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1 INTRODUCTION 

Parallel robots are widely applicable because of their 

special advantages including their speed, strength, 

accuracy and load carrying capacity. One of the most 

popular parallel robots is Stewrat which has 6 actuator 

supporting 6 spatial DOFs [1]. However, the limited 

workspace of this robot decreases its applications. A 

new generation of parallel robots is 3PRS which can be 

considered as a subset of Stewart robot. This robot can 

cover a wider workspace compared to its limited 

actuators. In addition, since the number of connecting 

links between the base and end-effector is three, the 

probability of jack interference is lower respect to 

Stewart case.  

The robot has three active prismatic joints and three 

rotary passive ones and all of the spatial DOFs of the 

end-effector can be controlled by the aid of the 

mentioned joints. Thus, the robot is under constrained 

and needs special consideration for its modeling, control 

and optimization. Since the robot has an acceptable 

workspace and accuracy, it has a lot of usages specially 

in micro applications [2]. However, its extreme 

nonlinear dynamics and its under constrained entity 

extremely increases the required mathematical 

calculations and time consumption for which any 

optimization method toward decreasing these 

calculations can be appreciated. Modeling these 

nonlinear systems is challenging and needs heavy and 

time-consuming mathematical calculations. Especially 

since the robot is under constrained, calculating the 

required jack elongation and force of the actuators 

through its inverse kinematics and dynamics and also 

modeling the forward dynamics of the system in order to 

check the robot performance through its related 

simulations is challenging considering the fact that its 

corresponding Jacobian matrix is not square.  

In order to perform the mentioned calculations, null-

space of the system is required through which the proper 

independent generalized coordinates of the system 

should be selected. Thus, the inverse of the non-square 

Jacobian and inertia matrices can be extracted 

consequently. The conventional methods of performing 

such operations need heavy and time consuming 

mathematical calculations and needs super computers in 

some cases. The main studies toward modeling of such 

robots and extracting their corresponding null space is as 

follow:  

Li and Xu have developed the dynamics of the 3PRS 

using Lagrange and virtual work [3]. The same 

algorithms are employed in [4] in order to extract the 

matrix form of dynamic of this robot in order to be used 

for control systems. However, in these researches no 

effort was made for eliminating the Lagrange 

multipliers. Altuzarra et al. extracted the dynamic 

equation of the system and verified it by the aid of 

experimental tests [5]. Since the Lagrange equation for 

this parallel system is too heavy, the employed model of 

the robot in this research is Boltzmann-Hamel. It should 

be considered that if the equations can be simplified by 

eliminating the Lagrange multipliers, the necessity of 

using the mentioned model can be cancelled.  

Nikravesh and Haug have proposed a new practical 

formulation for modeling the dynamic systems with 

holonomic and non-holonomic constraints [6]. The 

constraints and motion equations are written here as a to 

Descartes formulation through which formulating the 

constraints and generalize forces can be simplified. In 

[7] a method is delivered toward separating the singular 

values of constrained dynamic systems. This method in 

somewhere is more efficient for minimizing the 

mathematical calculations rather than Gauss elimination 

method.  

Kim and Vanderploeg have delivered a general 

algorithm according to separation of velocities for 

analyzing the dynamical systems. Here the dependent 

generalized coordinates are extracted from the Jacobian 

matrix. It is proved that this method is more practical 

compared to Descartes formulation [8]. In [9] a 

geometric approach is presented for calculating the 

dynamic response of constrained systems. Here the 

dependent coordinates are tangent to constraint surface 

by converting the generalized velocities to a hyperplane 

and so the constraints will be satisfied. In 1988, Angeles 

and Lee have introduced an orthogonal matrix with 

constraint gain matrix in order to separate the dependent 

and independent generalize coordinates. However, this 

method is complicated for nonlinear systems such as 

parallel robots [10]. Afterwards, Angeles et al. 

implemented the mentioned algorithm for serial 

manipulators and showed the efficiency of their method 

for modeling of this kind of robots [11]. Modeling of 

constrained systems with non-holonomic constraints is 

performed in [12].  

Terze et al. have modeled the constrained systems using 

Null Space Integration Method. In this research, the state 

space of the system is extracted in its minimal form 

considering the constraints of the system. The proposed 

method is verified on a biomechanical system. The 

constraints and its related Lagrange multipliers are 

eliminated using the null space of the system. The results 

are compatible with the ordinary solvers of differential 

equations [13]. In this research, NOC matrix is extracted 

using the constraints related to speed generalized 

coordinates. Also, calculation of Eigen values and 

singular points in order to extract the NOC matrix is 

avoided. However, the calculation of null space is 

decreased through the proposed method of this paper, 

but again it is not completely applicable for heavy 

nonlinear equations of parallel robots. Pendar et al. have 

extracted the dynamics of 3RPS robot employing NOC 

[14]. The proposed method to extract the NOC of the 
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robot is new and applicable to some extent, however 

calculating the inverse of a matrix of order 2 or 3 is 

required to extract the NOC which again limits its 

applicability for the systems which has matrices with 

long length elements. A parallel robot with 6 sliding 

joints is investigated in [15] through which the dynamics 

of the system is extracted employing a Decoupled NOC 

matrix (DeNOC).  

