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Abstract: The paper studied the analysis of vibrations of rectangular carbon 
nanotube-reinforced composite plates. To this end, a three-layer nanocomposite plate 
- two layers with the targeted distribution of carbon nanotubes as FG-X at the top 
and bottom and a layer without an amplifier in the middle of the plate - were 
analyzed. The governing equations for this problem are based on First-order Shear 
Deformation Theory (FSDT). The distribution of nanotubes on these plates is as 
targeted FG-X. The effect of various types of SWCNTs distributions in the direction 
of thickness on the vibrational behavior of nanocomposite plates was examined. The 
effective properties of nanocomposite materials Functionally Graded Carbon 
Nanotube-Reinforced Composite (FG-CNTRC) were estimated using the rule of 
mixtures. Detailed parametric studies were performed to determine the effects of the 
volume fraction of carbon nanotubes and the thickness-to-length ratio of the plate on 
the natural frequency responses and the shape of the plate mode. The equations 
obtained in this problem were coded in MATLAB software, the nanocomposite plate 
was modelled in ABAQUS software, and the comparison of the results obtained from 
the numerical solution with ABAQUS software showed relatively right consistency 
with the results obtained from the analytical solution. 
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1 INTRODUCTION 

Carbon Nanotubes (CNTs) were discovered by Iijima in 

1991 [1]. Overall, carbon nanotubes are as Single Wall 

Carbon Nanotube (SWCNT), Multi-Wall Carbon 

Nanotube (MWCNT) or rope. Young's modulus and the 

strength of carbon nanotubes are much larger than those 

of conventional materials and metals, at about 1,000 and 

50 gigapascals (GPa), respectively. Carbon nanotubes 

have extraordinary properties like stiffness to weight 

ratio and strength to weight ratio [2]. 

 The paper has examined the effect of using SWCNTs in 

the vibrational analysis of a rectangular nanocomposite 

plate. The purpose of using carbon nanotubes is to 

increase damping to prevent damage caused by 

resonance and to enhance the mechanical properties of 

the structure. The nanotubes used are of single-wall type 

used in various weight percentages, including 0.11, 0.14 

and 0.17. After analysing the problem, the values of 

natural frequencies and damping coefficients are 

obtained in different vibrational modes. Moreover, 

frequency analysis is performed and compared with the 

results of the analytical method by calculating the 

mechanical properties of Carbon Nanotube-Reinforced 

Composite (CNTRC) and modelling it in ABAQUS 

finite element software. 

Lei et al. [3] have studied the free vibrations of CNTRC 

in a thermal environment. The nanotubes used in this 

study had used SWCNT (types 10 and 10). Four types of 

nanotube distributions are described in CNTRC plates 

with length a, width b and thickness h, identified with 

UD, FG-V, FG-O and FG-X indices. The governing 

equations in their study are based on First Order Shear 

Deformation Theory (FSDT). They found that the higher 

the volume fraction of CNTs, the higher the volume 

fraction of nanotubes in the range (0.11 - 0.22) and the 

higher the natural frequency will be. Nami et al. [4] have 

analysed the free vibrations of thick rectangular 

composite plates reinforced with targeted carbon 

nanotubes based on three-dimensional differential 

theory and using Differential Quadrature Method 

(DQM). Alibegloo et al. [5] analysed free vibrations and 

bending of CNTRC based on the three-dimensional 

elasticity theory by DQM. The nanotubes used are 

single-wall, the distribution of CNTs in the field is the 

Uniform Distribution (UD), and there are three types of 

targeted FG-V, FG-O and FG-X. 

Asadi et al. [2] have experimentally examined the 

vibrational properties of multi-layered carbon nanotube 

reinforced composites. The composite in question is 

made of glass / epoxy to which multi-wall and single-

wall carbon nanotubes have been added in various mass 

percentages. CNTs were first distributed in an epoxy 

process to prepare the samples. Amraei et al. [6] have 

studied the free vibrations of multilayer rectangular 

composite plates reinforced with carbon nanotubes. The 

distribution of nanotubes within the polymer is random. 

The methods used for analysis are based on Classical 

Laminated Plate Theory (CLPT), FSDT, and Third 

Order Shear Deformation Theory (TSDT) theory with 

simply supported boundary conditions (SSSS). The 

effective properties of nanotube-reinforced polymer 

materials are based on Cox model. Moreover, the 

calculation of the properties of multilayer materials is 

based on the rule of mixture and Halpin-Tsai equation. 

Ngo Dinh Dat et al. [7] presented an analytical solution 

for the non-linear magnetic vibrations of the electro-

elastic smart sandwich plate with a carbon 

nanocomposite core reinforced with carbon nanotubes in 

a humid environment. In this paper, vibrations of 

rectangular carbon nanotube-reinforced three-layer 

composite plates were analysed. 

