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Abstract: In this paper, the direct extrusion process of bimetallic rods in conical 
dies is analyzed by an improved upper bound method. The deformation zone is 
subdivided into six smaller zones and by considering a non-spherical entrance 
boundary to the deformation zone, a velocity field is presented which is different 
from velocity fields employed in previous studies. The total power consumption of 
the process including internal, shear and frictional powers is obtained using this 
velocity field, and then the forming force is calculated by employing the upper 
bound theory. The superior accuracy of the proposed analysis is demonstrated by 
comparing the computed force with available experimental data and results of an 
upper bound analysis in the literature. Finally, the developed model is employed to 
study the effect of some process parameters on the forming load. It is observed that 
there is an optimal die angle that minimizes the extrusion force. The value of this 
optimum angle increases with friction coefficient. 
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1 INTRODUCTION 

Bimetallic rods consisting of two different metal layers 

have been used widely in various industries due to their 

distinct properties such as high electrical conductivity, 

high corrosion resistivity, high strength, better wear 

resistance, etc. A hybrid rod made of aluminum and 

copper is one of the most commonly used types of 

bimetallic rods. This metal system combines the light 

weight and easy availability of aluminum with superior 

conductivity of copper. Consequently, the resulting 

product offers 40% to 50% reduction in weight and 

30% to 40% reduction in price for equivalent 

conductivity as compared to copper [1]. The extrusion 

process is considered to be one of the most effective 

methods for manufacturing bimetallic rods and tubes. 

The compressive stress state in this process is helpful to 

produce a suitable metallurgical bond between metal 

layers [2]. In this process, like all other metal forming 

methods, the calculation and optimization of the 

forming force is of primary importance. However, 

calculation of exact forces to cause plastic deformation 

is often difficult and consequently, numerous efforts 

have been made to appropriately estimate the force 

required to accomplish the involved plastic 

deformation. One the most popular approaches for 

force estimation is the upper bound method which 

always predicts a value higher than the true required 

force. 

A number of studies have used the upper bound 

approach to analyze the extrusion process. Osakada et 

al in [3] investigated the extrusion of bimetallic rods in 

conical dies by experimental and upper bound 

approaches. The effects of extrusion ratio, die angle 

and frictional shear stress were considered in their 

study. Avitzur et al used upper bound method in [4], [5] 

to derive a criterion for prevention of core fracture 

during extrusion of bimetal rods. They concluded that 

the variables affecting core fracture are: reduction in 

area (r%), die geometry, friction, relative size of core 

and relative strength of the core. Peng in [6] 

