p is constructed in 

parametric space using a recursive relation and the 

assumed knot vector. This means that to produce basic 

functions with each order, lower order basic functions 

are needed. One dimensional Knot vector Ξ = {ξ1, ξ2,..., 

ξn+p+1}, (ξi ∈ R), is a non-decreasing of coordinates in the 

parametric space, where ξi is the ith knot and n shows the 

number of basic functions of order p. Knots divide the 

parametric space into knot spans. A knot vector is called 

open if ξ1 and ξn+p+1 are repeated p+1 time. The use of 

an open knot vector in isogeometric analysis satisfies the 

characteristic of the Kronecker Delta at the boundary 

control points [37]. According to the assumed knot 

vector, the B-spline basic function of orders p = 0 and 

higher orders (p > 0) are defined as [38]: 

 

𝑁𝑖,0 = {
1       𝜉𝑖 ≤ 𝜉 ≤ 𝜉𝑖+1

0         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
        for   𝑝 = 0               (1) 

 

𝑁𝑖,𝑝(𝜉) =
𝜉− 𝜉𝑖

𝜉𝑖+𝑝−1−𝜉𝑖
𝑁𝑖,𝑝−1(𝜉) +

𝜉𝑖+𝑝− 𝜉

𝜉𝑖+𝑝−𝜉𝑖+1
𝑁𝑖+1,𝑝−1(𝜉)          for   𝑝 > 0                        (2) 

 

Since the derivative of the basic functions is needed in 

calculations later, the derivatives of the ith basic function 

can be determined for a given polynomial degree p and 

knot vector Ξ: 

 
𝑑𝑁𝑖,𝑝(𝜉)

𝑑𝜉
=

𝑝

𝜉𝑖+𝑝−𝜉𝑖
𝑁𝑖,𝑝−1(𝜉) −

𝑝

𝜉𝑖+𝑝+1−𝜉𝑖+1
𝑁𝑖+1,𝑝−1(𝜉)  

                                                                                    (3) 

 

The B-spline curve can be evaluated by Ni,p(ξ ) and 

control point coordinates set Pi as: 

 

𝑐(𝜉) = ∑𝑁𝑖,𝑝(𝜉)𝑃𝑖

𝑛

𝑖=1

       (4) 

 

In the two-dimensional parametric space ξ and η, the B-

spline surfaces are derived by tensor multiplying the two 

knot vectors Ξ ={ξ1, ξ2, ... , ξn+p+1} and H ={η1, η2, ... , 

ηm+q+1} as follows:  

 

𝑠(𝜉, 𝜂) = ∑ ∑𝑁𝑖,𝑝(𝜉)

𝑚

𝑗=1

𝑀𝑗,𝑞(𝜂)𝑃𝑖,𝑗

𝑛

𝑖=1

      (5) 

Where, Ni,p(ξ ) and Mj,q (η) are the pth and qth order 

univariate B-spline basic functions respectively and Pi, j 

form a n ×m set of control net. 
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B-spline piecewise polynomials generalized to Non-

uniform Rational B-Spline (NURBS) basic functions are 

as follows [38]:  

           

𝑅𝑖,𝑝(𝜉) =
𝑤𝑖𝑁𝑖,𝑝(𝜉)

𝑊(𝜉)
=

𝑁𝑖,𝑝(𝜉)𝑤𝑖

∑ 𝑁𝑖,𝑝(𝜉)𝑤𝑖
𝑛
𝑖=0

     (6) 

 

Where, Ni,p is the B-spline basic function of order p, and 

wi is the Non-negative weight, corresponding to ith 

control point. In a procedure analogous to B-spline 

curves, NURBS curves are created as follows: 

 

𝐶(𝜉) = ∑𝑅𝑖,𝑝(𝜉)𝑃𝑖

𝑛

𝑖=1

       (7) 

 

Where, Ri,p(ξ ) is the NURBS basic function, and Pi is 

the control point coordinates set. 

NURBS surfaces are created by tensor yield of knot 

vectors Ξ ={ξ1, ξ2, ... , ξn+p+1} and H ={η1, η2, ... , ηm+q+1} 
in two dimensional parametric space: 

 

 (8) 𝑆(𝜉, 𝜂) = ∑∑ 𝑅𝑖,𝑗
𝑝,𝑞

𝑚

𝑗=1

𝑃𝑖,𝑗

𝑛

𝑖=1

 

 

Where, Pi,j is the ijth control point and 𝑅𝑖,𝑗
𝑝,𝑞

  , the NURBS 

basic function in two directions is defined as follows: 

 

(9) 𝑅𝑖,𝑗
𝑝,𝑞(𝜉, 𝜂) =

𝑁𝑖,𝑝(𝜉)𝑀𝑗,𝑞(𝜂)𝑤𝑖,𝑗

∑ ∑ 𝑁𝑖,𝑝(𝜉)𝑀𝑗,𝑞(𝜂)𝑤𝑖,𝑗
𝑚
𝑗=0

𝑛
𝑖=0

 

 

Where, Ni,p(ξ ) and Mj,q (η) are the ith p and jth q order 

univariate B-spline basic functions respectively, and wi,j 

is the Non-negative weight corresponding to ijth control 

point. 

In two dimensional parametric spaces, the patch domain 

(Ωpatch) is defined as follows: 

 

(10) 
𝛺𝑝𝑎𝑡𝑐ℎ

= {(𝜉, η|𝜉𝜖[𝜉1, 𝜉𝑛+𝑝+1], 𝜂𝜖[𝜂1, 𝜂𝑚+𝑞+1]} 

And element domain is equal to Ωe = [ξi, ξi+1) × [ηj, 

ηj+1). For each knot span, there are (p+1) × (q+1) non-

zero NURBS basic functions. Since the number of basic 

functions is equal to the control points,  ne= (p+1) × 

(q+1) is the number of control points associated with 

each knot span. 

2.2. Refinement in Isogeometric Analysis Method 

As mentioned in the introduction, commonly, three 

techniques are used to improve the mesh in the 

isogeometric numerical method. The first technique by 

which one can increase analysis accuracy is knot 

insertion. New knots are added to the knots vector 

without changing a curve from the aspect of geometry 

and parametric properties. The insertion of new knots 

values is clearly similar to the h-refinement in the finite 

element method that divides existing elements into new 

smaller elements. It is important to note that the numbers 

of new base functions to be created and their continuity 

along the boundaries of the element with finite elements 

is different [39]. The second technique by which one can 

increase analysis accuracy is order elevation. The 

process requires elevating the polynomial order of the 

basic functions.  

In this technique, the number of iterations per knot 

increases, but no new knot is added to the knots vector, 

and similar to the knot insertion technique, the geometry 

and curve parameters do not change. Therefore, 

continuity across element boundaries to order elevation 

technique is C0. The order elevation is very similar to the 

p-refinement in the finite element method, the main 

difference is that the number of elements does not 

change while the accuracy of the solution can be 

improved by increasing the order of the basic functions 

[39]. Knot insertion and order elevation techniques are 

the two main refinement techniques of the isogeometric 

analysis method so that new knots values can be 

repeated only once and create new elements. It is also 

possible to duplicate the existing knot value and reduce 

the continuity of the basic functions along the element 

boundaries.  