The method of extracting the null space in this paper is 

based on using the Jacobian matrix and making a 

relation between derivatives of the dependent and 

independent variables of the system. This algorithm is 

not suggested since calculating the inverse of a high 

order matrix is required here. Phong and Hoang [16] 

have studied the null space application for simulating the 

closed loop constrained systems. The Lagrange 

multipliers are eliminated using the null space of the 

related Jacobian matrix. The proposed method is robust 

against singularity conditions and is verified by 

numerical results. Marino et al. have proposed a non-

concentrated structure to control the mobile robots by 

the aid of null space technique [17]. Here the speed of 

controlling procedure of the robot is increased as a result 

of increasing the speed of calculating the null space of 

the system. Afterwards Raoofian et al. have analyzed the 

direct dynamics of the parallel robot using DeNOC 

method [18].  

Virtual Spring Method (VSM) is used here to cover the 

mentioned theory. It should be noticed that though a new 

method is presented here to employ the NOC matric, no 

approach is delivered for increasing the speed of 

calculating of this matrix. Some researchers are focused 

on simplifying the calculation of NOC matrix which can 

be useful to make further progress in this way: Coleman 

and Sorensen have proposed a new method to evaluate 

the orthonormal basis of the null space of a matrix [19]. 

Three methods are proposed here that all of which suffer 

from a same disadvantage. In these methods it is 

required to replace the rows of the matrix and defining 

the sign of each element (such as cofactors) which limits 

the applicability of the proposed method. Berry et al. 

have delivered a new method for calculating the basis 

for a null space of a matrix.  

The method is based on recursive algorithm according 

to Gaussian elimination method. However the 

mentioned method is numerical which is not suitable for 

analytic applications [20]. In [21] after careful 

investigation of existing methods for calculation of the 

null space of a matrix, two methods are proposed. In the 

first method, the fundamental basis of null space is 

extracted using embedded identity matrix. In the second 

approach, the triangular basis of a null space is extracted 

using an upper triangular matrix. The simulations have 

illustrated that using these methods, the calculated null 

space is completely sparse.  Also, the second proposed 

method is time-consuming. In these methods, solving 

some linear equations are required which is not suitable 

for parametric problems with heavy calculations. Then 

Dai and Jones could find a new simple method for 

solving the set of linear equations without using Gauss–

Seidel algorithm [22]. Afterwards they proposed a 

method based on cofactors to calculate the null space of 

a matrix.  

Comparing the proposed algorithm with previous 

existing ones showed that the proposed method has a 

better accuracy. Although the proposed method is 

analytic and can calculate the parametric problem, 

however, the necessity of calculating a lot of cofactors 

and their related signs decreases its popularity especially 

when the order of the matrix is more than two which 

extremely increases the required time and calculations. 

In addition, the resultant null space in this research is not 

orthogonal. Later, in [23] the application of NOC 

algorithm was explained for MIMO systems and its 

implementation for these system was defined. In this 

research, no idea was proposed for calculating the null 

space of a matrix and just this null space is employed for 

their suggested approach. Nie has extended a new 

method for extracting the null space regarding to solve 

the system of simultaneous nonlinear equations [24]. 

This method is a numerical approach and based on 

iteration process. However, in many problems, the exact 

solution of the system in a parametric way is required. 

Dimensionality reduction is an important pre-processing 

step in many applications. As a result, analytic analysis 

of null space is studied in [25]. 

In this research, the conventional approaches such as QR 

and SVD are employed to calculate the null space of a 

matrix. These methods are not sufficiently efficient and 

applicable for many on line and real time industrial 

applications. In [26] a discrete approach is delivered for 

solving the null space of constrained systems with 

holonomic constraints. Afterwards the mentioned 

method is extended in [27] for systems which have 

interaction with each other’s. The method is again based 

on iteration process which needs numerical solution. 

Although this method is proper for vibrating plants, 

however, this method is not suitable for the robotic 

plants in which the exact parametric solution is required. 

Afterwards in [28] null space application is studied for 

the constrained and flexible systems.  

Two series of constraints are considered in this paper 

including internal constraints which are related to the 

solid mode of the system and external constraints which 

are related to the joint space of the system. Null space is 

again employed here to eliminate the corresponding 

Lagrange multipliers. Afterward the applicability of the 

proposed method is verified for a flexible beam of a 

robotic arm. Finally, Leyendecker et al. explained in 

[29] the application of the mentioned method of 

optimization using variation for different dynamic 

systems.  

https://en.wikipedia.org/wiki/Gauss%E2%80%93Seidel_method
https://en.wikipedia.org/wiki/Gauss%E2%80%93Seidel_method
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As can be seen through the mentioned literature, there is 

not enough researches about optimal calculation of null-

space and specially no study is performed for optimal 

calculation of modeling the 3PRS robot so far. Thus in 

this paper the complete kinematic and kinetic modeling 

of the 3PRS robot considering the constraints of the 

system and elimination of the constraints using 

Lagrange multipliers is performed for the first time. The 

main novelty of the paper is modeling the robot 

considering the constraints of the system and also 

proposing a novel method for calculation of the robot 

null space and eliminating the constraints with a faster 

method respect to existing ones.  

