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1 INTRODUCTION 

Nowadays, applications of sandwich structures have 

been increased in different modern industries. A 

footprint of usage of the sandwich structures has been 

seen in the engine aircraft, naval, space shuttle, satellite, 

trains, and many other engineering structures. The basic 

framework of sandwiches composes two, not definitely 

identical, face sheets which cover the core. These 

structures have high performance and bending rigidity 

versus low weight [1]. The ordinary composites are 

weak in high temperature environments and will fail due 

to delamination and stress concentration in the layers of 

the sandwich. So, Japanese researchers proposed 

functionally graded materials to overcome these 

problems. FGMs are microscopic inhomogeneous 

materials which gradually graded from a metal surface 

to a ceramic one [2].  

These modern materials have been used in both faces 

and core. The material properties vary in high 

temperature, so the FGM and homogeneous materials 

which are used in the sandwiches should be considered 

as temperature dependent materials. Also, during the 

production process of FGMs, some micro voids appear 

which affect the material properties. Different porosity 

distributions are considered to model the micro voids 

such as even and uneven porosity [3]. Shear deformation 

plate theory, 3D elastic theory, energy and finite element 

method are some approaches to investigate the 

mechanical behaviour of sandwich panels [4]. In these 

theories, the core height is constant, but in fact the 

thickness of the sandwich plates are variable. So, the 

core should be considered as a flexible layer that is 

compressed transversely. In the classical theories, the 

localized effects in the core cannot be calculated, so to 

consider these effects the high order theory was 

presented [5]. An important kind of sandwich structures 

that is used in high temperature industries is the FG 

circular sandwich plate with both FG faces and FG core.  

FGMs have wide applications in the researches. 

Najafzadeh and Shoughi studied the vibration behaviour 

of functionally graded circular plate with various 

boundary conditions [6]. Zenkour and sobhy 

investigated the buckling of the sandwich plates and 

applied the FGMs as the faces which their material 

properties varied gradually by a power law rule along the 

thickness [7]. Amininejad et al. investigated the 

vibration of FG plates with classical boundary 

conditions. The FGM properties were graded based on a 

sigmoid function [8]. Davar et al. studied the vibration 

behaviour of FG circular cylindrical shells under internal 

pressure. The material properties varied based on a 

power law rule [9]. Kamarian presented a volume 

fraction optimization for FGM beams resting on elastic 

foundation. The properties graded through the thickness 

based on a generalized power-law rule [10]. Boutahar 

and Benamar investigated the vibration behaviour of 

porous FG annular plates with elastic foundations. They 

modified the mixture rule by considering the porosity of 

FGM [3].  

Wang and Zu surveyed the vibration of the porous FG 

rectangular plates in different thermal conditions. 

Defects in production process result in considering two 

types of porosity distribution, namely, even and uneven 

[11]. Barati and Shahverdi analysed the stability of 

supersonic porous FGM panels by using a high order 

theory. They used even and uneven distributions to 

model the porosities [12]. Chen et al. studied some 

mechanical behaviour of FG porous beam by applying 

the Timoshenko theory. They considered the material 

properties of the composite varied along the thickness by 

various porosity distributions [13]. By applying a finite 

element approach, Prakash and Ganapathi studied the 

mechanical behaviour of FG circular plates [14]. 

Heydari by using energy method studied the buckling of 

FG circular plates [15].  

Jandaghian and Jafari by using Kirchhoff plate model 

studied the vibration of a circular plate [16]. Morovat by 

applying the high order sandwich shell theory studied 

the buckling of composite sandwich truncated conical 

shells [17]. Mantari et al. utilised a HSDT to find the 

frequencies of functionally graded plates located on 

elastic foundation [18]. Khalili and Mohammadi by 

applying a high order theory of the sandwich plates 

investigated the vibration behaviours of a FG 

rectangular sandwich plates [19]. With a high order 

theory Salami et al. inspected the bending in rather thick 

faces sandwich beams with a soft core which satisfied 

the stress compatibility condition at interface [20]. 

Frostig et al. investigated the nonlinear wrinkling of a 

functionally graded core sandwich panel by employing 

a modified high order theory [21]. Temperature 

dependent materials have been used in some researches. 