In this case, the continuity along the element boundaries 

will be Cp−1. It is also possible to duplicate the existing 

Knot value and reduce the continuity of the basic 

functions along the element boundary. This process 

constructs these techniques better and more flexible than 

the h-refinement and p-refinement. In the isogeometric 

analysis method, there is a unique refinement technique 

called k-refinement. In a one knot vector of order p for a 

value between two knots, the number of continuous 

derivatives of the basic functions is p−1. In k-

refinement, if we elevate the order from p to q, only 

knots at the beginning and the end of the knot vector are 

repeated, and the other knots will not be repeated. This 

causes remaining the continuity equal to Cq-1 over the 

whole basic function. In k-refinement, there is a 

homogeneous structure within patches, and growth in 

the number of control variables is limited [40]. K-

refinement has no similar practice in standard finite 

element analysis.  

Figure 1 represents the results of the k-refinement 

technique with a much smaller number of basic 

functions, each of which is of Cp−1 continuity along the 

element boundaries. According to the above 

explanation, it could be concluded that this refinement 

requires fewer control points. Thus, compared to the 

other two refinements, it reduces the computational cost.  

In this study, the effect of the k-refinement on the 

accuracy of the values stress intensity factor and fatigue  
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life is investigated. To achieve this, the order of NURBS 

basic function is taken as linear, quadratic, and cubic. 

 

 
(a) 

 
(b) 

(c) 

 
(d) 

Fig. 1 k-refinement. Original NURBS-curve for knot vector Ξ=[0 0 0 0.5 1 1 1], (b): Original basic function for 

knot vector Ξ=[0 0 0 0.5 1 1 1], k-refinement NURBS-curve for knot vector Ξ=[0 0 0 0 0.5 1 1 1 1], (d): k-refinement 

basic function for knot vector Ξ=[0 0 0 0 0.5 1 1 1 1] whit continuity Cp−1. 

 

 

2.3. Isogeometric Analysis for 2D Plane Stress 

Problem 

In this numerical method, the discretization is based on 

the NURBS basic functions. At a particular control point 

x = (x, y), corresponding to the point ξ = (ξ, η) in the 

parametric coordinates; hence the geometry and solution 

space are approximated as follows: 

(11)  𝑿(𝜉, 𝜂) = 𝑹𝑷        𝜉, 𝜂 𝜖 𝛺𝑝𝑎𝑡𝑐ℎ  

 

(12)            𝒖𝒉(𝜉, 𝜂) = 𝑹𝒅        𝜉, 𝜂 𝜖 𝛺𝑝𝑎𝑡𝑐ℎ  

We can convert R and P from their matrix-form to 

vectors by mapping from i, j subscripts to k: 

 

(13)  
𝑘

= 𝑖 + (𝑗 − 1)𝑛     {
𝑖 = 1,2, … , 𝑛                      
𝑗 = 1,2, … ,𝑚                  

 

 

As seen in the above Equations, with respect to the 

isoparametric concept, the NURBS basic functions are 

used to discrete the geometry, as well as the solution 
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field approximation. The vector of control points in 

physical space is defined as: 

 

(14)  𝑷 = {𝑃1𝑥    𝑃1𝑦  … …  𝑃𝑁𝑥   𝑃𝑁𝑦} 𝑇     

 

Similarly to the values of approximation space at the 

control points are regulated in the displacement vector: 

 

(15)                𝒅 = {𝑑1𝑥    𝑑1𝑦  … …  𝑑𝑁𝑥  𝑑𝑁𝑦} 𝑇 

 

Then the NURBS basic functions R matrix is renovated 

in the following form: 

 

(16)       𝑹 = [
𝑅1

0

0
𝑅1

   
𝑅2

0

0
𝑅2

  ⋯ ⋯  
𝑅𝑁

0

0
𝑅𝑁

 ] 

 

Now stiffness matrix can be obtained as follows for a 

single patch: 

 

(17)  𝐾𝑒 = ∫ 𝑩𝑇𝐷2𝐷𝑩𝑑𝛺
𝛺𝑒

 

 

Ωe is the domain of knot span in the parametric space, 

D2D is the mechanical properties matrix, and B is the 

strain–displacement matrix which is defined: 

 

(18)                  𝑩 =

[
 
 
 
 

  

𝜕𝑅1

𝜕X
0

𝜕𝑅1

𝜕Y

 

0
𝜕𝑅1

𝜕Y
𝜕𝑅1

𝜕X

    ⋯

𝜕𝑅𝑛𝑝

𝜕X
0

𝜕𝑅1

𝜕Y

   

0
𝜕𝑅𝑛𝑝

𝜕Y
𝜕𝑅𝑛𝑝

𝜕X ]
 
 
 
 

 

 

Where: 

 

(19)      (

𝜕𝑅𝑖

𝜕X
𝜕𝑅𝑖

𝜕Y

) = 𝑱−𝟏

(

 
 

𝜕𝑅𝑖

𝜕ξ
𝜕𝑅𝑖

𝜕η )

 
 

 

 

J is the Jacobian matrix, defined as: 

 

(20)       𝐉 =

[
 
 
 
 
𝜕X

𝜕ξ

𝜕Y

𝜕ξ
𝜕X

𝜕η

𝜕Y

𝜕η]
 
 
 
 

 

In the presence of body forces b and traction forces t, the 

force vector is defined as: 

 

(21)             𝐹𝑒 = ∫ 𝑅𝑇𝒃𝑑𝛺 + ∫ 𝑅𝑇 �̂� 𝑑𝛤
𝛤𝑡𝑒𝛺𝑒

 

 

Where, Ω and Γ are the domain and traction boundary 

and R is the NURBS basic function. Finally, the 

displacement vector d is obtained using the following 

equilibrium Equation: 

 

(22)                    𝐾𝑑 = 𝐹 

3 FORMULATION OF EXTENDED ISOGEOMETRIC 

ANALYSIS 

3.1. Level Set Method for Selection of Knot Spans 

for Enrichment 

The level set method is used to recognize the crack 

position in the solution field. In order to apply the level 

set method in the extended isogeometric analysis, first, 

Geometry is described by the knot vectors and control 

points. Then level set values for all control points of knot 

spans are calculated relative to the crack position. The 

level set function has two values, normal and tangent 

level set, which are called N.l.s and T.l.s in this study. 

The first one explains the crack surface {x: N.l.s(x) = 0 

and T.l.s ≤ 0}, and the second is used to explains the 

crack tip {x: N.l.s(x) = 0 and T.l.s(x) = 0}. Figure 2 

shows how to identify the crack position by level set 

function. 

 

Fig. 2 Illustration of the level set function N.l.s and T.l.s. 