Dynamic formulation of the robot is extracted using 

Lagrange multipliers and its inverse dynamics is 

employed as the feedforward signal of the robot control 

while its forward model is also solved as the plant of the 

robot. Afterwards by eliminating the Lagrange 

multipliers and using the state space of the system the 

formulation of NOC is implemented on the dynamics of 

the system through which the null space of the robot is 

calculated using a lower amount of mathematical 

calculations. The proposed algorithm of null space 

calculation in this paper is completely analytic and its 

accuracy is not affected by any numerical method. 

Moreover, the derived algorithm of NOC in this paper 

unlike all of the previous algorithms is able to extract the 

null space matrix with orthogonal bases. Also some 

simplifications are implemented through the presented 

algorithm by which the complexity of calculations can 

be significantly decreased.  

This orthogonality results in increasing the accuracy of 

modeling and decreasing the error of simulation. It is 

shown that using the proposed method for calculation of 

the null space, a faster calculation of the null space can 

be realized which is performable employing any CPU. 

Also the orthogonal nature of the resultant null space 

causes the best accuracy that can be achieved. This claim 

is verified by applying the mentioned methods on new 

robot of 3PRS. The structure of the paper is as follow: In 

section two the formulation of NOC and the proposed 

method of calculation of the null-space are derived. 

Afterwards in section three the modeling of the robot 

including of kinematics and kinetics is represented. 

Moreover, the Lagrange multipliers are eliminated using 

the proposed method and the dynamic model of the robot 

is completed by the aid of its corresponding null space 

and NOC.  

The state space of the robot is extracted then and 

Computed Torque Method (CTM) is implemented to 

control the robot in its open loop state. Finally, in section 

four the correctness of all of the stated modeling and 

control and the efficiency of the proposed optimization 

method for calculation of null space is verified on a 

3PRS robot for both of analytic and numerical 

approaches by the aid of some comparative simulation 

scenarios conducted in MATLAB. It is shown that 

implementing the proposed methods on the 3PRS robot, 

the required calculations and time for modeling and 

simulating the robot is significantly decreased while its 

accuracy is improved.  

2 OPTIMUM CALCULATION OF NULL SPACE 

The first objective of optimization of null space 

calculation is minimization of required mathematical 

operation and required time of calculation. So an 

orthogonal null space will be achieved. According to 

mathematical representation of the null space of a 

matrix, the following set of simultaneous equations 

should be solved for X: 

 

1 0m n nA X  =
r

                                                                (1) 

 

Where X is the states of the system and A is its relative 

gains which is generally a non-square matrix. Thus it can 

be concluded that: 

 

0 0AX AX AX= → + =& &                                       (2) 

 

If the rank of matrix A would be m  and we have ( )m n  

it can be concluded that the number of independent 

states of X is equal to (n-m) and the other m states are 

dependent. Each dependent state can be represented as a 

function of other independent states. Suppose that the 

independent states are placed at the end rows of the X 

vector and is presented by v: 

 

 
1 ( )

1

( ) ( ) 0

n m

T

m n

A X X
v X A v

X v v

v x x
 −

+

  
+ =   

 =


& &

r
L

                               (3) 

 

If 
𝜕𝐴

𝜕𝑋
= 0, then: 

 

0

( ) 0

ANv
X

A v X
v N

v

 =
 

= →  
 =



r&r
r r&r

r

                              (4) 

 

In a homogenous equation like equation (4), considering 

the fact that the states of vector v are independent, it can 

be concluded that the gain matrix AN should be equal to 

zero: 
 

0AN =                                                                       (5) 
 

Where N is the null space of the system. In a holonomic 

case like the considered robot in this paper, 
𝜕𝐴

𝜕𝑋
≠ 0. Now 

we have: 
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( ) 0f X =
r

                                                                      (6) 

 

Where f is the constraint formulation of the considered 

robot. Thus, it can be concluded that: 

 

0 ,
f

AX A
X


= =



r&
r                                             (7) 

Then we have: 

 

0

( ) 0

AN
X

A v X
v N

v

=
 

= →  
 =



r
r r&r

r

                               (8) 

Where N is the null space of the system. It is obvious 

that this null space matrix is independent of �̇� however 

it is not independent of v necessarily. Thus, the 

mentioned formulation does not have any contradiction 

with the stated conclusion. In order to extract matrix N 

using equation (8) we have: 

 

1,2,...,

,

1, 2,...,

1,( 1) 1,

,( 1) ,

( ) ( )
( )

i mi
ij i j

j j m m n

m n

m m m n

n m n m
n n m

XX
N X

v X

X X

N
X X

I

=

= + +

+

+

−  −
 −


= = =
 

 
 
 =
 
 
  

r

r

L

M O M

L

           (9) 

 

The elements of matrix A can be divided into following 

sub matrices: 

 

11 1 1( 1) 1

1 ( 1)

( )

m m n

m mm m m mn

m m m n m

A A A A

A

A A A A

B C

+

+

  −

 
 

=  
 
 

 =  

L L

M O M M O M

L L

        (10) 

 

Each column of matrices B and C can be written as a 

vector of size(𝑚 × 1). In order to calculate the elements 

of matrix N, using equation (1) and considering the 

principal of derivatives of implicit functions, we can 

write [30]: 

 

 

 
1 2

1 2

1 1 1

,

.

m

n m

i j i m

i j

ij

B B B B

C C C C

B B C B B
X

B

B



−

− +

 =


=

= −

= −

L

L

L L

             (11) 

 

Where | | shows determinant of the parameters. 