investigated the geometric shape of the deformation 

zone in rod extrusion by an upper bound analysis. The 

boundary at the entrance to the deformation zone was 

assumed to be an arbitrary curved surface, whilst the 

boundary at the exit was assumed to be a spherical 

surface. It was shown that the boundary at the entrance 

of the deformation zone is generally a concave 

ellipsoidal surface, the concavity decreases with 

increasing extrusion ratio and friction factor and 

decreasing die angle. Tokuno and Ikeda in [7] studied 

some flow characteristics of deformation in the 

extrusion of composite rods using the upper-bound 

approach. They observed that when the core material is 

softer than the sleeve material, the interface between 

two materials suppresses effectively the flow of the soft 

core throughout the deformation zone. On the other 

hand, when the core is harder than the sleeve, the 

interface imposes a force to constrain the flow of the 

outer soft material only in the latter half of the 

deformation path. Chitkara and Aleem in [8] extended 

the generalized upper bound technique to analyze the 

problem of bimetallic tube extrusions through profile 

shaped dies and mandrel combinations. Theoretical 

results of mean extrusion pressures obtained from the 

generalized upper bound analysis were compared with 

those obtained earlier by the generalized slab method of 

analysis and some experiments. Hwang and Hwang in 

[9] proposed a set of stream functions to investigate the 

plastic deformation behavior of rods during the 

axisymmetric extrusion of composite rods through a 

conical die. They determined the radius ratio of the 

core layer at the exit of the die and the plastic region 

within the die by using the upper bound method and 

minimization of the total power. Haghighat and Asgari 

in [10] used an upper-bound approach to analyze the 

extrusion process of bimetallic tubes through dies of 

any shape with moving cylindrical shaped mandrel. A 

generalized kinematically admissible velocity field was 

developed to evaluate the internal power and the power 

dissipated on frictional and velocity discontinuity 

surfaces and the total power. Haghighat and Amjadian 

in [11], used an upper bound solution for extrusion of 

bimetallic rectangular cross-section bars to determine 

the extrusion pressures for two types of die shapes, 

namely an optimum wedge shaped die as a linear die 

profile and an optimum streamlined die shape as a 

curved die profile. Haghighat and Mahdavi in [12] 

employed an upper bound approach to analyze the 

bimetallic rod extrusion process through rotating 

conical dies. The relative extrusion pressure was 

evaluated by equating the total power with the external 

power produced by axial movement of the punch and 

the power induced by rotation of the die. In another 

paper [13], they studied bimetal tube extrusion process 

through rotating conical dies analytically and 

numerically. By balancing the moment applied by the 

rotary die with the moments caused by the 

circumferential frictions in the container and on the 

mandrel, the twisting length of the material in the 

container was determined.  Haghighat and Shayesteh in 

[14] analyzed the extrusion process of hybrid sheet 

metals through arbitrarily curved dies by the method of 

upper bound. The extrusion forces for two types of die 

shapes, namely an optimum wedge shaped die and an 

optimum streamlined die shape for a hybrid sheet 

composed of copper as sleeve and aluminum as core 

were determined.  A review on previous studies shows 

that in most upper bound analyses of the bimetallic 

extrusion, the boundary at the entrance to the 

deformation zone is assumed to be a spherical surface 

for the sake of simplicity. For example, this assumption 
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was employed by Avitzur et al in [4], [5], Tokuno and 

Ikeda in [7], Haghighat and Asgari in [10], Haghighat 

and Amjadian in [11], Haghighat and Mahdavi in [12], 

Haghighat and Shayesteh in [14]. However, some 

observations suggest that a better choice for the shape 

of the entrance boundary may improve the results of 

the upper bound analysis. For instance, Peng in [6] 

reported that assuming a concave ellipsoidal surface for 

the boundary at the entrance to the deformation zone 

increases the upper bound method accuracy in 

extrusion of single-metal rods. Consequently, in this 

paper, an ellipsoidal surface is assumed for the entrance 

boundary to the deformation zone in extrusion of 

bimetallic rods. Furthermore, in contrast to the analysis 

performed in [6], the incompressibility condition is also 

applied to obtain a different velocity field. The detailed 

analysis is elaborated in the following sections. 

2 UPPER BOUND ANALYSIS 

Based on the upper bound theory, for a rigid-plastic 

Von-Misses material and amongst all the kinematically 

admissible velocity fields, the actual one that 

minimizes the power required for material deformation 

is expressed as [11]: 

 
1

* 2
0

0 0

2 1
( )
23

| | | |
3 3

V f

ij ij

V

S S

J dV

dS m dS

  

 
  
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(1) 

 

Where σ0 is the mean flow stress of the material, εij 

strain rate tensor, m constant friction factor, V volume 

of plastic deformation zone, SV and Sf area of velocity 

discontinuity and frictional surfaces, respectively, and 

Δυ is the amount of velocity discontinuity on the 

frictional and discontinuity surfaces. Schematic views 

of the bimetallic extrusion process through a conical 

die are shown in Figs. 1 and 2. The deformation zone 

which is divided into six smaller regions and the 

associated geometrical variables are also presented in 

these figures. The workpiece is made up two different 

metals with the mean flow stresses of σ0c and σ0s. The 

subscripts c and s refer to the core and sleeve materials, 

respectively. Rf is the outer radius of the sleeve material 

and Rcf is its inner radius both after extruding, where Ri 

and Rci are the outer and inner radius of the sleeve 

metal in the initial workpiece. α is the die semi-angle 

and β is the angle of the boundary between the core and 

the sleeve. Vi and Vf are the inlet and outlet velocities 

and the boundaries are denoted by S. Furthermore, it is 

assumed that the metallurgical bond exists between the 

core and the sleeve both before and after extruding and 

slippage does not occur on the core-sleeve interface. 