 

If the coordinates of the beginning and end of the crack 

line are (x0, y0) and (x1, y1), respectively, the level set 

values for each control point are given: 

 

 (23)  

𝑁. 𝑙. 𝑠

=
(𝑦0 − 𝑦1)𝑥 + (𝑥1 − 𝑥0)𝑦 + (𝑥0𝑦1 − 𝑥1𝑦0)

√(𝑥1 − 𝑥0)
2 + (𝑦1 − 𝑦0)

2
 

(24)        

𝑇. 𝑙. 𝑠
= ([𝑥𝑦]

− [𝑥1𝑦1]). (
(𝑥1 − 𝑥0)𝑖 + (𝑦1 − 𝑦0)𝑗

|(𝑥1 − 𝑥0)𝑖 + (𝑦1 − 𝑦0)𝑗|
) 
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With “Eq. (23) and Eq. (24)”, the split knot span and the 

crack tip knot span can be identified. Thus for split knot 

span: 

 

(25)  
𝑀𝑎𝑥(𝑁. 𝑙. 𝑠) × 𝑀𝑖𝑛(𝑁. 𝑙. 𝑠)

< 0    &    𝑀𝑎𝑥(𝑇. 𝑙. 𝑠)
< 0 

 

And for crack tip knot span: 
 

    (26) 
𝑀𝑎𝑥(𝑁. 𝑙. 𝑠) × 𝑀𝑖𝑛(𝑁. 𝑙. 𝑠)

< 0   &  𝑀𝑎𝑥(𝑇. 𝑙. 𝑠)
×  𝑀𝑖𝑛(𝑇. 𝑙. 𝑠) < 0 

 

Figure 3 shows the control points associated with the 

split knot spans and crack tip knot spans identified by 

the level set method, which should be enriched as 

described in the following section. 

 

 

 
Fig. 3 Illustration of control points around the crack. 

3.2. XIGA Approximations for Cracks 

Extended isogeometric analysis is a newly developed 

computational approach that combines the isogeometric 

analysis method and extended finite element. As a result, 

a crack can be simulated independently of the mesh and 

can model the crack growth without the necessity of re-

meshing. The basic concept of the extended finite 

element is based on the expansion of base functions in 

the solution field by enrichment functions that are 

capable of modeling the crack discontinuity. To model 

the cracks in XIGA, the knot span intersected by the 

discontinuities are identified as enriched knot span. 

Level set functions are used to identify the enriched and 

non-enriched knot spans. The knot spans, including the 

crack faces, are named as split knot span, whiles the knot 

span, including the crack tips, are named as tip knot 

span. Each univariate NURBS basic function can be 

appropriated to its associate control point. Also, it is 

obvious that each NURBS basic function has its own 

support domain and its value outside this domain is zero. 

These aspects are to detect the control points related to 

the split and tip knot span. The number of control points 

related to a split or tip knot span depends on the NURBS 

basic functions order. So in p-refinement and k-

refinement, the change in the NURBS basic functions 

order changes the control points. The control points 

related to knot span, which are cut off by the crack face, 

are enriched with Heaviside function, while the control 

points related to knot span, including the crack tip, are 

enriched with crack tip enrichment functions. At a 

particular control point xi = (x, y), corresponding to the 

point ξ = (ξ, η) in the parametric coordinates, the 

formulation of extended isogeometric analysis are given 

[41]: 

 

𝑢h(𝜉) = 𝑢𝐼𝐺𝐴(𝜉) + 𝑢XIGA(𝜉)

= ∑ Ri

n

i=1

(ξ)ui

+ 𝑢enrichment 

     

(27) 

 

The first term represents the Conventional isogeometric 

displacement approximation without the presence of the 

crack and the additional terms represent the 

displacement approximation in the presence of a crack. 
In this case, we need to define two types of enrichments: 

the Heaviside type enrichment H(x) and the tip 

enrichment functions Sα(x). “Eq. (27)” can be expressed 

by utilizing the Heaviside functions and crack tip 

functions as: 

 

𝑢(𝜉)

= ∑

Ri(ξ)ui

+∑Ri(ξ)[𝐻(ξ) − 𝐻(ξ𝑖)]

𝑛𝑐𝑓

𝑗=1

𝑛𝑐𝑝

𝑖=1

𝑎𝑗

+ ∑ Rk(ξ) {∑
[Sα(ξ)

−Sα(ξ𝑖)]𝑏𝑘
𝛼

4

𝛼=1

}

𝑛𝑐𝑡

𝑘=1

    

 

(28) 

Where, Ri(ξ) is the NURBS basic functions; H(ξ) and 

S𝛼(ξ) are the Heaviside and crack tip enrichment 

functions, respectively. aj is the additional DOFs related 

to modeling discontinuity at the crack face, bk is the 

additional DOFs related to modeling discontinuity and 

singularity at the crack tip. ncf is the number of control 

points associate with split knot span on a crack face that 

is enriched with Heaviside function, and nct is the 

number of control points associate with crack tip knot 

span in a crack tip that is enriched with crack tip 

functions. The Heaviside function, which is used for the 
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enrichment of the control points associated with the 

crack faces, is defined as follows: 

 

𝐻(𝑋) = {
+1 𝑖𝑓  (𝑋 − 𝑋𝑐). 𝑛 > 0
−1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}    (29) 

 

Where, x is any interest point around the crack and xc is 

the nearest point on the crack face as shown in “Fig. 4”. 

If x is above the crack face, the Heaviside function value 

is +1 otherwise, it is -1; n is normal vectors of the crack 

alignment at point x. 

 

 
Fig. 4 Heaviside functions for crack face enrichment 

 

The asymptotic near tip displacement field is presented 

in [42]. It can be shown that the asymptotic near crack 

tip displacement field can be expressed by the following 

function S(x), defined in the polar coordinate system: 

 
Sα(x) = 

{√𝑟 cos
𝜃

2
 , √𝑟 sin

𝜃

2
 , √𝑟 cos

𝜃

2
sin 𝜃 , √𝑟 sin

𝜃

2
sin 𝜃 } 

(30) 

 

Where, r and 𝜃 denote the polar coordinates of a point 

with respect to the crack tip, as shown in “Fig. 5”. 

 

 
Fig. 5 Polar coordinates of the crack tip. 

In the extended isogeometric analysis, the mesh consists 

of a non-enriched knot span and enriched knot span, 

including split and tip. Enriched split knot spans are 

those which are intersected by the discontinuity of crack 

face, and enriched tip knot spans are those at the tip of 

the crack. Figure 6 shows NURBS basic functions order 

2 and 4 respectively in implementation of XIGA to a 

cracked plate.  

 

 
(a) 

 
(b) 

 
 

Fig. 6 Implementation of XIGA to cracked plate: (a): 

NURBS basic functions order 2, and (b): NURBS basic 

functions order 4. 

As shown in “Fig. 1”, the number of Knots is changed 

by implementation of the k-refinement. Therefore basic 

functions will be changed according to “Eq. (1)” and 

“Eq. 2”. Therefore, based on “Eq. 9”, the order of the 

basic function (p and q) and their continuity change. 

With the changes made in the Knots and basic functions 

as shown in “Fig. 6”, the number and distribution of 

control points will change, and with a more appropriate 
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distribution of control points in the crack zone, the 

calculation of stress intensity factors will be improved. 