Considering the equation (11), it can be seen that the 

denominator of all of the fractions are equal to |𝐵| and 

thus the equation (9) can be rewritten as: 

 

1( 1) 1( )

( 1) ( )

( ) ( )
( )

1

m n

m m m n

n m n m
n n m

N
B

B I

 

 

+

+

−  −
 −

 
 
 −

=  
 
 −
  

L

M O M

L

        (12) 

Where the gain 
−1

|𝐵|
 can be ignored without losing the 

generality of equation (5). Thus, the matrix N can be 

written as below: 

 

1( 1) 1( )

( 1) ( )

( ) ( )
( )

ˆ

1 ˆ

m n

m m m n

n m n m
n n m

N

B I

N N
B

 

 

+

+

−  −
 −

  
  
  

=  
  
  −   


−
=



L

M O M

L
       (13) 

 

It should be noticed that in the case in which the rank of 

the matrix A is not equal to its rows, first, the echelon 

form (Ae) of the matrix A should be calculated and the 

mentioned process needs to be performed for the echelon 

form of the matrix A.  

 

2.1. Orthogonal Basis of Null Space 

For the second stage of null space calculation, the 

achieved null space matrix will be orthogonal zed in 

order to achieve the maximum possible accuracy of 

modeling and simulation process. Each column of N can 

be written as a vector of size 𝑛 × 1: 

 

 1 n mN N N −= L                                                (14) 

 

Considering the 𝑁1 as a basis for the orthogonal null 

space of N, the other bases are orthogonal respect to this 

base. Generally speaking, it can be said that each two 

vectors of this space are orthogonal with respect to each 

other and thus it can be written: 

 

1 0TN X =
r

                                                                 (15) 

 

And it means that we can add a row to the matrix A 

without losing the validity of equation (1): 

 

1

ˆ
T

A
A

N

 
=  
 

                                                                (16) 

 

Now it is possible to rewrite the equation 13 for the �̂� 

and find out a new base for the orthogonal matrix. 

Repeating this procedure for (n-m) independent 

variables, the new matrix �̂� will be: 
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ˆ m n

n n T

A
A

N





 
=  
 

                                                       (17) 

 

Where 𝑁𝑇 is the transpose of the orthogonal null space. 

This matrix can be written as equation (14) as 

mentioned. Considering the orthogonality of the 

calculated null space it can be written: 

1 1

2 2

( ) ( )

0 0

0

0

0 0

T

T

T

T

n m n m n m n m

D N N

N N

N N

N N− − −  −

= =

 
 
 
 
 
  

L

M

M O

L

                (18) 

 

Please refer to the appendix for more explanations. 

3 MODELING OF THE 3PRS ROBOT 

Consider a 3PRS parallel robot like “Fig.1ˮ through 

which 6DOFs of circular end-effector of B1B2B3 is 

controlled using three active prismatic S1, S2 and S3 and 

three passive angles of 𝛼1, 𝛼2, 𝛼3. Point O is the origin 

of the global coordinate while points Ai are the initial 

origins of the slides. 

 

 

Fig. 1 Schematic view of the parallel mechanism of 3PRS. 

 

3.1. Kinematic Modeling 

The coordinates of the key points of the system are: 
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            (19) 

 

Where a is the length of the prismatic jacks. Using 

Denavit-Hartenberg (DH) parametrizations, we have the 

following “Table 1ˮ [31]. 

 
Table 1 DH parameters 

Link e 𝛽 d Θ 

OC1 0 -90 𝑎 − 𝑠1 90 

 

Where e is the distance  between the two z axe along x, 

𝛽 is the angle between two z axes around the axis x, d is 

the perpendicular distance between two origins along the 

previous z axis and 𝛩 is the angle between two x axes 

about the previous axis z. The related homogeneous 

transformation matrix considering the “Table 1ˮ is as 

follow: 
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Where 𝑅𝑧,Θ is the rotation of 𝛩 around the axis z and 𝑇𝑧,𝑑 

is the translation of d along the axis z. Two other links 

are the same as the previous one except that they have 

also rotation around the axis y. Thus, we have: 
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−
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 
 
 
 
 −
 
 
 

        (21) 

 

Here C and S are abbreviation of cos and sin 

respectively. 𝑆𝑖 is the displacement of the prismatic joint 

𝐶𝑖. The coordinate of 𝐵𝑖  with respect to local coordinate 

attached to the joint 𝐶𝑖 is: 
 

sin α

cosα

0

i

i

c

i i

l

B l

 
 

=
 
  

                                                            (22) 

Where l is the length of each link and 𝛼𝑖 is the angle of 

link attached to the joint 𝐶𝑖. The coordinate of 𝐵𝑖  with 

respect to global coordinate in O is: 

𝑧𝑜 

𝑦𝑜 

 

𝑥𝑜 

𝛼3 

𝛼2 

𝛼1 

𝑆3 

𝑆2 

𝑆1 

𝐶2 

𝐶3 

𝐶1 

𝐴2 

𝐴3 

1A 

𝐵3 

𝐵2 

𝐵1 

O 

P 

𝑥𝑃 
𝑦𝑃  

𝑧𝑃 

𝑍𝐶1 

𝑦𝐶1 

𝑥𝐶1 

𝑂𝐴𝑖 = 𝑎 

𝑃𝐵𝑖 = 𝑏 
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1 2 3 1 2 3( , , , , , )
1

