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Abstract: In this paper, a Mindlin rectangular nanoplate model is developed for the bending 
and vibration analysis of a graphene nanoplate based on a modified couple stress theory. In 
order to consider the small scale effects, the modified couple stress theory, with one length 
scale parameter, is used. In modified couple stress theory, strain energy density is a function 
of strain tensor, curvature tensor, stress tensor and symmetric part of couple stress tensor. 
After obtaining the strain and kinetic energy, external work and substituting them in the 
Hamilton’s principle, the main and auxiliary equations of the nanoplate are obtained. Then, 
by manipulating the boundary conditions the governing equations are solved using Navier 
approach for bending and vibration of the nanoplate. The bending rates and dimensionless 
bending values under uniform surface traction and sinusoidal load and different mode 
frequencies are all obtained for various plate's dimensional ratios and material length scale 
to thickness ratios. The effect of material length scale, length, width and thickness of the 
nanoplate on the bending and vibration ratios are investigated and the results are presented 
and discussed in details.  
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1 INTRODUCTION 

Performing experiments in the atomic and molecular 

scales are the safest approach for the study of materials 

in small-scale. In this method, the nanostructures are 

studied in real dimensions. In this method, in order to 

determine the mechanical properties of nanostructures 

the atomic Force Microscopy (AFM) applies different 

mechanical loads on nanoplates and measures the plate 

responses. The difficulties of controlling the test 

conditions at this scale, high economic costs and time-

consuming processes are some setbacks of this method. 

Therefore, it is only used to validate other simple and 

low-cost methods. 

Atomic simulation is another approach for studying 

small-scale structures. In this method, the behaviors of 

atoms and molecules are examined by considering the 

intermolecular and interatomic effects on their motions, 

which eventually involves the total deformation of the 

body. In the case of large deformations and multi atomic 

scales, the computational costs of this approach become 

unbearable, so it is only used for small deformation 

problems. 

Given the limitations of the aforementioned methods, 

researchers have been looking for simpler solutions for 

studying nanostructures. Modeling small-scale 

structures using continuum mechanics is another 

approach for this problem. There are a variety of size-

dependent continuum theories that consider size effects, 

some of these theories are; micromorphic theory, 

microstructural theory, micropolar theory, Kurt's theory, 

non-local theory, modified couple stress theory and 

strain gradient elasticity. All of which are the developed 

notion of classical field theories, which include size 

effects. 
In this paper, Mindlin rectangular nanoplate model is 

developed for the bending and vibration analysis of a 

graphene nanoplate based on a modified couple stress 

theory and the results are presented with new figures and 

tables.  

2 MODIFIED COUPLE STRESS THEORY 

In 2002, Yang et al. [1] proposed a modified couple 

stress model by modifying the theory proposed by 

Toppin [2], Mindlin and Thursten [3], Quitter [4] and 

Mindlin [5] in 1964. The modified couple stress theory 

consists of only one material length scale parameter for 

projection of the size effect, whereas the classical couple 

stress theory needs two material length scale parameters. 

In the modified theory, the strain energy density in the 

three-dimensional vertical coordinates for a body 

bounded by the volume V and the area Ω [6], is 

expressed as the follows:  

𝑈 =  
1

2
∫  

𝑉
(𝜎𝑖𝑗ℇ𝑖𝑗 +𝑚𝑖𝑗𝜒𝑖𝑗)𝑑𝑉    𝑖, 𝑗 = 1,2,3       (1) 

 

ℇ𝑖𝑗  =  
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖)                                                        (2) 

 

𝜒𝑖𝑗  =  
1

2
(𝜃𝑖,𝑗 + 𝜃𝑗,𝑖)                                                 (3) 

 

χ
ij
 and ℇij are the symmetric parts of the curvature and 

strain tensors, and θi and ui are the displacement and the 

rotational vectors, respectively. 

 

𝜃 =  
1

2
 𝐶𝑢𝑟𝑙 𝒖                                                         (4) 

 

σij, the stress tensor, and mi,j, the deviatory part of the 

couple stress tensor, are defined as: 

 

𝜎𝑖𝑗  =  𝜆ℇ𝑘𝑘𝛿𝑖𝑗 + 2𝜇ℇ𝑖𝑗                                             (5) 

 

𝑚𝑖,𝑗  =  2𝜇 𝑙
2𝜒𝑖𝑗                                            (6) 

 

Where, λ and μ are the lame constants,  δij is the 

Kronecker delta and l is the material length scale 

parameter. From Equations (3) and (6) it can be seen that 

χ
ij
and 𝑚𝑖𝑗  are symmetric. 