2 EFFECTIVE PROPERTIES OF CNTRC LAYER 

MATERIALS 

The type of carbon nanotubes used in this study is 

SWCNTs, and the material properties of carbon 

nanotubes are obtained based on Molecular Dynamics 

(MD) simulations. The effective properties of 

nanocomposite materials, a mixture of carbon nanotubes 

and isotropic polymers, can be estimated based on the 

Mori Tanaka (M - T) design [8] or the law of mixtures 

[9-10]. In this study, the rule of modified mixtures is 

used to obtain the effective parameters and effective 

properties of CNTRC used as follows [11]: 

 

(1) 
11 1 11

CN M
CN ME V E V E= + 

  

(2) 2

22 22

CN M
CN M

V V

E E E
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= + 
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
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(4) *
12 12

CNT
CNT m mV V  = + 

  

(5) CNT m
CNT mV V  = + 

 

Here, 11
CNE

 and 22
CNE  are, respectively, Young's 

modulus of longitudinal and transverse of carbon 

nanotubes, 12G  is shear modulus of carbon nanotubes, 

and EM and GM are similar properties for the matrix and 
( 1,2,3)JJ =

 are quality parameters of CNTs, which are 
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determined by matching the elastic constants of the 

CNTRC plate by molecular dynamics simulation [11]. 

Moreover, VCN and VM are, respectively, volumetric 

fractions of CNTs and the matrix, satisfied by equation 
1M CNV V+ = . 11  and 22  are the coefficients of thermal 

expansion in the longitudinal and transverse directions 

of CNTRC plates, respectively, and are obtained from 

the following equations [12]: 

 

11 11
CNT m

CNT mV V  = +  ((6) 
  

22 12 22 12 11(1 ) (1 )CNT CNT m m
CNT mV V      = + + + −   (7) 

 

Here, 11
CNT , 22

CNT  and 
m  are, respectively, the 

coefficients of longitudinal and transverse thermal 

expansion of nanotubes and the ratio of thermal 

expansion of the matrix. Given the above equations and 

“Fig. 1ˮ, one can calculate the material properties of 

every single layer. As is seen in the figure below, this 

laminate consists of three layers. 

 

 
Fig. 1 Model of the composite laminate plate reinforced 

with carbon nanotubes. 

 

The distribution of nanotubes in layers 1 and 3 is FG-

CNTRC distributed in as FG-X, and layer 2 only has the 

isotropic base material of epoxy resin. Thus, one 

concludes that equations (1) to (5) are used to obtain the 

properties of materials in layers 1 and 3, and equation 

(8) is used to calculate the properties of materials in layer 

2 [13]. 
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Other effective mechanical properties are: 
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(9) 

 

3 DISTRIBUTION OF SINGLE-WALL NANOTUBES 

(SWCNTS 10,10) IN THE DIRECTION OF THICKNESS 

Ordinary geometry shows a symmetrical multi-layered 

nanocomposite plate with targeted distribution of CNTs 

in layers 1 and 3 as FG-X, with length a and width b and 

thickness H and with xyz coordinate system, as shown 

in “Fig. 1ˮ. In solving this problem, it is assumed layers 

1 and 3 of the matrix are reinforced  by CNTs and their 

volume fraction depends on the following equation [12]: 

 

1M CNV V+ =  (10) 

 
In addition, the distribution function of CNTs inside the 

matrix is as follows [14]: 

 

( ) *2 2CNT CNT

z
V z V

h

 
=  

 

 (11) 

 

This function is used only for calculating 0 1 2, ,I I I
 [13]. 
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(12) 

CNT
CNT

CNT m

W


 
=

+
 (13) 

 

CNTW
 is the mass fraction of carbon nanotubes on 

CNTRC plates, and 
*

CNTV
 is the volumetric fraction of 

carbon nanotubes on CNTRC plates. 

4 THEORETICAL FSDT OF CNTRC PLATES  

FSDT has been used to analyze this problem; the 

displacement field in this theory is usually as follows 

[15]: 

           

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

0

0
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(14) 
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Here, w, v and u show displacement in directions x, y, 

and z, respectively. 0 0 0, , , ,x yu v w  
 are unknown 

functions that need to be calculated, index "0" shows the 

displacement of the middle plate in z=0 and 

,x y

u v

z z
 

 
= =

  is the vertical perpendicular rotation 

around the axis -x and -y. In addition, strain and 

curvature equations are described as follows: 

 

0 ,

xx

yy

xy

z



  
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 
  

= + 
 
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0
yz

xz
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
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(15) 
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   (16) 

                                                                

 

 

By placing equations (16) in equations (15), it is obtained: 
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(17) 

 
 

 

Overall, the structure of the linear stress-strain equation 

is expressed as follows [16]: 
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Where: 
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The above equations are isotropic for the middle layer 

(layer 2) [15]. As the plate is isotropic in terms of the 

arrangement of the layers, and the angle to strengthen 

the plates is zero, then. 