.      1, 2,3
1

i

i

S S

o

i

o

c

S

c

i

B

B
H i

  

 
= 

 

 
= 

 

                                       (23) 

Rotation of the moving plate is considered here respect 

to the global coordinate attached to the point O and is 

represented based on Roll, Pitch and Yaw: 

 

, , , , ,z y xR R R R

c c s c c s s s s c s c

s c c c s s s c s s s c

s c s c c

     

           

           

    

= =

− + + 
 

+ − +
 
 − 

         (24) 

 

Where (𝑥, 𝑦, 𝑧, 𝜓, 𝜃, 𝜙) are the workspace DOFs of the 

platform. Since the point p is known as 𝑝 = [𝑥 𝑦 𝑧]𝑇 we 

have: 

 

  , ,

1 2 3 ( , , , , , )

3 3
0

2 2

1 1 1 0 0 0

2 2

o o o

x y z
B B B

b b

p R

b b
b

  

  
=

 
− 

 
+  

 


  

− −
  

      (25) 

 

Kinematic constraints of the mechanism considering 

equations (23, 25) are: 

 

1 2 3 1 2 3

1 1

2 2

3 3( , , , ,

1

9 , ) ( , , , , , )

0

x y z S S

o o

o o

S

o o

f B B

B B

f B B
     

   


 
 
 
 

  
= − =   
   
    

M
      (26) 

 

Here 9 kinematic constraints are existing which are 

completely independent. 

  

3.2. Dynamics Modeling 

Both of inverse and forward dynamics are extracted 

here. In inverse dynamics, it is desired to calculate the 

required prismatic force of the jacks in a way to provide 

a desired path for the end-effector platform. In order to 

meet this goal, Lagrange method is employed. Since the 

robot is under constrained, firstly all of twelve 

parameters of [x, y, z, ψ, θ, ϕ, 𝛼1, 𝛼2, 𝛼3, 𝑆1, 𝑆2, 𝑆3]T are 

considered as the generalized coordinates of the robot. 

The corresponding kinetic energy of the robot can be 

calculated using the following equation: 

 

3

1

1 1
ω ω v v             

2 2
,    

1 1
ω ω v v      

2 2

T T

p p p p p p

p l
T T

l i li i i i

i

T I M

T T T

T I m
=


= +

= +
  = + 

  


        (27) 

 

Where 𝑇𝑝, 𝑀 are energy and mass of the moving 

platform while 𝑇𝑙 , 𝑚 are the same parameters of the 

links. 𝐼𝑝 is the moment of inertia of the moving platform 

and 𝐼𝑙𝑖  is the same parameter for the ith link with respect 

to global coordinate. Considering “Fig. 2ˮ, the moment 

of inertia of each link is first calculated in local 

coordinate (𝑥𝑦𝑧)𝑙𝑖  and is then transferred to global one 

by the aid of rotation matrix. Similarly, the moment of 

inertia of the moving platform is first calculated in 

coordinate (𝑥𝑦𝑧)𝑝 and is then transferred to global 

coordinate.   

 

 
Fig. 2 Local and global coordinates for calculating the 

moments of inertia. 
 

Considering the above figure, it can be written: 

 

,  ,  
0 1

i i

i i i

o o

c co o o

li c z c

R d
R R R H−

 
= = 

  

                  (28) 

 

Where 𝐼𝑙𝑖 ,  𝐼𝑝 can be calculated as: 

 

2

2

, , , ,

2

2

2

1
0 0

4

1
0 0 ,

2

1
0 0

4

1
0 0

3

0 0 0

1
0 0

3

T

p

o oT

li li li
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I R Mb R
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I R R

ml

     

 
 
 
 =
 
 
 
  

 
 
 

=  
 
 
 

        (29) 

 

All of the velocities are considered with respect to the 

reference coordinates: 

 

𝑧𝑜 

𝑦𝑜 

 

𝑥𝑜 
𝛼𝑖 

𝐶𝑖 
O 

𝑍𝐶𝑖 

𝑦𝐶𝑖  

𝑥𝐶𝑖  
𝑥𝑙𝑖 

𝑦
𝑙𝑖
 

𝑧𝑙𝑖 
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&
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            (30) 

 

Also the potential energy of the robot can be calculated 

as: 
3

1

sin
2

i

i

l
U Mgy mg 

=

= + 
                                    (31) 

 

Where g is the gravitational acceleration of the earth. 

Using Lagrange multiplier method, we have: 
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&                      (32) 

 

Where 𝑄 is the generalized force of the system and 𝑓𝑘 is 

the constraint relations : 
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                  (33) 

 

Using the Lagrange multiplier and conducting the 

related calculations, the dynamic equation of the robot 

movement can be extracted as follow: 

 
TMq Cq G A Q+ − + =&& &                                          (34) 

 

Where M is the inertia matrix, C is Coriolis matrix, G is 

gravity vector, A is the gain matrix of Lagrange 

multipliers, Q is the generalized force of the system and 

these parameters are calculated for this robot as equation 

(35). 