3 MINDLIN'S PLATE MODEL 

The displacement equations for the Mindlin's plate are 

defined as: 

 

u1(x,y,z,t)=z φ
x
(x,y,t) 

u1(x,y,z,t)=z φ
x
(x,y,t)                                                (7) 

u3(x,y,z,t)=w(x,y,t) 
 

Where,  φ
x 

 and φy  are the rotations of the normal vector 

around the x and y axis, respectively, and w is the 

midpoint displacement of the plate in the z-axis 

direction. The strain and stress tensors, the symmetric 

part of the curvature tensor, and the rotational vector for 

the Mindlin's plate are obtained as follows: 
 

ℇxx=z
∂φx

∂x
                                                                      (8) 

 

ℇyy=z
∂φy

∂y
                                                                      (9) 

 

ℇzz=0                                                                     (10) 

 

ℇxy=ℇyx=
1

2
z (

∂φx

∂y
+

∂φy

∂x
)                                               (11) 

 

ℇxz=ℇzx=
1

2
(

∂w

∂x
+φ

x
)                                                   (12) 
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ℇyz=ℇzy=
1

2
(

∂w

∂y
+φ

y
)                                                     (13) 

 

θx=
1

2
(

∂w

∂y
-φ

y
)                                                             (14) 

 

θy=
1

2
(φ

x
-

∂w

∂x
)                                                             (15) 

 

θz=
1

2
z (

∂ φy

∂x
-

∂φx

∂y
)                                                        (16) 

 

xxx=
1

2
(

∂
2
w

∂x ∂y
-

∂φy

∂x
)                                                       (17) 

 

xyy=
1

2
(

∂φx

∂y
-

∂
2
w

∂x∂y
)                                                        (18) 

 

xzz=
1

2
(

∂φy

∂x
-

∂φx

∂y
)                                                          (19) 

 

xxy=
1

4
(

∂
2
w

∂y2
-

∂
2
w

∂x2
+ 

∂φx

∂x
-

∂φy

∂y
)                                         (20) 

 

xxz=
1

4
 z(

∂
2
φy

∂x2
-

∂
2
φx

∂y ∂x
)                                                  (21) 

 

xyz=
1

4
z(

∂
2
φy

∂x∂y
-

∂
2
φx

∂y2
)                                                    (22) 

 

σxx=(λ+2μ) z 
∂φx

∂x
+λ z 

∂φy

∂y
                                         (23) 

 

σyy=λ z 
∂φx

∂x
  + (λ+2μ) z 

∂φy

∂y
                                       (24) 

 

σzz=λ (z 
∂φx

∂x
+z 

∂φy

∂y
)                                                  (25) 

 

σyx=σxy=μ z (
∂φx

∂y
+

∂φy

∂x
)                                              (26) 

 

σxz=σzx=μ (
∂w

∂x
+φ

x
)                                                   (27) 

 

σyz=σzy=μ (
∂w

∂y
+φ

y
)                                                   (28) 

 

The variation of the strain energy is expressed as 

follows: 

 

δU=∫ ( 
V

σxx δ ℇxx+σyy δℇyy+2σxy δ ℇxy+2σxz δ 

ℇxz+2σyz δ ℇyz+mxx δxxx+myy δxyy  

+mzz δxzz+2mxy δxxy+2mxz δxxz+2myz δ xyz) dV     (29) 

 

For the sake of simplification, the coefficient of each 

variable in the above equation is named from F1 to F15 

and this equation can be rewritten as shown below: 

δU=∫  
V

(F1δw,
xx

+F2 δw,
yy

+F3 δw,
xy

+F4δ w,
x
  

+F5 δ w,
y
+F6 δ φ

x,yy
+F7δ φ

y,xx
+F8 δ  φ

y,xy
               (30) 

 +F9 δφ
x,yx

+F10 δ φ
x,x

+F11 δφ
y,y

+F12δφ
x,y

  