2.1. Velocity fields and strain rate components 

In the upper bound analysis, the first step is to choose a 

kinematically admissible velocity field for the material 

undergoing plastic deformation. A velocity field is 

called kinematically admissible if it is derived from 

incompressibility condition and satisfies the velocity 

boundary conditions.  

For describing the velocity field, a spherical coordinate 

system (ρ, θ, ϕ) is employed whose origin is located at 

point O, i.e. the intersection of the die extension with 

the midline. The material under deformation is divided 

into six zones, as shown in Fig. 1. The velocity filed is 

continuous within each region. In zones Ic and Is, the 

workpiece is assumed to flow as a rigid body in the 

extrusion direction. In zones IIc and IIs the material 

deforms in the die and in zones IIIc and IIIs it moves as 

a rigid body and leaves the die. Base on the volume 

constancy condition, one can write: 

2

2

f

i f

i

R
V V

R


                                                                  

(2) 

The boundary of the deformation zone at the exit is 

assumed to be a spherical surface whose center is 

located at point O. The radius of this boundary, ρf is 

obtained by the following relation: 

sin sin

f cf

f

R R


 
 

                                                      

(3) 

The boundary at the entrance to the deformation zone is 

assumed to an exponential surface with the following 

relation between r and θ [6]: 
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i
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(4) 

 

 
Fig. 1 Different deformation regions in the bimetallic 

extrusion process through a conical die 

 

Quantity b is a geometric parameter that determines the 

shape of the boundary. I.e. 0b   relates to a concave 
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ellipsoidal surface, 0b   to a spherical surface and 

0b   to a convex ellipsoidal surface. 

 

 
Fig. 2 The geometrical variables in the bimetallic 

extrusion 

 

The function of the boundary for equal axial 

components of velocity in the deformation zone may 

thus be expressed as [6]: 
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Where function g is given by [6]: 
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In order to determine the material velocity field in the 

deformation zone, the incompressibility condition of 

the plastic deformation is imposed. By ignoring the 

elastic deformation, the incompressibility condition in 

the spherical coordinates reads [15]: 
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(7) 

 

This equation is used in the following sections to obtain 

the velocity field and strain rate components in 

different deformation regions. 

2-1-1 velocity and strain rate in regions Ic and Is  

In regions Ic and Is, the material has not reached the die 

entrance, yet. Consequently, no deformation occurs in 

these regions and the material moves as a rigid body in 

the die axial direction with constant velocity of Vi. 

Since the process is axisymmetric, the ϕ component of 

the velocity is zero. Furthermore, by decomposing the 

axial velocity vector of the material into ρ and θ 

directions, the following velocity field is obtained: 
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In spherical coordinates, the following relations are 

used to derive the strain rate components from the 

velocity vector [15]: 
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Applying these relations to Eq. (8) gives: 
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(10) 

 
2.1.1. Velocity and strain rate in regions IIc and IIs 

In these regions that are surrounded by three velocity 

discontinuity surfaces S1, S2 and S3, the workpiece 

deforms and its diameter decreases. The radial velocity 

component in these regions is obtained by assuming 

volume flow balance on boundary T (Fig. 2). Equating 

the material volume on two sides of this boundary 

gives: 

     2 2 d sinrV r dr V      

                    

(11) 

On the other hand, according to Fig. 2, the following 

relation holds between r and ρ: 

sinr  

                                                                 

(12) 

Substituting from Eq. (12) back into Eq. (11) and 

considering Eqs. (2) and (5) yields: 

2
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The axial symmetry assumption in this region gives: 