Shahrjerdi et al. analyzed the vibration characteristics of 

temperature-dependent solar FG plates by applying the 

second-order shear deformation theory [22].  

Frostig and Thomsen numerically investigated the 

vibration of sandwich plates consisted of a core that its 

material was temperature dependent [23]. Pandey and 

Pradyumna by utilising the layer-wise theory, explored 

the frequency responses of the FG sandwich plates made 

of the temperature dependent materials [24]. Many 

researchers have explored the vibration behaviour of the 

circular sandwich plates. Sherif discussed the 

frequencies characteristics of the clamped circular 

sandwich plates by applying the FSDT. The core was 

viscoelastic and shear stress and rotary inertia were 

considered [25]. Chan II Park derived the frequency 

equations of the uniform thickness circular plate with 

clamped boundary condition [26]. By exerting a 3D 

elasticity procedure, Nie and Zhong investigated the 

frequencies characteristic of the FG circular plates in 
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various boundary conditions [27]. Ebrahimi et al. 

studied the vibration characteristics of FG circular plate 

which was merged with two piezoelectric layers in 

different boundary condition [28]. Lal and Rani 

investigated the free vibrations of circular sandwich 

plates in different boundary conditions by utilising the 

FSDT [29]. Heshmati and Jalali studied the vibration of 

porous FG circular and annular sandwich plates based 

on the FSDT [30]. 

As a result of review in the accessible literatures, it is 

found that more investigation into the free vibration of 

circular sandwich plates is needed. This study thus 

intends to scrutinize the temperature dependent 

vibration behaviour of sandwich circular plates with FG 

faces and FG core based on the high order sandwich 

plate theory. The differences of this study in comparison 

with the other researches are as follows: 

1- Applying the high order sandwich plate theory which 

is modified by considering the flexibility of the core 

in the thickness direction. 

2- Considering the high order stresses and thermal stress 

resultants, in plane stresses and thermal stresses of 

the core and face sheets at the same time. 

3- Considering porosity distributions in both FG faces 

and FG core. 

4- Considering the dependency of temperature for all 

materials properties of sandwiches. 

Two kinds of circular sandwich plates are considered in 

the uniform temperature distributions. In the first type, 

sandwiches consist of two FG faces which cover a 

homogeneous core, namely, type-I and in the second 

type, sandwiches with FG core which surrounded by two 

homogeneous face sheets, namely, type-II. FGM 

properties are temperature and location dependent which 

are graded according to power law rules that include the 

volume fraction of the porosities.  

Boundary condition is clamped and equations are 

derived based on the Hamilton's energy principle. To 

obtain the frequencies, a Galerkin method is applied. In 

order to validate the present approach, the results of this 

analytical approach are compared with the numerical 

results which were obtained by Abaqus software and for 

a special case are compared with some literatures. 

Finally, the effects of the temperature changing, volume 

fraction distribution of FG face sheets and FG core, 

porosity and some geometrical effects on the vibration 

characteristics of defined sandwich plates are 

investigated. 

 

 

 

2 BASIC FORMULATION 

In this study, FGMs are used in the face sheets and the 

core in two types of sandwich. First, a sandwich with FG 

face sheets and a homogeneous core, named, type-I and 

second, a sandwich with a FG core and two 

homogeneous face sheets. In order to investigate the 

vibration behaviour of functionally graded circular 

sandwich plates and obtain the governing equations of 

the motion, Hamilton's energy principle is applied which 

consists of the variation of the kinetic, δK, and strain 

energy, δU. The main equation is as follow [31]: 

 
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The variation of the kinetic energy is calculated as 

follows: 
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where (∙∙) indicates the second derivative with respect to 

time; the density is "ρ" which in the functionally graded 

layers is the function of the displacement and the 

temperature, and in the homogeneous layer is just a 

function of the temperature; the top and bottom face 

sheets and the core, are indicated with "t", "b" and "c", 

respectively. To model the properties of the FGMs 

which usually include ceramic and metal and vary 

gradually in the thickness direction, a power law rule is 

applied. By considering two kinds of porosity 

distribution which appear in the manufacturing process, 

the power law rule is modified to approach an accurate 

prediction of the material properties. The first one is 

even porosity distribution that modifies the power law 

rule as follows [3]: 
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Where "ζ" is the porosity volume fraction. It is assumed 

that the porosities occurred at the middle area when the 

FGM structures have been produced based on the 

principle of multi-step sequential infiltration techniques. 