+F13 δ φ
y,x

++F14 δφ
x
+F15 δφ

y
)dV 

 

Where: 

 

F1=-
1

4
μl

2 (
∂

2
w

∂y2
-

∂
2
w

∂x2
+

∂φx

∂x
-

∂φy

∂y
) (31) 

 

F2= 
1

4
μl

2 (
∂

2
w

∂y2
-

∂
2
w

∂x2
+

∂φx

∂x
-

∂φy

∂y
) (32) 

 

F3=μl
2 (

∂
2
w

∂x∂y
-

1

2
 

∂φy

∂x
-

1

2

∂φx

∂y
) (33) 

 

F4=μ (
∂w

∂x
+φ

x
) (34) 

 

F5=μ (
∂w

∂y
+φ

y
) (35) 

 

F6=F8=
1

4
μl

2
z2 (

∂
2
φy

∂x∂y
-

∂
2
φx

∂y2
) (36) 

 

F7=F9=
1

4
μl

2
z2 (

∂
2
φy

∂x2 
-

∂
2
φx

∂x∂y
) (37) 

 

F10=(λ+2μ)z2 ∂φX

∂x
+λz2

∂φy

∂y
+

1

4
μl

2 (
∂

2
w

 ∂y2
- 

∂
2
w

 ∂x2
+ 

∂φx

∂x
- 

∂φy

∂y
)

 (38) 

 

F11=λZ2 ∂φx

∂x
+(λ+2μ)z2 

∂φy

∂y
 (39) 

 

-
1

4
μl

2 ( 
∂

2
w

 ∂y2
- 

∂
2
w

 ∂x2
+ 

∂φx

∂x
- 

∂φy

∂y
) F12=μz2 (

∂φx

∂y
+

∂φy

∂x
)+μl

2 (
∂φx

∂y
-

1

2

∂φy

∂x
-

1

2
 

∂
2
w

∂x∂y
) (40) 

 

F13=μz2 (
∂φx

∂y
+

∂φy

∂x
) +μl

2 (
∂φy

∂x
-

1

2
 

∂
2
w

∂x∂y
-

1

2
 

∂φx

∂y
) (41) 

 

F14=μ (
∂w

∂x
+φ

x
) (42) 

 

F15=μ (
∂w

∂y
+φ

y
) (43) 

4 VIRTUAL WORK OF THE EXTERNAL FORCES 

In these kind of problems, the virtual work of three kinds 

of external forces are included in the solutions, if the 

middle-plane and the middle-perimeter of the plate are 

shown as Ω and Γ respectively, these virtual works are 

[7]:  
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1- The virtual work done by the body forces, which is 

applied on the volume V= Ω× (- h⁄2, h⁄2). 

2- The virtual work done by the surface tractions at the 

upper and lower surfaces (Ω). 

3- The virtual work done by the shear tractions on the 

lateral surfaces, S= Γ× (- h⁄2, h⁄2). 

If (fx, fy, fz) are the body forces, (cx, cy, cz) are the body 

couples, (qx, qy, qz) are the forces acting on the Ω plane, 

(tx, ty, tz) are the Cauchy's tractions and (Sx, Sy, Sz) are 

surface couples, the Variations of the virtual work is 

expressed as: 

 

δw=- [∫  
Ω

(fxδu+fyδV+fzδw+q
x
δu+q

y
δV 

+q
z
δw+cxδθx+cy δθy+czδθz) dx dy                           (44) 

+∫  
Γ

(txδu+tyδV+tzδw+sxθx  +syδθy+szδ)  

 

Given that in this study only the external force qz was 

applied, virtual work becomes: 

 

δw= ∫ ∫ q(x,y)δw(x,y)dx dy 
b

0

a

0
                                 (45) 

 

The variation of kinetic energy is obtained as: 

 

δT=∫ ∫ ρ(u̇1δu̇1+u̇2δu̇2+u̇3δu̇3)dA dz 
h
2

-
h
2

A
=∫ [ρhẇδẇ+

ρh
3

12
 

A

(φ̇
X

δφ̇
X

+φ̇
y
δφ̇

y
)] dA                                                 (46) 

 

Where, ρ is the density. 