The main displacement vector in the presence of 

additional enrichment DOFs in “Eq. (28)” can be written 

as follows: 

 

U = {𝑢 𝑎 𝑏1 𝑏2 𝑏3 𝑏4}𝑀×1     
𝑇     (31) 

 

Where, u is the DOFs vector without considering the 

crack, a is the DOFs vector regarding control points that 

are enriched with Heaviside functions, and bi is the 

DOFs vector regarding control points that are enriched 

with crack tip enrichment functions, and M represents 

the total DOFs. In 2D problem: 

 

𝑀 = 2𝑁 + 2𝑚𝑠𝑝𝑙𝑖𝑡 + 8𝑚𝑡𝑖𝑝    (32) 

 

Where, N is the number of control points, msplit is the 

number of the control point of split knot span, and mtip is 

the number of the control point of tip knot span. Finally, 

the control variables can be obtained by solving the 

following equilibrium Equation: 

 

[K]{d} = {F}    (33) 

 

Where, K and F are the assembled stiffness matrix and 

force vector respectively.  

In XIGA formulation, the stiffness matrix of knot span 

is obtained as: 

 

𝐾𝑖𝑗
𝑒 = [

𝐾𝑖𝑗
𝑢𝑢 𝐾𝑖𝑗

𝑢𝑎 𝐾𝑖𝑗
𝑢𝑏

𝐾𝑖𝑗
𝑎𝑢 𝐾𝑖𝑗

𝑎𝑎 𝐾𝑖𝑗
𝑎𝑏

𝐾𝑖𝑗
𝑏𝑢 𝐾𝑖𝑗

𝑏𝑎 𝐾𝑖𝑗
𝑏𝑏

]       ,

i , j =  1, 2, 3, … , 𝑛𝑒𝑙    

   (34) 

 

Where, nel is the number of knot span and: 

  

𝐾𝑖𝑗
𝑟,𝑠 = ∫ (𝐵𝑖

𝑟)𝑇𝐷2𝐷𝐵𝑗
𝑠  𝑑𝛺        

𝛺𝑒

   (35) 

 

 

Where, r, s=u, a, b. It is obvious that for non-enriched 

knot span 𝐾𝑖𝑗
𝑒 = 𝐾𝑖𝑗

𝑢𝑢. Also, the force vector in XIGA 

formulation is obtained as: 

 

  (36) 𝐹𝑖 = {𝐹𝑖
𝑢 𝐹𝑖

𝑎   𝐹𝑖
b1  𝐹𝑖

b2   𝐹𝑖
b3   𝐹𝑖

b4}
𝑇
 

(37) 𝐹𝑖
𝑢 = ∫ 𝑅𝑖

𝑇𝒃𝑑𝛺 + ∫ 𝑅𝑖
𝑇 �̂� 𝑑𝛤

𝛤𝑡𝛺𝑒

 

(38) 𝐹𝑖
𝑎 = ∫ 𝑅𝑖

𝑇𝐻𝒃𝑑𝛺 + ∫ 𝑅𝑖
𝑇𝐻�̂� 𝑑𝛤

𝛤𝑡𝛺𝑒

 

(39) 𝐹𝑖
𝑏𝛼 = ∫ 𝑅𝑖

𝑇𝑆𝛼𝒃𝑑𝛺 + ∫ 𝑅𝑖
𝑇𝑆𝛼 �̂� 𝑑𝛤

𝛤𝑡𝛺𝑒

 

Where, Ri the NURBS basic functions. The NURBS 

basic function derivatives for forming the strain–

displacement matrix in XIGA are obtained as follows: 

 

(40) 𝑩𝒊
𝒂 = [

(𝑅𝑖),𝑥1
𝐻 0

0 (𝑅𝑖),𝑥2
𝐻

(𝑅𝑖),𝑥2
𝐻 (𝑅𝑖),𝑥1

𝐻

] 

  

 (41) 𝑩𝒊
𝒃 = [𝐵𝑖

b1 𝐵𝑖
b2 𝐵𝑖

b3 𝐵𝑖
b4] 

  

(42) 𝑩𝒊
𝐛𝛂 = [

(𝑅𝑖𝑆𝛼),𝑥1
0

0 (𝑅𝑖𝑆𝛼),𝑥2

(𝑅𝑖𝑆𝛼),𝑥2
(𝑅𝑖𝑆𝛼),𝑥1

]      

 

Where, α= 1, 2, 3, 4. Finally, the stress and strain 

components are determined from the displacement 

approximation, as follows: 

 

                   (43) [ε] = [𝐵]{𝑑} 

  

               (44) [𝜎] = [𝐷][ε] 

 

Where, ε is the strain matrix, {d} is the displacement 

vector, [σ] is the stress matrix, and [D] is the mechanical 

properties matrix. 

4 THE INTERACTION INTEGRAL METHOD (M- 

INTEGRAL) 

The interaction integral method is derived to investigate 

Stress Intensity Factors. The interaction integral is 

obtained from the J-integral. The path-in-dependent J-

integral can be expressed as: 

 (45) 𝐽 = lim
𝑛→∞

∫ (𝑊𝛿1𝑗 − 𝜎𝑖𝑗𝑢𝑖,1)𝑛𝑗𝑑𝛤
𝛤

     

 

Where, Γ is an arbitrary enclosing contour around the 

crack tip, 𝛿ij is the Kronecker delta, σij are the stress 

tensor, εij are the strain tensor, ui is the displacement, nj 

is the unit outward normal vector perpendicular to the 

contour Γ, and W is the strain energy density, which is 

defined as follows: 

 

(46) 𝑊 =
1

2
𝜎𝑖𝑗𝜀𝑖𝑗 
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Fig. 7 Contour integrals and domain A is enclosed by Γ0 

and Γ0 = 𝛤𝑐
+ + 𝛤 + 𝛤𝑐

− + ΓB. 

 

Figure 7 Shows the contour of integrals at the crack tip. 

In the integral interaction method, an auxiliary space is 

defined and imposed on the main space in the problem. 

After defining independent spaces, including the actual 

and auxiliary solution space, the displacements, strains 

and stresses for both spaces are denoted by (uact, σact,εact) 

and (uaux, σaux,εaux),  respectively. The J integral of the 

superimposed spaces (actual and auxiliary) can be 

written as [42]:  

 

(47) 

J𝑠 = ∫ {
1

2
(𝜎𝑖𝑘

𝑎𝑐𝑡 + 𝜎𝑖𝑘
𝑎𝑢𝑥)(𝜀𝑖𝑘

𝑎𝑐𝑡

𝛤

+ 𝜀𝑖𝑘
𝑎𝑢𝑥)𝛿1𝑗 − (𝜎𝑖𝑗

𝑎𝑐𝑡

+ 𝜎𝑖𝑗
𝑎𝑢𝑥)(𝑢𝑖,1

𝑎𝑐𝑡

+ 𝑢𝑖,1
𝑎𝑢𝑥)} 𝑛𝑗𝑑𝛤 

 

This integral can be decomposed into: 

 

 (48) J𝑠 = J𝑎𝑐𝑡 + J𝑎𝑢𝑥 + 𝑀 

 

Where, Jact is the values of J-integral for the actual state 

given by ”Eq. (45)”, Jaux is the values of J-integral for 

the auxiliary state given by: 

 

(49) J𝑎𝑢𝑥 = ∫ (𝑊𝑎𝑢𝑥𝛿1𝑗 − 𝜎𝑖𝑗
𝑎𝑢𝑥𝑢𝑖,1

𝑎𝑢𝑥)𝑛𝑗𝑑𝛤
𝛤

 

 

Where: 

 

     