In this area, infiltration of the material is hard and 

imperfect but at the edges of the FG layer, it has been 

performed easily that causes to less porosity. So, in the 

second approximation, it is considered that the porosities 

are distributed in the middle area of the FG layer and by 

approaching to the edges, they decrease and tend to the 

zero. Therefore, the equation of the material properties 

in the uneven case are modified as follows [3]: 
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Since these sandwich structures are applied in high 

temperature conditions, it is necessary to consider that 

the FGMs and homogeneous materials are temperature 

dependent. This dependency is expressed as a nonlinear 

function of temperature as follows [32]: 

 

 1 2 3
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                       (6) 

Where "C"s are unique coefficients of temperature for 

each material, and T=T0+ΔT, which T0 is the room 

temperature. Inspired by Kirchhoff’s assumptions, a 

classical theory of plates in polar coordinate, is 

employed to model the displacement fields of the face-

sheets as [33]: 

 

   
 

j 0 j j

w r,θ, t
u r,θ,z, t u r,θ, t z

r


 


                     (7) 

   
 j

j 0 j

z w r,θ, t
υ r,θ, z, t υ r,θ, t  , ( j t, b)

r r


  


    (8) 

   j 0 j  r,θ,z, t w r,θ, tw                                            (9) 

 
Where "0" denotes values with correspondence to the 

central plane of the layers. "u" and "υ" are the in-plane 

deformations in the "r" and "θ" directions and "w" is the 

transverse deflections of the faces as shown in “Fig. 1ˮ. 

Figure 1 shows a schematic of functionally graded 

circular sandwich plate which faces are FGM in type-I 

and core is FGM in type-II. 

 

 
Fig. 1 A schematic of circular FG sandwich plate. 

 
Also, the kinematic relations of the core are considered 

as the polynomial pattern with the unknown coefficients, 

uk and νk (k= 0,1,2,3), for the in-plane and wl (l = 0,1,2) 

for vertical displacement components which are 

obtained by the variational principle [19]: 
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In this theory, the compatibility conditions assume that 

the faces are sticked to the core completely and the 

interface displacements between the core and the face 

sheets can be obtained as follows: 
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The variation of the total strain energy includes all 

mechanical and thermal stresses and linear and nonlinear 

strains of the layers of the sandwich plates that make the 

mechanical and thermal energy [34]. In addition, the 

compatibility conditions at the interfaces of the core and 

the face-sheets are the constraints and attended in the 

Hamilton’s principle in terms of six Lagrange 

multipliers. By considering the effects in-plane stresses 

of the core in this formulation, δU, is as follows: 
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"σrr", "σθθ" and "τrθ" display the normal and shear 

stresses, "εrr", "εθθ" and "γrθ" are the linear normal and 

shear strains of the layers, "σrr
T" and "σθθ

T" express the 

thermal stresses and "drr" and "dθθ" are the non-linear 

strains in the faces, "σzz
c" and "εzz

c" present the lateral 

normal stress and strain in the core, "τrz
c", "τθz

c", 

"γrz
c"and "γθz

c" declare the shear stresses and shear 

strains in the thickness direction of the core, "λr","λθ" 

and "λz" are the Lagrange multipliers at the face sheet-

core interfaces. Considering small deflection, the strain 

components for the faces can be declared as follows 

[34]: 
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The"(),𝑖" expresses derivation with respect to i. The 

strain of the core can be defined as [35]: 
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In this model, by substituting the expressions of the “Eq. 