Finally using the Hamilton's principle, it can be said that 

[8]: 

 

∫ (δT- (δU- δw))dt
T

0
= 0                                            (47) 

 

Where, T is the kinetic energy, U is the strain energy, 

and W is the work of the external forces. 

5 THE GOVERNING EQUATIONS OF THE PLATE 

Using Hamilton's principle, Equation (47), and the 

Equations from (44) to (46), the governing Equations of 

the plate including the external forces are obtained as 

follows: 

 

[∫ (
∂

2
F1

∂x2
-

∂F4

∂x
+

∂
2
F2

∂y2
+

∂
2
F3

∂x∂y
-

∂F5

∂y
) dz

h
2⁄

-h 2⁄
]                    (48) 

 

=q(x,y)+ρh 
∂

2
w

∂t2
 ∫ (

∂
2
F6

∂y2
+

∂
2
F9

∂x∂y
-

∂F12

∂y
-

h
2⁄

-h 2⁄

∂F10

∂x
+F14) dz=

ρh
3

12
 

∂
2
φx

∂t
2                                             (49) 

∫ (
∂

2
F7

∂x2
-

∂F13

∂x
+

∂
2
F8

∂x∂y
 -

∂F11

∂y
+F15)dz=

ρh
3

12
 

∂
2
φy

∂t
2

h
2⁄

-h 2⁄
    (50) 

6 THE GENERAL GOVERNING EQUATION OF 

THE MINDLIN'S PLATE (INCLUDING VIBRATION 

AND BENDING) 

Considering the following constants: 

 

C1=
1

4
μl

2
h C2= μh ks C3=

1

4
μl

2
I2 

C4=-μI2-μl
2
h 

C5=-λI2 

-2μI2-
1

4
μl

2
h 

C6=-μI2-λI2 

+
3

4
μl

2
h 

 

(51) 

 

C7=ρh C8=
ρh

3

12
 ks=

5

6
=0.8 

 

Where, 

Ii=∫ Zi  dz
h
2

-
h
2

                                                                (52) 

 

The general governing equation of the Mindlin's plate 

will becomce: 

 

2C1

∂
4
w

∂x
2
∂y

2 +C1

∂
4
w

∂x
4
 
+C1

∂
4
w

 ∂y
4 -C2

∂
2
w

∂x
2

 
-C2

∂
2
w

 ∂y
2 -C1

∂
3
φx

∂x
3
 
      (53) 

 

-C1

∂
3
φ

y

∂y
3
 

-C1

∂
3
φ

y

∂x
2
∂y 

-C2

∂φ
X

∂x 
-C2

∂φ
y

∂y 
 = q(x,y)+C7

∂
2
w

 ∂t2
 

C3 (
∂

4
φy

∂x∂y
3
 
- 

∂
4
φx

∂y
4
  

+ 
∂

4
φy

∂x3∂y 
-  

∂
4
φx

∂x2∂y 2
)+C4 

∂
2
φx

∂y2  
                (54) 

+C5

∂
2
φ

x

∂x2  
   +C6

∂
2
φ

y

∂x∂y 
 +C1

∂
3
w

 ∂x ∂y
2

+C1

∂
3
w

 ∂x3 
 

+C2

∂w

∂x
+C2φ

x
= C8

∂
2
φ

x

∂t2 
  

 

C3 (
∂

4
φy

 ∂x
4
 
- 

∂
4
φx

∂x
3
∂y  

+ 
∂

4
φy

∂x2∂y2 
-  

∂
4
φx

∂x∂y 3
) +C6 

∂
2
φx

∂x∂y  
  

+C4

∂
2
φy

∂x2  
+C5

∂
2
φy

 ∂y2 
 +C1

∂
3
w

∂y∂x2 
                                        (55) 

+C1

∂
3
w

∂y3
+C2

∂w

∂y
+C2φ

x
=C8

∂
2
φ

y

∂t2 
  

7 SOLUTION OF THE GOVERNING EQUATIONS 

USING NAVIER'S METHOD 

The Navier's solution is applicable to the rectangular 

plates which have simply supported boundary 

conditions on all edges. Since the boundary conditions 

are spontaneously satisfied in this method, the unknown 
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functions of the plate's mid-plane were assumed to be 

double trigonometric series [7], [9]: 