The rank of the extracted matrix A here is equal to the 

number of its rows and this is contributed to the fact that 

the mentioned kinematic constraints of equation 26 are 

independent. Thus, it can be concluded that for 

calculating the null space matrix of A, the echelon of the 

matrix is not required. 
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 (35) 

4 DYNAMIC MODELING CONSIDERING 

LAGRANGE MULTIPLIERS ELIMINATION 

According to the mentioned optimal null space 

calculation, it is now possible to extract the dynamics of 

the 3PRS robot considering Lagrange multipliers 

elimination with a lower amount of calculation. The 

proposed method in this paper is based on decreasing the 

engaged dynamic parameters of the system by selecting 

the proper generalized coordinates. Consider a robot 

with p moving parts. First, it is required to define the 

DOFs of each part. If 𝑛𝑖 is the nth DOF of part i, the 

summation of DOF will be: 
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1

p

i

i

n n
=

=                                                                 (36) 

Now if m kinematic constraints are involved in, n-m 

degrees of freedom are independent and the rest m ones 

are dependent. Now considering the constraints of 

equation (26) one can conclude: 

 

1 2 3( , , ,..., ) 0, 1,2,..., .i nf x x x x i m= =                (37) 

 

In order to define the dynamic equation of a robot using 

Lagrange method, it is first required to expand its kinetic 

and potential energy. These energies should be 

calculated for each part using its own DOFs respect to 

the reference coordinate. In this step the DOFs are not 

summarized as independent generalized coordinate. 

This is contributed to the fact that calculating the 

dependent parameters as a function of independent 

parameters needs heavy mathematical calculations. 

Especially for the nonlinear robots and specifically the 

parallel ones with complicated dynamic equations, this 

importance requires significant consumption of time and 

effort.  Another reason for employing the dependent 

parameters is related to simplifying the inertia matrix to 

semi-diagonal one which is vital in direct dynamic 

simulation through which calculating the inverse of the 

matrix is required. Thus using the dependent parameters, 

results in appearing the Lagrange multipliers in the 

dynamic equation of the system which can be shown as: 

 
TMq Cq G A Q+ − + =&& &                                           (38) 

 

Where M is the inertia matrix, C is Coriolis matrix, G is 

gravity vector, Q is the vector of generalized forces, and 

  are the Lagrange multipliers. In order to eliminate the 

Lagrange multipliers, it is required to extract the null 

space of matrix A using equation (13). Considering the 

fact that the kinematic constraints are independent, the 

rank of matrix A is equal to its rows. By multiplying the 

equation (38) by 𝑁𝑇 we have: 

 
T T T TN Mq N Cq N G N Q+ − =&& &                              (39) 

 

Where 𝑁𝑇𝑄 = �⃗�=[𝐹1 𝐹2 𝐹3]𝑇. Now it is possible to 

simulate the direct dynamics and rewrite the above 

equation in the form of state space using the following 

equation: 

 

1 2 3

0
,T

AN q Nv

v S S S q Nv Nv

=  = 
 

 = = +  

r r
&
r rr r& & & &&& &

                (40) 

 

In order to calculate the derivative of the null space, two 

approaches are possible. The first one is calculating the 

derivative of the null space using the parametric 

presentation of the matrix, and the second approach is by 

employing equation (5) as below: 

 
1

1 1

0 0

( )T T

AN AN AN N A AN

A A AA

−

− −

 = → + = → = −


=

& && &
       (41) 

 

Thus for extracting the inverse dynamics which can be 

used as the feedforward controlling term of the robot, it 

is sufficient to calculate the desired 𝑠𝑖 from the desired 

path of the moving platform using the explained 

kinematics and by the aid of constraint relations of 

equation (26). Also the generalized coordinates and their 

related derivatives can be calculated and substituted in 

equations (40, 41). By substituting the equation (40) in 

equation (39) we have: 

 

( )T T TN M Nv Nv N CNv N G F+ + − =
r rr r& &            (42) 

 

While equation (42) can be rewritten as follow: 

 
1( ) ( )T Tv N MN N Q G CNv MNv−= + − −

r r r&&               (43) 

 

And therefore by selecting �⃗�6×1 = [𝑆1, 𝑆2, 𝑆3, 𝑣𝑇]T as 

the states of the system, its corresponding state space can 

be developed as: 
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               (44) 

 

Considering equation (13) we have: 

 

21 1

1 ˆ

ˆ ˆ( ) ( )T T

N N
B

N MN B N MN− −

−
= →

=

                          (45) 

 

By substituting the equation (45) in (44) and using the �̇� 

of equation (41): 
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 (46) 

 

It can be seen that the term h in equation (46) is 

significantly summarized respect to the same term in 

equation (44). In fact, splitting the |B| from null space 

matrix has many advantages toward simplifying the 

dynamic equation and its related mathematical 

simulation. In other researches, the existence of this 

parameter |B| is ignored while the speed of calculations 

is also low. Decreasing the usage of the term|𝐵| in h can 
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heavily decrease the complexity of the parametric 

calculations which finally increases the efficiency of the 

required consumption of calculation time. 

5 SIMULATION STUDY 

In order to check the developed kinematics and kinetics 

and also verify the efficiency of the proposed 

mathematical simplification of modeling using the 

explained NOC method, some simulation scenarios are 

provided and the results are compared and analyzed. 