(2) and Eq. (15)ˮ according to the kinematic relations of 

the layers and using the interfaces relations, and after 
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some algebraic operations, the twenty-three equations of 

motion are obtained, which included twenty-three 

unknowns: six displacement unknowns for both face 

sheets in “Eqs. (25-30)ˮ, eleven displacement unknowns 

for the core in “Eqs. (31-41)ˮ, and six Lagrange 

multipliers in “Eqs. (42-47)ˮ: 
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In the relations of the face sheets, the "N"s depict the 

stress resultants and the "M"s refer to the moment 

resultants which calculated as follows: 
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The constant coefficients Akl
j, Bkl

j and Dkl
j (k,l =1, 2, 6) 

indicate the stretching, bending-stretching, and bending 

stiffnesses, respectively, which can be obtained by: 
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Also, the thermal stress and moment resultants are 

defined as: 
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Where E,   and   are the Young's modulus, the 

Poisson’s ratio and the thermal expansion coefficient, 

respectively, which in the functionally graded layers are 

the function of the displacement and the temperature, 

and in the homogeneous layers are just a function of the 

temperature. The inertia terms of the face sheets and the 

core are calculated as follows: 
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The out-of-plane and in plane stresses in the core leads 

to the high order resultants: 
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Finally, by substituting the high order stress resultants in 

the equations of the face sheets and the core in terms of 

the displacement components, the governing equations 

of motion are derived in terms of the twenty-three 

unknowns. However, for a clamped circular sandwich 

plate, a Galerkin method solution could be established. 
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3 CLAMPED CIRCULAR SANDWICH PLATE 

In order to solve the equations of the free vibration of the 

clamped FG circular sandwich plate, a Galerkin method 

with twenty three trigonometric shape functions, which 

satisfy the boundary conditions, is established. The 

shape functions can be expressed as: 
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where "Cuj, Cwj, Cuk, Cwl, Cλrj and Cλzj" are fifteen 

unknown constants and λ=π/2a((2n-1)) that "n" is the 

wave number. Since the plate is axisymmetric, “Eqs. 

(26, 29, 35, 36, 37, 38, 43, and 46)ˮ are eliminated and 

the number of the equations is reduced to fifteen. On the 

other hand, these fifteen equations are not independent 

and by a procedure, the number of them is reduced. 

Lagrange constants can be isolated as the faces 

constants.  

It is seen that based on the compatibility conditions, the 

unknown constants of the faces are dependent to the core 

constants. At last by some operations the number of the 

equations are reduced to seven in terms of the core 

unknown constants. The seven equations can be written 

in the 77 matrix form which include the mass, "M", and 

stiffness, "K", matrices in accordant to the “Eq. (67)ˮ to 

obtain the constant Eigen values which equals to Eigen 

frequencies, ωn, for every wave number, n: 

 
2( ) 0n n n nk M F                                                     (67) 

 
In “Eq. (67)ˮ, Fn is the Eigen vector which determines 

the seven unknown constants of the core. To simplify, 

the fundamental frequency parameter defined that is 

non-dimensional as: 
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where "a" is the radius of circular sandwich plate; "h" is 

the total thickness of sandwich plate; ρ0 is density equal 

to 1kg/m3 and E0 is the young module equal to 1 GPa. 

4 VERIFICATION AND NUMERICAL RESULTS 

To validate the approach of this work, the present results 

in a special case are compared with results of [14], [36] 

and FEM results of Abaqus software for a clamped 

isotropic circular plate with properties: E=380 (GPa), 

ρ=3800 (Kg/m3), 𝜗 =0.3 and h/a=0.2 as shown in “Table 

1ˮ. Because, the theory of present analysis is different 

from the [14], [36], a discrepancy is found in the results. 

Also, discontinues model is used in Abaqus model that 

causes a little discrepancy with present analysis. 
 

Table 1 Comparison of fundamental frequency parameters of 

present, [13], [36] and Abaqus results 

M Present result [14] [36] ABAQUS 

1 10.232 10.213 10.216 10.842 

2 21.472 21.259 21.260 22.318 

 

 

 
Fig. 2 Finite element model for the clamped sandwich 

plate. 

 

Now, another numerical problem will be discussed to 

more investigation of the present approach. Consider 

two kinds of clamped FG circular sandwich plates. In 

type-I, the face sheets interior planes and the core are 

made of the zirconium dioxide and the outer planes of 

the faces are made of silicon nitride. In type-II, the 

interior plane of the core and inner face sheet are made 

of the zirconium dioxide and the outer plane of the core 

and outer face sheet are made of silicon nitride. The 

properties of these materials are available in [32].  
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Variation of the material properties in each FG layer is 

correspond to the modified power-law function. 