 

W(x,y,t)=∑ ∑ Wmn sin αx sin βy eiωt∞
n=1

∞
m=1                (56) 

 

φ
x
(x,y,t)=∑ ∑ Xmn cos αx sin βy eiωt∞

n=1
∞
m=1                (57) 

 

φ
y
(x,y,t)=∑ ∑ y

mn
sin αx cos βy eiωt∞

n=1
∞
m=1                 (58) 

 

The force can also be calculated from the following 

relations: 

 

q=∑ ∑ Q
mn

sin αx sin βy eiωt∞
n=1

∞
m=1                             (59) 

 

Q
mn

=
4

ab
∫ ∫ q(x,y)sinαx sin βy dx dy

b

0

a

0
                      (60) 

 

Q
mn

=

{
 

 
q

0
      ; For sinusoidal force 

16q0

mnπ2
    ;For uniform force 

4Q0

ab
 ;For point force in the plane center 

       (61) 

 

Where: 

 

α=
πm

a
   ,  β=

πn

b
 ,  i=√-1                                             (62) 

 

Simply-supported boundary conditions were also 

satisfied by the Navier's method according to the 

following equations: 

 
x=0 

,

x=a

{
w(0,y)=w(a,y)=∑∑wmn sin

mπ

a
 x sin

nπ

b
 y=0    

φ
y
(0,y)=φ

y
(a,y)=∑∑ y

mn
sin

mπ

a
 x cos

nπ

b
 y=0

      (63) 

 
y=0 

,
y=b

{
w(x,0)=w(x,b)=∑∑wmn sin

mπ

a
 x sin

nπ

b
 y=0

φx(x,0)=φx(x,b)=∑∑Xmn cos
mπ

a
 x sin

nπ

b
 y=0

       (64) 

8 THE GENERAL EQUATION MATRIX OF A 

MINDLIN'S PLANE 

After solving the governing equations and naming the 

coefficient of each variable, we have: 

 

U1=2C1 α2β
2
+C1α4+C1β

4
+C2α2+C2β

2
                     (65) 

 

U2=U4=- C1 α3-C1αβ
2
+C2α                                      (66) 

 

U3=U7=- C1 β
3
-C1α2β+C2β                                      (67) 

 

U5=-C3  β
4
-C3α2β

2
-C4β

2
-C5α2+C2                           (68) 

 

U6=  C3α β
3
+C3α3β-C6α β                                        (69) 

 

U8= -C3α3β-C3αβ
3
-C6α β                                         (70) 

U9= C3  α4+C3α2β
2
-C4α2-C5β

2
+C2                          (71) 

 

K1=  -C7                                                                    (72) 

 

K2=K3=K4=K6=K7=K8=0                                        (73) 

 

K5=K
9
= -C8                                                              (74) 

 

Finally, the general equation matrix of the Mindlin's 

plate along with the auxiliary equations will be obtained 

as follows: 

 

([

U1 U2 U3

U4 U5 U6

U7 U8 U9

] -ω2 [

K1 K2 K3

K4 K5 K6

K7 K8 K9

])  [

wmn

Xmn

y
mn

]= [
Q

mn

0

0

]    (75) 

 

Various materials such as epoxy, graphene, copper and 

so on can be considered as the plate's material. In this 

study, graphene is chosen as the plate's material. A 

single-layer graphene plate has the following properties 

[8]: 

 

E=1.06TPa, ν=0.25 , h=0.34nm, ρ=2250
kg

m3⁄        (76) 

 

Also, the relationship between E, μ and ν can be 

expressed as: 

 

λ=
νE

(1+ν)(1-2ν)
     , μ=

E

2(1+ν)
                                            (77) 

 

Where, μ and λ are the lame's coefficients and E is the 

Young's modulus [10]. The value of the distributed force 

was considered to be q = 1N⁄m2. 