Following parameters are employed for the simulating 

the mentioned robot. (“Table 2ˮ) 

 
Table 2 Engaged parameters for simulating the 3PRS robot 

value Unit symbol Parameter 

0.8 (m) a Jacks’ course 

0.2 (m) b 
Radius of the moving 

platform 

0.5 (m) l Length of the links 

1 (kg) M Mass of the moving platform 

0.1 (kg) m Mass of the links 

9.8 (m/s2) g Gravitational acceleration 

 

5.1. Model Verification 

In order to check the extracted model of the system, the 

robot is simulated in SimMechanics and its results are 

compared with the results of MATLAB. The scheme of 

the modeled robot and its simulation process in 

SimMechanics is shown in “Figs. 3, 4ˮ.  

 

 
Fig. 3 The scheme of the modeled robot in SimMechanics. 

 
Fig. 4 The scheme of the simulation in SimMechanics. 

 

Consider the following path as the desired trajectory of 

the sliders 𝑆𝑖 which results in the desired platform 

trajectory of X: 

 

1

2

3

S =0.6+0.2sin(t),

S =0.6-0.3sin(t),

S =0.6-0.2sin(t).







                                               (47) 

 

The above desired joint space trajectory is employed for 

verification process and the actual movement of the 

workspace platform and also the required force of the 
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jacks are compared between SimMechanics and 

MATLAB. Comparison of the generalized coordinates 

and generalized force between MATLAB (C) and 

SimMechanics (S) is shown in “Fig. 5”. 

 

 

 
Fig. 5 Comparison of the generalized coordinates and 

generalized force between MATLAB (C) and SimMechanics 

(S). 
 

It can be seen that an acceptable compatibility exists 

between the profiles of MATLAB and SimMechanics 

which proves the validity of robot modeling. Here in 

order to calculate the dynamic force of the mechanism, 

all of the generalized coordinates are extracted using 

inputs of [𝑠𝑖 , �̇�𝑖 , �̈�𝑖] and considering the constraints of 

equation (26). Then using the above results and 

employing equation (42) the hydraulic force of the jacks 

are calculated. In order to verify the correctness of 

modeling, the actual kinematic results of the end-

effector movement which is gained by the aid of solving 

the forward dynamic and using the proposed method of 

NOC is extracted and is compared with the desired 

trajectory as shown in “Fig. 6”. 

 

 

 
Fig. 6 Comparison of the actual and desired kinematic 

movement of the end-effector and its speed. 
 

It can be seen that the actual movements of the end-

effector which is calculated using the proposed NOC of 

this paper have a good compatibility with the desired 

trajectory of the end-effector with an error of less than 

10−3 which is related to numerical error of the employed 

software. This compatibility shows the correctness and 

validity of the proposed method. Also the rotation of the 

platform and its speed is compared here between the 

inverse and direct dynamics as shown in “Fig.7”. 
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Fig. 7 Comparison of the actual and desired angular 

movement of the end-effector and its speed. 
 

Again here the good compatibility between the inverse 

and direct dynamics shows the correctness of modeling 

and null space calculation. The little deviation in the 

profile of rotational speed is due to closing to singularity 

region of Jacobian matrix which can be compensated by 

a more efficient setting of the calculation step size. In 

order to verify the satisfaction of the kinematic 

constraints, the time profile of equation (26) which is the 

error of kinematic constraint satisfaction is extracted in 

“Fig. 8ˮ.  

 

 
Fig. 8 The error of satisfaction of the kinematic 

constraints. 

For the perfect model in which the kinematic constraints 

are perfectly satisfied, this profile should be zero during 

the simulation. As can be seen this condition is satisfied 

with a great accuracy of order 10−16 which shows that 

not only path tracking is conducted accurately but also 

the related kinematic constraints are completely satisfied 

simultaneously. 

5.2. Proposed NOC Algorithm Verification 

In order to verify the efficiency of the proposed method 

of elimination of Lagrange multipliers compared to 

conventional ones, the required calculations toward 

modeling of the mentioned 3PRS robot is evaluated 

using the proposed method and is compared with most 

conventional and traditional method of Gauss-

Jordan elimination. The simulation is performed in 

MALAB. To compare these two methods, modeling of 

forward dynamics is considered in which elimination of 

Lagrange multipliers is required. Thus, the null space of 

matrix A needs to be calculated using the mentioned 

methods. This null space is calculated considering two 

approaches of numerical and analytical calculation 

methods. Required time of calculation for analytic 

approach is compared between the proposed method and 

traditional one using tic-toc code and its results are 

presented in “Table 3ˮ. 
 

Table 3 Required time for calculating the null space matrix 

and its comparison between two methods using analytic 

method 

Time 

(sec) 
Method 

298.14 Method of Gauss-Jordan elimination 

2.16 Proposed method of NOC 

 

It can be seen that there is a huge difference between the 

required mathematical calculation toward performing 

the elimination of multipliers between the conventional 

method of Gauss-Jordan elimination and the proposed 

method of NOC. Here the required time is decreased by 

about 138 times which is a significant optimization in 

required processing of modeling. Also required time of 

processing the mentioned calculations using numerical 

approach is compared using tic-toc code for a same CPU 

and the result is as below. This comparison is performed 

for 1000 times of calculation of null space. (“Table 4ˮ) 
 

Table 4 Required time for calculating the null space matrix 

and its comparison between two methods using numerical 

method 

Time 

(sec) 
Method 

0.7526 Method of Gauss-Jordan elimination 

0.2001 Proposed method of NOC 

 

It can be observed that again here required time of 

calculating the null space matrix is also decreased to 

some extent by about 3.7 times. As it was expected that 
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this optimization for analytic method is more sever since 

here the mathematical processing is parametric. Thus for 

applications in which analytic and parametric modeling 

is required such as optimization and path planning 

processes, the proposed method can enormously 

decrease the time and increases the speed of processing. 