(50) 𝑊𝑎𝑢𝑥 =
1

2
𝜎𝑖𝑗

𝑎𝑢𝑥𝜀𝑖𝑗
𝑎𝑢𝑥    

 

 

And M which is the interaction integral is obtained: 

 

(51) 

M = J𝑠 − J𝑎𝑐𝑡 − J𝑎𝑢𝑥

= ∫ [𝑊𝛿1𝑗 − 𝜎𝑖𝑗
𝑎𝑐𝑡𝑢𝑖,1

𝑎𝑢𝑥

𝛤

− 𝜎𝑖𝑗
𝑎𝑢𝑥𝑢𝑖,1

𝑎𝑐𝑡] 𝑛𝑗𝑑𝛤 

 

Where: 

 

  (52) 𝑊 = 𝜎𝑖𝑗
𝑎𝑐𝑡𝜀𝑖𝑗

𝑎𝑢𝑥 = 𝜎𝑖𝑗
𝑎𝑢𝑥𝜀𝑖𝑗

𝑎𝑐𝑡 

 

The interaction integral is calculated by utilizing stress 

and strains of the Gaussian integration points in the 

isogeometric analysis. Note that the integral “Eq. (51)” 

is not the best suited form for calculations because the 

integral is on the path. In order to obtain better, more 

stable and accurate results, the integral on the path can 

be written in the form of the integral on the surface, thus 

“Eq. (51)” can be written as: 

 

(53) M = ∫ [𝑊𝛿1𝑗 − 𝜎𝑖𝑗
𝑎𝑐𝑡𝑢𝑖,1

𝑎𝑢𝑥

𝐴

− 𝜎𝑖𝑗
𝑎𝑢𝑥𝑢𝑖,1

𝑎𝑐𝑡] 𝑞𝑑𝐴 

 

Where, A is the interior zone of the arbitrary contour Γ 

environs the crack tip (“Fig. 8”), and q is a smooth 

function ranging from q=0 on the outer boundary of 

surface A to q=1 on the interior one, as described in “Fig. 

9”.  

 
Fig. 8 Equivalent domain form of the J-integral. 

 

In this study, the auxiliary Equations of stress and 

displacement obtained from William's solution are used 

[43] to calculate the Stress Intensity Factors in a two-

dimensional crack in local Cartesian and polar 

coordinates, shown in “Fig. 5”. These Equations are 

presented as following forms:    
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(54) 

𝜎𝑖𝑗
𝑎𝑢𝑥 =

𝐾𝐼
𝑎𝑢𝑥

√2𝜋𝑟
𝑓𝑖𝑗

𝐼 (𝜃)

+
𝐾𝐼𝐼

𝑎𝑢𝑥

√2𝜋𝑟
𝑓𝑖𝑗

𝐼𝐼(𝜃)         (𝑖, 𝑗

= 1,2) 

 

(55) 

𝑢𝑖
𝑎𝑢𝑥

=
𝐾𝐼

𝑎𝑢𝑥

𝜇
√

𝑟

2𝜋
𝑔𝑖

𝐼(𝜃)

+
𝐾𝐼𝐼

𝑎𝑢𝑥

𝜇
√

𝑟

2𝜋
𝑔𝑖

𝐼𝐼(𝜃)    ,     𝑖, 𝑗 = 1,2 

 

Where, 𝐾𝐼
𝑎𝑢𝑥and 𝐾𝐼𝐼

𝑎𝑢𝑥 are the auxiliary mode I and II 

stress Intensity Factors, respectively, and μ is the shear 

modulus at the crack tip, and  𝑓𝑖𝑗 (𝜃) and 𝑔𝑖𝑗 (𝜃) are the 

angular functions, which are introduced in several Refs  

[41], [44-45] and expressed by the following forms, 

respectively: 
 

(56) 𝑓11
𝐼 (𝜃) = cos

𝜃

2
(1 − sin

𝜃

2
sin

3𝜃

2
) 

  

(57) 𝑓22
𝐼 (𝜃) = cos

𝜃

2
(1 + sin

𝜃

2
sin

3𝜃

2
) 

  

(58) 𝑓11
𝐼𝐼(𝜃) = − sin

𝜃

2
(2 + cos

𝜃

2
cos

3𝜃

2
) 

(59) 𝑓22
𝐼𝐼(𝜃) = sin

𝜃

2
cos

𝜃

2
cos

3𝜃

2
 

  

(60) 𝑓22
𝐼𝐼(𝜃) = sin

𝜃

2
cos

𝜃

2
cos

3𝜃

2
 

  

(61) 𝑓12
𝐼 (𝜃) = 𝑓21

𝐼 (𝜃) =  𝑓22
𝐼𝐼(𝜃) ,  

  

(62) 𝑓12
𝐼𝐼(𝜃) = 𝑓21

𝐼𝐼(𝜃) =  𝑓22
𝐼 (𝜃) 

  

(63) 𝑔1
𝐼(𝜃) =

1

4
[(2𝑘 − 1) cos

𝜃

2
− cos

3𝜃

2
] 

  

(64) 𝑔2
𝐼(𝜃) =

1

4
[(2𝑘 + 1) sin

𝜃

2
− sin

3𝜃

2
] 

  

(65) 𝑔1
𝐼𝐼(𝜃) =

1

4
[(2𝑘 + 3) sin

𝜃

2
+ sin

3𝜃

2
] 

  

(66) 𝑔2
𝐼𝐼(𝜃) =

1

4
[(2𝑘 − 3) cos

𝜃

2
+ cos

3𝜃

2
] 

 

Where, r and θ are in the polar coordinates, the constant 

k at the crack tip equals (3-ϑ)/(1+ϑ) for plane stress 

condition, and (3-4ϑ) for plane strain condition. ϑ is 

Poisson’s ratio. The relationship between J-integral and 

stress Intensity Factors is expressed as: 

 

(67) J =
𝐾𝐼

2 + 𝐾𝐼𝐼
2

𝐸∗
 

 

Where, E* is given by: 

 

(68) 𝐸∗ = {

𝐸                      𝑓𝑜𝑟 𝑝𝑙𝑎𝑛 𝑠𝑡𝑟𝑒𝑠𝑠
𝐸

(1 − 𝜗2)
         𝑓𝑜𝑟 𝑝𝑙𝑎𝑛𝑒 𝑠𝑡𝑟𝑎𝑖𝑛

 

 

That is defined in terms of the material parameters, E, 

Young’s modulus, and 𝜗, poison’s ratio. By substituting 

actual fields superimposed with auxiliary space into “Eq. 