9 RESULTS AND DISCUSSION 

Results were obtained using a computational program 

coded in the MATLAB software. The results have also 

been compared with the literature [11-13] and good 

agreements between results were observed. The plate's 

dimensional parameters are chosen as follows: 

a: plate's length 

b: plate's width 

h: plate's thickness 

l: material length scale parameter 

Table 1 shows the Mindlin's nanoplate bending rate 

under uniform surface traction for different material 

length scale parameters to thickness (l/h) and length to 

width ratio (a/b). As can be seen, as the length scale 

parameter to thickness ratio increases, the bending ratio 

decreases but it increases due to the increase in the 

plate's length to width ratio. 
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Table 1 The Mindlin's nanoplate bending rate under surface 

traction for different length to width and material length scale 

to thickness ratios (q=1e-18 N/nm2, a/h=30) 

 

a/b 

l/h 

0 0.5 1 2 

1 10.7687 2.5368 0.776721 0.212569 

1.5 20.7503 4.88668 1.49283 0.404766 

2 27.9754 6.58762 2.0112 0.543936 

 

Figure 1 compares the bending values of different 

nanoplates under the sinusoidal load for different length 

to width and material length scale parameters to 

thickness ratios. It is clear that as the length scale 

parameter to thickness ratio increases, the bending ratio 

decreases but it increases due to the increase in the 

plate's aspect ratio. 

 

 
Fig. 1 Comparison of bending values for Mindlin's 

nanoplates under the sinusoidal load for different length to 

width and material length scale to thickness ratios (q=1e-18 

N/nm2, a/h=30). 

 

Table 2 shows the dimensionless bending values of 

different nanoplates under the sinusoidal load for 

different length to width ratios. 

 
Table 2 The dimensionless bending values of different 

nanoplates under the sinusoidal load for different length to 

width ratios (l/h=1, a/h=30, q=1e-18 N/nm2(  

a/b 
Kirchhoff 

plate 

Mindlin 

plate 

Third order 

shear 

deformation 

plate 

N order 

shear 

deformation 

plate (n=5) 

1 0.2 0.072264 0.19912 0.19907 

1.5 0.2 0.072121 0.19927 0.19923 

2 0.2 0.072049 0.19935 0.19931 

 

As shown in the table, the dimensionless bending values 

were the highest for the Kirchhoff's nanoplate and the 

lowest for Mindlin's nanoplate. Tables 3 to 6 show that 

frequencies of Mindlin's nanoplate different vibration 

modes (ω11 − ω12 − ω21 − ω22) decrease due to 

increase in length to width ratio.  

Table 3 Comparison of the first mode frequencies (ω11) of 

Mindlin's nanoplate for different length to width and length 

scale parameter to thickness ratio (a/b=1, h=0.34( 

l/h 
a/h 

20 30 40 50 

0 31.2102 13.9429 7.8572 5.0329 

0.5 64.2570 28.7266 16.1924 10.3732 

1 115.4757 51.9052 29.3145 18.7965 

2 215.5686 99.1252 56.4382 36.3253 

 

Table 4 Comparison of the mode frequencies (ω12) of 

Mindlin's nanoplate for different length to width and length 

scale parameter to thickness ratio (a/b=1, h=0.34( 

a/h 
l/h 

0 0.5 1 2 

20 76.9722 158.2169 280.4153 492.9660 

30 34.6425 71.3140 128.0217 237.9174 

40 19.5743 40.3193 72.7219 137.8488 

50 12.5539 25.8663 46.7575 89.4593 

 

Table 5 Comparison of the mode frequencies (ω21) of 

Mindlin's nanoplate for different length to width and length 

scale parameter to thickness ratio (a/b=1, h=0.34( 

a/h 
l/h 

0 0.5 1 2 

20 76.9722 158.2169 280.4153 492.9660 

30 34.6425 71.3140 128.0217 237.9174 

40 19.5743 40.3193 72.7219 137.8488 

50 12.5539 25.8663 46.7575 89.4593 

 

Table 6 Comparison of the mode frequencies (ω22) of 

Mindlin's nanoplate for different length to width and length 

scale parameter to thickness ratio (a/b=1, h=0.34( 

a/h 
l/h 

0 0.5 1 2 

20 121.5505 249.5297 436.5378 722.2379 

30 55.0918 113.3246 202.1703 365.8010 

40 31.2102 64.2570 115.4757 215.5686 

50 20.0412 41.2804 74.4444 141.0270 

 

 
Fig. 2 Comparison of various mode frequencies of 

Mindlin's nanoplate for different length scale parameter to 

thickness ratio (a/b=1, h=0.34, a/h=30). 
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Also, for the classical theory (neglecting the effect of 

size parameter), the frequency reaches its lowest value, 

but with an increase in the size effect, the frequency 

value increases. It was also observed that the first mode 

has the lowest frequency value and it increases for the 

next modes. Figure 2 shows that frequencies of 

Mindlin's nanoplate different vibration modes increase 

due an increase in length scale parameter to thickness 

ratio. By comparing “Figs. 2-3ˮ, it can be observed that 

the vibration frequency decreases due to an increase in 

nanoplate aspect ratio. This fact can also be found by 

comparing “Tables 7-8ˮ. 