These two comparisons show the efficiency and 

superiority of the proposed method of modeling over the 

conventional algorithms since the heavy mathematical 

calculation of the constrained nonlinear modeling of the 

system is considerably reduced. From equation 46 it can 

be inferred that the required calculations for modeling 

the system is directly dependent to the required 

calculations of extracting its related null space matrix 

and this reduction in calculation of null space matrix can 

extremely save the time and effort of modeling 

calculations. 

6 CONCLUSION 

In this paper a new version of parallel robot was studied 

which has an acceptable workspace and a good 

capability for load transferring. Also a new method for 

optimum calculation of the null space of the system was 

proposed through which the modeling of the system can 

be performed with the minimum mathematical 

calculation and the maximum accuracy. In order to 

verify the efficiency of the algorithm, it was 

implemented on the mentioned 3PRS robot.  

Complete kinematic modeling of the robot was 

represented which is perquisite for dynamics, control 

and optimization of the robot. Also implementing 

Lagrange multiplier, the dynamic equation of the 

constrained system was extracted. It was explained that 

the inverse dynamic of the system can be employed as 

the feedforward controlling term of the system while the 

forward kinetic of the robot can be used as the plant of 

the system in order to verify the designed controller and 

the proposed optimization of the null space calculation. 

Afterwards, a new method of calculating the null space 

of a system was presented through which a lower 

amount of mathematical calculation and time is required. 

Also the accuracy of the proposed formulation can be 

maximized by orthogonal zing the calculated null space. 

It was seen that to implement the proposed optimization 

on the constrained case study of this paper, a new 

technique can be employed through which the dependent 

generalized coordinates of the robot and related 

multipliers were eliminated using the null space of the 

system. All of the mentioned modeling, controlling and 

optimization processes were verified by conducting 

some analytic and comparative simulation scenarios in 

MATLAB for a 3PRS robot.  

It was seen that the designed kinematic and kinetic 

model of the system is correct since the actual and 

desired path of forward and inverse models are greatly 

compatible with 99.7 percent accuracy. The mentioned 

comparison in dynamic modeling also showed the 

efficiency of the designed controller based on computed 

torque method. Afterwards the proposed methods of 

optimization of calculating the null space was verified 

by comparing the required mathematical calculation and 

time consumption for the proposed method and the 

conventional method of Gauss-Jordan elimination in 

MATLAB.  

The correctness of modeling and the satisfaction of 

kinematic constraints were verified by the aid of 

SimMechanics and some analytic simulation scenarios. 

The rate of optimization by the aid of proposed method 

was also checked through two main approaches of 

analytic and numerical calculations. It was seen that the 

required time of processing for calculating the related 

null space is significantly decreased by about 138 times 

for analytic approach and about 3.7 times for numerical 

one. It was explained that this difference is contributed 

to the fact that in analytic approach the calculation 

should be performed in a parametric way.  

Moreover, it was shown that by orthogonal zing the null 

space in this method the accuracy of the modeling can 

be increased simultaneously. Therefore, it was seen that 

using the results of this paper, the null space of 3PRS 

robot can be easily extracted and its related model can 

be developed while the minimum calculation and time is 

required and the maximum accuracy can be achieved. 

7 APPENDIX 

Here an example is presented for better comprehension 

of the efficiency of the proposed optimization method of 

this paper. Suppose the following matrices: 

 
1 2 0 1

5 8 1 3

0 1 1 2
, , 2

1 3 5 8

A

C B B

 
= → 
 

   
= = = −   
   

 

 

0 2 1 0

1 11 8 5 1
1 0

0.5 12 2

1 01 2 1 1

0 13 8 5 3
0 1

2 2

T

N

 
  − 
 − −  

− − −  = =   
   
   
− − 
 − − 

             A-1 

 

As can be seen, the resultant of (𝐴𝑁 ) is equal to zero, 

and the matrix N is the expected null space matrix. Now 

if we would like to calculate the N in a way that its base 

would be orthogonal, we can implement the mentioned 

algorithm of this paper as follow: 
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 1

2

1 2

1 2 0 1 1 2 0 1

ˆ5 8 1 3 5 8 1 3

1 0.5 1 01 0.5 1 0

1 1 2 0

3 , 5 8 1 , 4.5

0 1 0.5 1

0.33

0.66

0.66

1

1 0.5 1 0
[ ]

0.33 0.66 0.66 1

2.25 0

0 2

T

T

T

A
A

N

C B B

N

N N N

N N

    
=    

→ =   
  −= −  

   
   

= = = −
   
   −   

 
 
−
 → =
 
 
 

− 
= =  

− 

 
→ =  

 

          A-2 

 

As can be seen the resultant of (𝐴𝑁 ) is equal to zero. 

Also in (𝑁𝑇𝑁 ), all of the elements are zero except than 

the main diagonal of the matrix. 
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