Numerical examples are simulated by Abaqus software 

for validation of the present approach as shown in     

“Fig. 2ˮ. 

In “Table 2ˮ fundamental frequency parameters of this 

approach are compared with the FEM results by Abaqus 

software in the temperature of the room and for different 

power law indices in the case of 1-8-1 sandwich. It 

should be noted that in 1-8-1 sandwich, the core 

thickness is eight times of every face sheets thickness 

and the structure is symmetric. In “Table 2ˮ, the 

discrepancies between the present results and FEM 

results are due to simulation method of FG layers in 

Abaqus software. In order to simulate the FG face-sheets 

and FG core in Abaqus, all FG layers are divided to 20 

isotropic sub-layers that each sublayer has different 

properties according to power law function. There is a 

good agreement between the present study results and 

the FEM results obtained by Abaqus. 

 
Table 2 Comparison of fundamental frequency parameters of 

the present method and Abaqus results in 1-8-1 sandwich 

 N Present method Abaqus Discrepancy 

Type-

I 

0.2 0.76734 0.72906 %5.25 

1 0.75616 0.7237 %4.48 

2 0.74972 0.7131 %5.13 

Type-

II 

0.2 1.0726 1.0501 %2.14 

1 0.9425 0.9385 %4.26 

2 0.8786 0.8551 %2.74 

 

The frequency of the structures is dependent to the 

temperature variation. The effect of the uniform 

temperature distribution on the fundamental frequency 

parameter is depicted in “Fig. 3ˮ for two types of 1-8-1 

clamped circular FG sandwich plates in different power 

law indices. As shown in “Fig. 3ˮ, while the temperature 

is increased, the fundamental frequency parameter 

decreases. According to “Eq. (6)ˮ, temperature rising 

reduces the strength of the material. To clarify this 

phenomena, in Table 3 the effect of temperature on the 

Young's modulus of ceramic and metal is indicated. 

With increasing the temperature, modulus of metal and 

ceramic decrease, but due to the microstructural reasons, 

decreasing the module of metal is more. So, increasing 

the temperature reduces the mechanical properties that 

is one of the most important reason in decreasing the 

frequency in high temperature. Also in a constant 

temperature, the fundamental frequency is decreased in 

the larger power law indices; since with increasing the 

power-law index the properties of the layers are tending 

to metal and the strength of the structure is decreased. It 

is obvious in “Fig. 3ˮ that the values of the fundamental 

frequency parameters in type- II are more than type-I for 

all power law indices and all temperatures. It is 

concluded that the sandwiches with FG core is proper 

than the sandwiches with FG face sheets, in the thermal 

conditions, generally.  

 

 
(a): Sandwich type-I 

 

(b): Sandwich type-II 

Fig. 3 Frequencies changing with temperature in various 

power law indices for 1-8-1 sandwich plates. 

 

Table 3 Effect of temperature variation on the Young 

modulus in metal and ceramics 

Zirconium dioxide Silicon Nitride Temperature 
168.06 (GPa) 322.27 (GPa) 300 K 
112.52 (GPa) 268.08 (Gpa) 1300 K 

33.04% 16.81% change 

 

Figure 4 shows the radius to thickness ratio changing on 

the fundamental frequency parameter for 1-8-1 circular 

FG sandwich plates in temperature of the room. This 

figure implies that when ratios increase for constant 

power law index, the fundamental frequency parameters 

increase. As depicted in “Fig. 4ˮ, power law effects on 

the FG core sandwiches are more than FG faces 

sandwiches.  
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(a): Sandwich type-I 

 
(b): Sandwich type-II 

Fig. 4 Variation of the fundamental frequency with radius 

to thickness ratio for different power law indices in 1-8-1 

sandwiches. 

 
(a): Sandwich type-I 

 

 

 

(b): Sandwich type-II 

Fig. 5 Fundamental frequency changing with core to face 

sheet thickness ratio in various power law indices. 