 

 
Fig. 3 Comparison of various mode frequencies of 

Mindlin's nanoplate for different length scale parameter to 

thickness ratio (a/b=1.5, h=0.34, a/h=30). 

 

Table 7 Comparison of different mode frequencies of 

Mindlin's nanoplate for various length to width ratios 

(a/b=0.5, h=0.34, l/h=1) 

Mode 
a/h 

20 30 40 50 

𝜔11 280.4153 128.0217 72.7219 46.7575 

𝜔12 436.5378 202.1703 115.4757 74.4444 

𝜔21 860.2980 413.9252 240.0504 155.9272 

𝜔22 988.5087 481.2484 280.4153 182.5827 

𝜔33 1844.9056 988.5087 596.8069 395.7091 

 

Table 8 Comparison of different mode frequencies of 

Mindlin's nanoplate for various length to width ratios (a/b=1, 

h=0.34, l/h=1) 

Mode 
a/h 

20 30 40 50 

𝜔11 115.4757 51.9052 29.3145 18.7965 

𝜔12 280.4153 128.0217 72.7219 46.7575 

𝜔21 280.4153 128.0217 72.7219 46.7575 

𝜔22 436.5378 202.1703 115.4757 74.4444 

𝜔33 903.7094 436.5378 253.5674 164.8397 

 

Table 9 shows the frequencies of various nanoplates 

different vibration modes (ω11 −ω12 −ω21 − ω22). 
According to the table, the Mindlin's nanoplate has the 

highest and third order nanoplate has the lowest 

frequency values. 

 
Table 9 Comparison of dimensionless frequencies of 

different modes of various nanoplates for length to thickness 

ratio (a/b=1, l/h=1( 

Mode 
a/h 

10 20 30 40 

Mindlin plate 

ω11 436.5378 115.4757 51.9052 29.3145 

ω12 988.5087 280.4153 128.0217 72.7219 

ω21 988.5087 280.4153 128.0217 72.7219 

ω22 1444.5250 436.5378 202.1703 115.4757 

Kirchhoff plate 

ω11 279.48251 70.29855 31.27940 17.60169 

ω12 690.3772 175.2090 78.0917 43.9704 

ω21 690.3772 175.2090 78.0917 43.9704 

ω22 1091.7424 279.4825 124.7766 70.2985 

Third order shear deformation plate 

ω11 276.5826 70.1049 31.2407 17.5894 

ω12 674.3836 174.0385 77.8533 43.8941 

ω21 674.3836 174.0385 77.8533 43.8941 

ω22 1055.3211 276.5826 124.1752 70.1049 

10 CONCLUSION 

In this study, the bending and vibration of a graphene 

Mindlin's nanoplate were investigated using the 

modified couple stress theory. As observed in the tables 

and figures, the Mindlin's nanoplate bending rate under 

uniform surface traction, decreases with an increase in 

the material length scale to thickness ratio of the 

nanoplate, but, this value increases with an increase in 

the aspect ratio of the nanoplate. Furthermore, by 

comparing different nanoplates under uniform surface 

traction, it was found that the Mindlin's nanoplate yields 

the lowest and the Kirchhoff's nanoplate yields the 

highest values for dimensionless bending.  

Analysis of frequencies of different modes for Mindlin's 

nanoplate showed that this value decreases due to an 

increase in length to thickness ratio. Also, for the 

classical theory (neglecting the effect of size parameter), 

the frequency reaches its lowest value, but with an 

increase in the size effect, the dimensionless frequency 

values increases. It was also found that the Mindlin's 

nanoplate yields the highest and the third-order 

nanoplate yields the lowest values for frequency. 
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