(56)ˮ , we obtain: 

 

(69) J𝑠 =
(𝐾𝐼

𝑎𝑐𝑡
𝐼
+ 𝐾𝐼

𝑎𝑢𝑥)2 + (𝐾𝐼𝐼
𝑎𝑐𝑡 + 𝐾𝐼𝐼

𝑎𝑢𝑥)2

𝐸∗

= J𝑎𝑐𝑡 + J𝑎𝑢𝑥 + 𝑀 

 

Where, Jaux is given by: 

 

(70) J𝑎𝑢𝑥 =
(𝐾𝐼

𝑎𝑢𝑥)2 + (𝐾𝐼𝐼
𝑎𝑢𝑥)2

𝐸∗
 

 

Hence, the interaction integral M can be derived: 

 

(71) 𝑀 =
2

𝐸∗
(𝐾𝐼

𝑎𝑐𝑡𝐾𝐼
𝑎𝑢𝑥 + (𝐾𝐼𝐼

𝑎𝑐𝑡𝐾𝐼𝐼
𝑎𝑢𝑥) 

 

The mode I and II SIFs are decoupled, which are 

evaluated as below: 

For pure mode I will be  𝐾𝐼
𝑎𝑢𝑥 = 1,𝐾𝐼𝐼

𝑎𝑢𝑥 = 0 , 

correspondingly, Stress Intensity Factors can be derived: 

 

 (72)  𝐾𝐼
𝑎𝑐𝑡 =

𝐸∗

2
𝑀𝑚𝑜𝑑𝑒 𝐼   

 

Similarly for pure mode II will be 𝐾𝐼
𝑎𝑢𝑥 = 0,𝐾𝐼𝐼

𝑎𝑢𝑥 = 1, 

hence Stress Intensity Factors can be derived: 
 

(73) 

 

 

 

 

 𝐾𝐼𝐼
𝑎𝑐𝑡 =

𝐸∗

2
𝑀𝑚𝑜𝑑𝑒 𝐼𝐼    
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5 FATIGUE CRACK GROWTH ANALYSIS 

In linear elastic fracture mechanics, the concept of the 

stress intensity factor was presented by Paris law to 

evaluate the stress behavior near the crack tip. The 

fatigue crack growth rate (
𝑑𝑎

𝑑𝑁
) and the stress intensity 

factor range for cyclic loading (ΔK) can be constituted 

as a law. The Phrase of Paris law can be written: 

 

(74) 
𝑑𝑎

𝑑𝑁
= 𝑐(𝛥𝐾)𝑚 

 

Where, c and m are Paris low constants parameters. The 

crack growth simulations are performed subjected to 

constant amplitude cyclic loading. The range in stress 

intensity factor (ΔK) for constant amplitude cyclic load 

is defined as: 
 

(75) 𝛥𝐾 = 𝐾𝑚𝑎𝑥 − 𝐾𝑚𝑖𝑛 
 

Where, Kmax and Kmin are the stress intensity factors 

corresponding to maximum and minimum applied loads, 

respectively, after computing crack growth rate, using 

numerical integration, fatigue life due to the applied 

cyclic load is calculated. 

6 NUMERICAL RESULTS AND DISCUSSION 

This section presents several numerical examples of 

cracks and cracks growth under the assumptions of plane 

strain two-dimensional elasticity. Cracked plates 

problems are simulated using XIGA. In order to check 

the accuracy and performance of XIGA, the results are 

compared with XFEM. The order of NURBS basic 

functions in both parametric directions are assumed 

identical, and to implement K-refinement, they are 

considered as linear, quadratic, and cubic in different 

solutions. The values of Stress Intensity Factors are 

calculated by the interaction integral method. The 

material properties to solve all the examples are given in 

“Table 1”.  
Table 1 Material properties 

Elastic modulus, E (GPa) 207 

Poisson’s ratio, ν 0.3 

Fracture toughness, KIC (MPa√m) 80 

Paris constant, C (m/cycles(MPa√m)−m) 2.087×10-12 

Paris constant, m 3 

 

A plane stress condition is assumed for the modeling. In 

all examples, a plate of size 200 mm × 400 mm along 

with an edge cracked and two edges cracked of initial 

length a0 = 95 mm and 25 mm, respectively, is taken for 

the modeling. The plate is subjected to a cyclic tensile 

load of σmin =0 MPa and σmax =10 MPa at the top edge. 

The bottom edge of the plate is constrained in the y-

direction. A crack growth increment of 1.1 is given at 

each step of crack growth until the stress intensity factor 

values (KI) will be more than the Fracture toughness 

(KIC). So the new crack length at each step in crack 

growth is obtained: 

 

(76) 𝑎𝑖 = 1.1𝑖+1𝑎0 

 

Where, i is the number of steps of crack growth and a0 

is the initial length of the crack. The stress intensity 

factor values at each step of crack growth are calculated 

for evaluating the fatigue life. The geometry and cyclic 

tensile loads and boundary conditions are shown in “Fig. 

9”. 

 

 
(a) 

 
(b) 

Fig. 9 (a): The edge cracked plate, and (b): the two edges 

cracked plate. 

6.1. Edge cracked plate 

With knot vectors and control points, the geometry of 

the plate is formed. Also, the level set functions; the 

control points around the crack surface and the crack tip 

are identified. After calculating the total stiffness matrix, 

enrichment of control points around the crack surface 

and the crack tip, applying boundary conditions and 

force, we obtain displacement and consequently strain 

and stress values. In order to validate the results of the 

XIGA method, the problem was solved through the 

finite element method. Contour plot from the extended 

isogeometric method and the finite element method are 

shown in “Fig. 10”.  
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 (b) 

 
(a) 

 
 (d)  

(c) 
Fig. 10 Comparing the results of XIGA and FEM analysis for edge cracked plate: (a): XIGA displacement in Y direction, (b): 

FEM displacement in Y direction, (c): XIGA von Mises stress, and (d): FEM von Mises stress. 
 

 

Maximum displacement in X and Y direction and 

maximum von Mises stress, obtained by XIGA and FEM 

are presented in “Table 2”. The convergence study and 

comparison of maximum displacement in X and Y 

direction obtained by XIGA with linear NURBS basic 

function and FEM methods are shown in “Fig. 11 and 

Fig. 12”. Compared with FEM, it is observed that the 

results of XIGA methods converge faster. Convergence 

is also achieved with fewer elements. 

After calculating the displacement and consequently 

strain and stress values, auxiliary state stress and strain 

values were derived to calculate stress intensity factor 

using the interaction integral method. The analytical 

stress intensity factor for edge cracked plate can be 

computed as [46]: 

 

(77) 

𝐾𝐼 = [1.12 − 0.23 (
𝑎

𝑊
) + 1.6 (

𝑎

𝑊
)

2

− 21.7 (
𝑎

𝑊
)

3

+ 30.4 (
𝑎

𝑊
)

4

] 𝜎√𝜋𝑎 

Where, a is the crack length, and W is plate width. The 

exact solution is equal to 1.4261×107 (pa√𝒎). The 

results of stress intensity factors obtained by XIGA and 

FEM methods with linear, quadratic, and cubic NURBS 

basic functions in the employment of k-refinement are 

presented in “Table 3”. The accuracy of all results is 

excellent. The stress intensity factor computed using 

XIGA gives a lower error than FEM. The comparison of 

values of stress intensity factor of XIGA and FEM is 

shown in “Fig. 13”. 
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Table 2 Maximum displacement in X and Y direction ×10-5 (m) for edge cracked plate and Maximum von Mises stress σvon×107 (pa) 

 

XIGA, (p=q=1) FEM 

max
vonσ max

yU max
xU No. ofknot 

span 
max

vonσ max
yU max

xU 
No. of 

elements 

5.9963 7.3921 7.3356 48 2.8026 7.2957 7.2913 129 

7.7428 7.7267 7.7918 140 4.3082 7.6982 7.7848 191 

9.9254 7.9471 8.0860 600 6.4046 7.8799 8.0084 344 

12.185 8.0217 8.1838 1800 8.1495 8.001 8.1597 639 

16.795 8.0435 8.2119 4200 12.628 8.0467 8.2159 2356 

25.293 8.0793 8.2574 16200 18.144 8.0784 8.2551 42474 

26642 8.0820 8.2608 25200 26.736 8.0806 8.2582 84523 

 

 

 

 

 
 

Fig. 11 Convergence study and comparison of maximum 

displacement in the x-direction for edge cracked plat. 