 

Figure 5 depicts variation of the core to face sheet 

thickness ratio, hc/ht, on the fundamental frequency 

parameter in various power law indices and constant 

total thickness. In type-II, by increasing the ratio, the 

amount of ceramic is increased and the structure will be 

stiffer, so, the fundamental frequency parameter 

increases. But, in type-I, by increasing the ratio in a 

constant total thickness, the amount of metal increases 

and the structure will be softer, so the fundamental 

frequency decreases.  

In order to clearly understand the porosity influence, 

“Figs. 6 and 7ˮ show the effect of even and uneven 

porosity distributions on the frequency of the sandwich 

plates, respectively. As depicted in these figures, in 

sandwiches type-II, both porosity distributions are 

dependent of power law indices. By increasing the 

porosity volume fraction, the fundamental frequency 

parameter first increases at lower gradient indices, but 

from a certain value of the power law index, increasing 

porosity volume leads to decreasing the fundamental 

frequency parameter.  

These increasing and decreasing are stronger in the case 

of even porosity distribution in FG faces sandwiches. In 

even distributions, porosities occur all over the cross-

section of FG layer. While, in uneven distribution, 

porosities are available at middle zone of cross section. 

Beside, in “Figs. 6 and 7ˮ in sandwiches type-I, with 

increasing the porosity volume fraction, the fundamental 

frequency parameters increase with an almost constant 

slope for all power law indices that shows another 

important different behaviour of these two kinds of 

sandwiches. 
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(a): Sandwich type-I 

 
(b): Sandwich type-II 

Fig. 6 Variation of the fundamental frequency with even 

porosity distribution for different power law indices. 

 

 
(a): Sandwich type-I 

 
(b): Sandwich type-II 

Fig. 7 Variation of the fundamental frequency with 

uneven porosity distribution for different power law indices. 

5 CONCLUSION 

In this paper by applying a modified high order theory, 

vibration behaviour of two types of clamped circular 

sandwich plates were investigated subjected to a 

uniform high temperature distribution. Governing 

equations were derived based on the Hamilton's energy 

principle. Material properties of the FG layers were 

temperature and location dependent. By considering two 

types of porosity in FG layers, a modified power law 

rules was employed to model the gradually variation of 

the properties. The homogeneous layers were 

temperature dependent, too. Unlike the most papers, in 

plane and out of plane stresses of the core were 

considered at the same time. To obtain the frequencies, 

a Galerkin method was applied. In order to validate 

present approach, the numerical results which were 

obtained by Abaqus software were compared to the 

results of this analytical approach and for a special case 

compared with some literature. Based on the results 

obtained by this approach and comparing with FEM 

results, there was a good agreement with them and the 

following conclusion can be drawn. 

1- With increasing the temperature in a constant power 

law index, the fundamental frequency parameter 

decreases. 

2- By increasing the power law index, the fundamental 

frequency parameter decreases. 

3- With increasing the radius to thickness ratio, the 

fundamental frequency parameter increases. 
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4- By increasing the core to face sheet thickness ratio, the 

fundamental frequency parameter in type-II 

increases and in type-I it decreases. 

5- In sandwiches type-II, both porosity distributions are 

dependent of power law indices, but in type-I with 

increasing the porosity volume fraction in both even 

and uneven distributions, the fundamental frequency 

parameter increases. 

6- Generally, Power law effects on the FG core 

sandwiches are more than FG faces sandwiches.  

6 NOMENCLATURE 

δ Variation  B 
Bending-stretching 

stiffnesses 

K Kinetic Energy (J) D Bending stiffnesses 

U Strain Energy (J) k  

t Time (s) E Young’s modulus 

ρ )3Density(kg/m ν Poisson’s ratio  

u 
Inplane 

deformation  
α 

thermal expansion 

coefficient 

υ 
Inplane 

deformation 
ω Frequency 

w 
Transverse 

deformation 
N Power law index 

r,

θ, 

z 

Polar coordinate 

components 
n Wave number 

T Temperature(K) N Stress Resultant 

ζ 
Porosity volume 

fraction 
M Moment Resultant 

c

e 
Ceramic 

,()

i 
Derivation  

m Metal A Stretching stiffnesses 

σ Normal stresses 

ε Normal strain 

τ Shear stress 

γ Shear stress 

λ 
Lagrange 

multiplier 

I Inertial Terms 
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