 
00
ooQ Q  =

   
The results of stress-strain and curvature equations lead 

to the equations of force and torque [6]:                                    
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The stiffness coefficients are calculated as follows [15]: 
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The strain and curvature of the mid-plane are given as 

follows [6]: 
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(23) 

5 EQUATIONS OF MOTION 

The governing equations have been derived from FSDT 

using the dynamic model of the principle of virtual 

displacement [15]: 
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The motion equations in FSDT can be expressed in 

terms of displacement terms [15]: 
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And: 
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And: 
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(32) 

xQ  and yQ
 are the cross-sectional forces of the plates 

and K is the shear correction coefficient which is equal 

to 

5

6
K =

 [15]. 
 

( ) ( )( )
1

44 55 44 55 1, ,
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+= −  (33) 

SSSS and Navier's solution method are assumed to 

estimate boundary conditions and equations of motion 

with FSDT [6]. 
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Where: 

 
m n
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b a

 
 = =   

 

By satisfying the boundary conditions by Navier 

Solution (34) and placing them in equations (25) to (29), 

the stiffness matrix coefficients for SSSS are calculated:   
 

2 2
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(35) 

 

 

 

 

 

 

 

Other stiffness matrix coefficients are zero according to 

the condition of the problem: 

 

13 14 15 23 24 25 34 35 45 0C C C C C C C C C= = = = = = = = =  (36) 

6 FREE VIBRATIONS 

The following equations are obtained by placing the 

force and torque equations in terms of displacement 

from (25) to (29) in motion equations (24): 

 

   ( )   2 0C M−  =  (37) 

 

Here, [C] and [M] are the stiffness matrix and the plate 

mass matrix, respectively,   is the natural frequency of 

the plate and 
 

 is the displacement vector. Mass 

matrix coefficients and the stiffness of the plate are as 

follows: 
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Thus: 
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(41) 

 

 
Moreover, the natural frequencies of the problem are 

obtained with different conditions. Besides, the natural 

frequency without a dimension is obtained from 

Equation (42) [13]: 

 
2

m
mn mn

m

a

h E


 =  

(42) 

7 FINITE ELEMENT ANALYSIS 

Vibrational analysis of the plate is done in ABAQUS 

6.14.1. The dimensions of the nanocomposite plate 

model include a length of 40 cm, a width of 20 cm and a 

thickness of 33 mm. 

8 MECHANICAL PROPERTIES OF CARBON 

NANOTUBE REINFORCED PLATES 

The problem model consists of a three-layer structure 

where layers (1) and (3) are similar in terms of 

dimensions and distribution of nanotubes and so have 

the same properties. Layer (2) only has the isotropic 

matrix. The type of CNTs used in this study is SWCNT 

(10, 10), according to “Tables 1 and 2ˮ. 

 

9 RESULTS AND DISCUSSION 

As “Fig. 2a” shows, the natural frequency without a 

dimension is higher in the third mode than in the first 

and third modes according to the diagram data, and FEM 

has a higher natural frequency without dimension in the 

third mode. Figure 2b shows that the natural frequency 

in all three methods in mode (1 and 1) is the highest 

because it is thicker than the previous figure. The highest 

frequencies are FEM, FSDT and Matrix, respectively. 

Moreover, it has a higher frequency in the third FEM 

mode. In “Fig. 2c”, the natural frequency changes in the 

first to third modes are minimal for each method; 

 
 

Table 1 Mechanical properties of CNT and matrix [18] 
CNT 

12

CNT
 

11
CNTE 

22
CNTE 

12
CNTG 

m mE 
m mG 

1400 

kg/m3 

0.175 5.6466 

TPa 

7.08 

TPa 

1.9445 

TPa 

1500 
3kg/m 

2.1 

GPa 

0.34 0.7835 

GPa 

 

 

Table 2 Mechanical properties of CNTRC plates relative to the percentage of carbon nanotubes 

% 

NT   

C 

11E 

GPa 
22E 

GPa 
12G 

GPa 
12  

1 2 3 

0.11 92.54 3.258 0.851 0.3218 1489 0.149 0.934 0.653 

0.14 117.78 3.372 0.88 0.3169 1486 0.150 0.941 0.658 

0.17 143 3.49388 0.9125 0.3119 1483 0.149 1.381 0.966 
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a 

 

b 

 

c 
Fig. 2 Frequency changes of first to third modes relative 

to different H / a and VCNT = 0.11. 