 

 

 

 

 
 

Fig. 12 Convergence study and comparison of maximum 

displacement in the y-direction for edge cracked plate. 
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Table 3 Stress intensity factor (KI), (pa√𝒎)× 107 to implement K-refinement for edge cracked plate 

XIGA, (p=q=3) XIGA, (p=q=2) XIGA, (p=q=1) FEM 

Error 

% 
KI

 

No. 

of 

knot 

span 

Error 

% 
KI

 

No. 

of 

 knot 

span 

Error 

% 
KI

 

No. of 

knot 

span 

Error 

% 
KI 

No. of 

elements 

13.15  1.2385 44 12.36  1.2498 45 11.52  1.2617 48 27.54  1.0333 129 

10.09  1.2821 52 7.54  1.3186 70 3.88  1.3707 140 8.82  1.3003 191 

5.17  1.3523 66 4.28  1.3651 150 1.54  1.4081 600 4.61  1.3604 344 

3.94 1.3698 78 1.59 1.4034 375 0.63  1.4160 1800 3.01  1.3832 639 

2.07  1.3965 90 0.87  1.4179 750 0.46  1.4194 4200 1.42  1.4059 2356 

0.01  1.4264 104 0.08  1.4249 1125 0.15  1.4239 16200 0.46  1.4196 42474 

- - - 0.01  1.4257 1500 0.04  1.4254 25200 0.15  1.4235 84523 

The analytical solution is equal to 1.4261  

 

Comparison of stress intensity factor values obtained 

from the XIGA method with implementing k-refinement 

is presented in “Fig. 14”. It is observed that as NURBS 

orders are increased, the stress intensity factors converge 

with fewer elements, and the error is lower compared 

with the analytical solution. In crack growth simulations, 

variation of the crack length and calculated values of 

stress Intensity factor obtained from analytical solution, 

FEM and XIGA with quadratic NURBS basic function 

are presented in “Table 4”.  

 
Fig. 13 Study of convergence and comparison of stress 

intensity factor (KI) for edge cracked plate. 

 

 
Fig. 14 Comparison of stress intensity factor (KI) for 

several order of NURBS function in K-refinement for edge 

cracked plate. 

Figure 15 represents the variation of stress intensity 

factors with the crack length in fatigue crack growth. 

Finally, the fatigue life is evaluated by the XIGA 

method. The fatigue life values are obtained at each step 

of crack growth until the material fails. These values are 

presented in “Table 5” and shown in “Fig. 16”. It is 

observed that as the length of the crack reaches 168.6 

mm, the stress intensity factor (KI) values will be more 

than the Fracture toughness (KIC), and the material fails. 

Hence, the final crack length is 168.6 mm, and the 

fatigue life is equal to 149547 cycles. 
 

 



44                                         Int  J   Advanced Design and Manufacturing Technology, Vol. 15/ No. 1/ March – 2022 

 

© 2022 IAU, Majlesi Branch 
 

 

Table 4 Stress intensity factor (KI), (pa√𝒎)× 107 in crack growth of edge cracked plate 

Error % 
KI  

FEM 
Error % 

KI  

XIGA 

KI  

EXAT  
crack length(m) 

Step of  

crack growth 

0.15  1.4196 0.02  1.4257 1.4261 0.095 1 

1.02  1.7278 0.41  1.7385 1.7457 0.1045 2 

0.45  2.1901 0.01  2.2004 2.2001 0.1149 3 

4.36  2.7446 0.02  2.8121 2.8698 0.1264 4 

7.61  3.5743 3.01  3.7524 3.8691 0.1390 5 

6.95  5.0211 3.05  5.2314 5.3965 0.1529 6 

5.60  7.3915 3.92  7.5230 7.8303 0.1686 7 

3.82  11.0166 2.62  11.1543 11.455 0.1851 8 

 

 

Table 5 Fatigue life in crack growth for edge cracked plate 

Fatigue life (cycle)  crack length (m) 
Step of  

crack growth 

36105 0.095 1 

66145 0.1045 2 

92451 0.1149 3 

115874 0.1264 4 

132457 0.1390 5 

141863 0.1529 6 

149547 0.1686 7 

 

 

 

 
Fig. 15 Comparison of stress intensity factor (KI) for 

different crack lengths in crack growth of edge cracked plate. 

 

 

 

 

 

 
Fig. 16 Fatigue life variation with crack length for edge 

cracked plate. 
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6.2. Two Edge Cracked Plate 

In this section, a plate with two edges cracked was 

modeled. the geometry and cyclic tensile loads and 

boundary conditions are shown in “Fig. 9(b)”. Also, 

Material properties are given in “Table 1”. With knot 

vectors and control points, the geometry of the plate is 

formed. Also, the level set functions; the control points 

around the crack surface and the crack tip are identified. 

After calculating the total stiffness matrix, enrichment of 

control points around the crack surface and the crack tip, 

applying boundary conditions and force, we obtain 

displacement and consequently strain and stress values. 

To validate the results of the XIGA method, the problem 

was solved through the finite element method. Contour 

plot resulted from the extended isogeometric and finite 

element methods are shown in “Fig. 17”.  

 
(a)                                                                              (b) 

 
(c)                                                                                   (d) 

Fig. 17 Comparing the results of XIGA analysis and FEM analysis for two edges cracked plate: (a), (b) FEM displacement in Y 

direction, (c): XIGA von Mises stress, and (d): FEM von Mises stress. 

 

Maximum displacement in X and Y direction and maximum von Mises stress, obtained by XIGA and FEM are presented 

in “Table 6”.  
 

Table 6 Maximum displacement in X and Y direction ×10-6 `(m) and Maximum von Mises stress σvon×107 (pa) for two edges 

cracked plate 

XIGA, (p=q=1) FEM 

max
vonσ max

yU max
xU No. of knot 

span 
max

vonσ max
yU max

xU 
No. of 

elements 

0.6891 1.70163 2.1456 42 0.4597 1.7055 2.1506 254 

0.8543 1.80315 2.1244 112 0.6463 1.8098 2.1226 538 

1.2680 1.83169 2.1036 580 0.9422 1.8255 2.102 1024 

1.6987 1.83741 2.0912 962 1.4571 1.8335 2.0954 1650 

1.9654 1.83981 2.08854 1242 1.8264 1.8395 2.0897 2884 

2.1256 1.84363 2.0914 6420 1.893 1.8443 2.0909 45686 

2.3265 1.84469 2.09142 14600 2.2839 1.8447 2.0914 66888 
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The convergence study and comparison of maximum 

displacement in X and Y direction obtained by XIGA 

with linear NURBS basic function and FEM methods are 

shown in “Fig. 18” and “Fig. 19”. Compared with FEM, 

it is observed that the results of XIGA methods converge 

faster. Convergence is also achieved with fewer 

elements. 
 

 
Fig. 18 Convergence study and comparison of maximum 

displacement in the x-direction for two edges cracked plate. 
 

After calculating the displacement and consequently 

strain and stress values, auxiliary state stress and strain 

values are calculated to obtain stress intensity factor 

using the interaction integral method. The analytical 

stress intensity factor for two edges cracked plate can be 

computed as [46]: 

 

(78) 
𝐾𝐼 = [1.12 − 0.43 (

𝑎

𝑊
) + 4.79

− 15.46 (
𝑎

𝑊
)

3

] 𝜎√𝜋𝑎 

 

Where, a is the crack length, and W is plate width. The 

exact solution is equal to 3.1643×107 (pa√𝒎).  

 

 
Fig. 19 Convergence study and comparison of maximum 

displacement in y-direction for two edges cracked plate. 
 

The results of stress intensity factors obtained by XIGA 

and FEM methods with linear, quadratic, and cubic 

NURBS basic functions in the employment of k-

refinement, are presented in “Table 7”. 

 
 

 

Table 7 Stress intensity factor (KI), (pa√𝒎)× 107 to implement K-refinement for two edge cracked plate 

 

XIGA, (p=q=3) XIGA, (p=q=2) XIGA, (p=q=1) FEM 

Error 

% 
K 

No. of 

knot 

span 

Error 

% 
K 

No. of 

knot 

span 

Error 

% 
K 

No. of 

knot 

span 

Error 

% 
K 

No. of 

elements 

4.56  

1.50  

3.0198 

3.1168 

25 5.69  2.9841 36 6.29  2.9650 42 9.55 2.8621 254 

36 3.02  3.0687 64 4.47  3.0228 112 7.96 2.9123 538 

0.93  3.1346 49 1.98  3.10154 100 2.43  3.0874 580 4.67 3.0165 1024 

0.18  3.1584 64 0.67  3.1429 225 1.72  3.1098 962 2.51 3.0848 1650 

0.06  3.1623 81 0.30  3.1547 625 0.86  3.1369 1242 1.22 3.1254 2884 

0.003  3.1645 100 0.13  3.1601 900 0.13 3.1601 6420 0.4 3.1514 45686 

- - - 0.01  3.1637 1089 0.05  3.1627 14600 0.09 3.1612 66888 

The analytical solution is equal to 3.1643 
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The accuracy of all results is excellent. The stress 

intensity factor computed using XIGA gives less error 

than FEM. Comparison of values of stress intensity 

factor obtained from XIGA method with implementing 

k-refinement is shown in “Fig. 20”.  

 

 
Fig. 20 Study of convergence and comparison of stress 

intensity factor (KI) for two edges cracked plate. 
 

The values of stress intensity factor from solving with 

the XIGA method with K-refinement are presented in 

“Fig. 21”. It is observed that as NURBS orders are 

increased, the stress intensity factors are convergent with 

fewer elements, and the error has a smaller value 

compared with the analytical solution. 

 

 
Fig. 21 Comparison of stress intensity factor (KI) for 

several order of NURBS function in K-refinement for two 

edge cracked plate. 

 

In crack growth simulations, variation of the crack 

length and calculated values of stress intensity factor 

obtained from analytical solution, FEM, and XIGA with 

quadratic NURBS basic function are presented in “Table 

8”. 

 
 

 

Table 8 stress intensity factor (KI) (pa√𝒎)× 107 crack growth of two edges cracked plate 
 

Error % 
KI  

FEM 
Error % 

KI  

XIGA 

 KI 

EXAT  

 crack 

length(m) 
Step of crack growth 

0.09  3.1612 0.01  3.1637 3.1643 0.025 1 

0.47  3.3014 0.34  3.3056 3.3171 0.0275 2 

3.21  3.3685 0.17  3.4865 3.4803 0.03025 3 

3.23  3.5354 0.01  3.6532 3.6537 0.03327 4 

2.40  3.5841 0.27  3.6624 3.6725 0.03660 5 

4.02  3.7984 1.14  3.9125 3.9577 0.04026 6 

2.98  4.1547 0.23  4.2723 4.2824 0.04428 7 

2.77  4.4268 0.21  4.5436 4.5532 0.04871 8 

0.26  4.8641 0.03  4.8752 4.8768 0.05358 9 

1.70  5.1874 1.60  5.1925 5.2773 0.05894 10 

0.59  5.7548 0.19  5.7784 5.7895 0.06484 11 

3.22  6.2544 1.45  6.3682 6.4625 0.07132 12 

1.67  7.2487 1.54  7.2584 7.3722 0.07846 13 

4.20  8.2586 1.81  8.4648 8.6215 0.08630 14 
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Figure 22 represents the variation of stress intensity 

factor with the crack length. 

 

 
Fig. 22 Comparison of stress intensity factor (KI) for 

different crack lengths in crack growth of two edges cracked 

plate. 

 

Table 9 Fatigue life in crack growth for edge cracked plate   

Fatigue life (cycle)  crack length (m) 
Step of  

crack growth 

67253 0.025 1 

131657 0.0275 2 

190572 0.03025 3 

242048 0.03327 4 

289642 0.03660 5 

329471 0.03865 6 

364522 0.04428 7 

389654 0.04871 8 

407542 0.05358 9 

422519 0.05894 10 

433178 0.06484 11 

441723 0.07132 12 

448046 0.07846 13 

 

Finally, the fatigue life is evaluated by the XIGA 

method. The fatigue life values are obtained at each step 

of crack growth until the material fails, and they are 

presented in “Table 9”. And shown in “Fig. 23”. It is 

observed that as the length of crack reaches/ is equal to 

78.46 mm, the stress intensity factor (KI) values will be 

more than the Fracture toughness (KIC), and the material 

fails. Therefore, the final crack length is 78.46, and 

fatigue life is equal to 448046 cycles. 

 

 
Fig. 23 Fatigue life variation with the crack length for edge 

cracked plate. 

6 CONCLUSIONS 

In this research, by a combination of isogeometric 

analysis with enrichment functions related to crack face 

and crack tip and employing the level set technique, 

extended isogeometric analysis formulation is proposed 

to simulate the cracks in linear elastic fracture mechanic 

problems. Two different types of enrichment are used 

for crack face and crack tips. Level set functions are used 

to identify the knot span related to crack tips and crack 

face. The fatigue life has been computed using the Paris 

law of fatigue crack growth. The effect of the k-

refinement on the accuracy of the values of stress 

intensity factor and fatigue life is investigated.  

These simulations show that higher accuracy is achieved 

when using XIGA with higher-order NURBS basic 

function in k-refinement than using FEM and are closer 

to the analytical solution results. The best solutions were 

obtained using k-refinement and it is found that the error 

is less comparing with the exact solution. It is shown that 

the efficiency of XIGA with k-refinement is improved. 

The results confirm the accuracy of the presented XIGA 

method and its included technique, k-refinement. It is 

remarkable that this method even requires fewer DOFs 

than the FEM method. Consequently, XIGA with the k-

refinement approach can be used as an alternative in the 

case of solving linear elastic fracture mechanic 

problems. 
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