Thus, according to the diagram, the highest frequencies 

are related to FEM, FSDT and Matrix, respectively. 

Figure 3a is almost identical to “Fig. 2a” in terms of 

shape and function. The difference is that the volume 

fraction in this graph is equal to VCNT = 0.14. Figure 

3b is stated as the calculated frequencies of the first 

mode in the two methods of solving FSDT and Matrix 

are somehow the same. In contrast, unlike the previous 

figures, the numerical solution of FEM has lesser value, 

and in the third mode, FSDT has a higher frequency than 

Matrix. 

In Figure 3c, there are interesting points to present. 

According to the figure, it is seen that the frequency 

changes in the first to third modes of Matrix are such that 

in the third mode the frequency is higher than the first 

mode. However, the frequency changes in FSDT and 

FEM are partial, but in the first mode the frequency is 

higher than the second and third modes.  
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c 

Fig. 3 Frequency changes of the first to third modes 

relative to H / a = 0. 1, 0. 01, 0. 001 and VCNT = 0.14. 

 

 
Fig. 4 Mode changes (1 and 1) relative to the increase in 

the volume fraction with coefficient H / a = 0.1  
 

Figures 4 to 6 show the changes of dimensionless natural 

frequencies in the first mode with a constant H / a, 

relative to the volume fraction, showing that the 

frequency changes in the first mode are constant and 

equal for the polymer because no changes have occurred 

in its material.  

 

 

 

 

 

 

 

However, in other methods (FEM, FSDT), as the volume 

fraction of carbon nanotubes changes, the natural 

dimensionless frequencies are different from each other, 

and the largest natural dimensionless frequency is 

related to the volume fraction VCNT = 0.17, which is 

different according to the analytical method. 

 

 
Fig. 5 Mode changes (1 and 1) relative to H / a = 0.01 and 

different VCNT. 
 

 

 
Fig. 6 Mode changes (1 and 1) relative to the increase in 

the volume fraction with coefficient H / a = 0.001.  
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10 THE RESULTS OF FINITE ELEMENT ANALYSIS 

In “Figs.7, 8 and 9”, the shape of the vibrational mode 

of the desired plate is presented in different frequencies. 

 

 

 

 

 
Fig. 7 The shape of the first mode obtained from finite 

element analysis, mode (1 and 1). 
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Fig. 8 The second mode figure obtained from finite 

element analysis, mode (1 and 2). 
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Fig. 9 The shape of the third mode obtained from the 

finite element solution, modes (1 and 3). 

11 CONCLUSION  

The purpose of this project is to examine the effect of 

adding carbon nanotubes to the polymer on the dynamic 

properties of the structure (natural frequencies). In this 

study, the effect of volume fraction of nanotubes, 

thickness to length ratio, geometric shape and their 

purposeful distribution in improving the vibrational 

properties of the structure using the analytical method 

and finite element were examined. The boundary 

conditions (SSSS) using Fourier series were considered 

for this. The results obtained from the analytical solution 

by FSDT method and the results from finite element 

software are presented, the results of which are 

summarized as follows: 

A) Dimensionless natural frequencies increase as carbon 

nanotubes increase. 

B) Dimensionless natural frequencies decrease as the 

page thickness-to-length ratio increases. 

C) Carbon nanotubes are a great candidate for low-

weight, high-strength composite structures given their 

excellent mechanical properties. The most significant 

reason that can be stated is that it has a lower density and 

specific volume than a polymer. 

D) The shape of the modes obtained from finite element 

analysis and the results of the analytical solution are in 

line with each other. 

E) Since adding carbon nanotubes has little effect on 

increasing the modulus of the polymer, the increase in 

natural frequencies will not be so high. The maximum 

frequency increase for SWNT sample is 17% in the first 

mode with a ratio about Rad/s. 

F) The highest frequency value in all vibrational modes 

is seen for SWCNT 17%, SWCNT 14% and 

SWCNT11%, respectively. Hence, one can conclude 

that the best mechanical properties are obtained by 

adding, respectively, 17%, 14% and 11% by weight of 

SWCNT to the composite. 

G) According to the results, one can conclude that the 

nanocomposite plate with H / a = 0.001 and VCNT = 

0.17 is a good candidate for the model. 

H) The examinations performed in the study show that 

the ratio of plate thickness-to-length has an effective role 

in enhancing the frequencies of the first mode. Here, in 

all three-volume fractions, nanotubes showed better 

vibrational modes compared to the previous two modes. 

I) In case that there is a polymer layer without nanotubes 

in the laminate, the natural frequency in the structure 

will reduce. 
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