0V  

                                                                       

(14) 

Now substituting from Eqs. (13) and (14) into Eq. (9) 

and using Eq. (7) results the following relation for Vθ: 
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Where: 
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The strain rate components are also obtained as 

follows: 
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2.1.2. Velocity and strain rate in IIIc and IIIs  

In IIIc  and IIIs regions, the material deformed in region 

II leaves the die exit (S2) with constant velocity of Vf in 

the axial direction. The material moves as a rigid body 

in this region and no deformation occurs. Due to axial 

symmetry, the velocity component in the φ direction is 

zero and other components are obtained as: 
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Replacing Eq. (18) into Eq. (9), the following equations 

are derived for strain rate components: 
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(19) 

The results presented in Eqs. (10) and (19) are logical 

since in regions Ic, Is, IIIc  and IIIs , the material moves 

as a rigid body and consequently strain and strain rate 

components are identically zero. The angle of the 

interface surface between the sleeve and core materials 

denoted by β in Fig. (1) is obtained by the following 

relation: 

1sin ( sin )ci
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R
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2.2. Calculation of power components and the 

forming force 

The total power required for performing the extrusion 

process is made up three parts: 

- Internal power of deformation 

- The shear power dissipated on velocity 

discontinuity surfaces 

- The frictional power dissipated on the interface 

between workpiece and die 

Consequently, according to Fig. 1, the total power in 

the presented process is obtained by summing the 

internal power of deformation in regions IIc and IIs, the 

energy dissipated on velocity discontinuity surfaces S1 

and S2, and the frictional dissipated energy on the die 

surface S3. 

 
2.2.1. The internal power 

The internal power consumed in the deformation zone 

is given by [15]: 
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Where dV, the volume element in the deformation 

zone, is obtained as [6]: 
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Since the strain rate components are identically zero in 

regions I and III, the internal power is zero in these 

regions as confirmed by Eq. (21). The internal power 

consumed by the sleeve is: 
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Where σ0s is the mean flow stress of the sleeve 

material: 
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The internal power for the core material is calculated 

similarly: 
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Where σ0c  is the mean flow stress of the core material: 
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The overall internal power in region II is calculated by 

summing the internal power of the sleeve and core 

materials: 
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2.2.2. The shear power 

The equation for the power losses along the shear 

surface of velocity discontinuity is: 
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Where the velocity discontinuity and the area element 

for surface S1 and S2 are [6]: 
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The shear power loss along the shear boundary S1 

includes two parts: the power loss in the core ẆS1c , and 

the power loss in the sleeve

 

ẆS1s: 
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Similarly the shear power along S2 is divided into two 

parts: 
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(36) 

 

The total shear power is then [11]: 
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(37) 

 
2.2.3. Frictional power 

The frictional power dissipated on frictional boundaries 

is obtained by [16]: 
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The following equations give the velocity discontinuity 

and the element area for frictional boundary S3 [6]: 
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Substituting from Eqs. (39) and (40) into Eq. (38) gives 

the frictional power dissipated on the workpiece-die 

interface: 
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It is to be noted that no slippage and accordingly no 

friction loss occurs on the common surface between the 

sleeve and core material. Finally, based on the analysis 

performed in [16], [17], for avoiding central cracking in 

rod extrusion, the following relation must be satisfied: 

ln i

f

R
b

R


                                                                 

(42) 

Considering this equation and noting that b is normally 

a positive value for the entrance boundary [6], in this 

study the following value is assumed for b: 

0.5ln i

f

R
b

R


                                                            

(43) 

 
2.2.4. The forming force 

In extrusion process, the external power, i.e. the power 

supplied by external forces, is equal to: 

 

T e iW FV

                                                                 

(45) 

 

Where Fe is the required forming force. In the upper-

bound approach, the extrusion force is determined by 

equating the total power with the external power [11]: 
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Solving this equation gives the force required for 

performing the bimetallic extrusion process. For this 

purpose, a Maple program is developed in this study. 

The solution results are presented in the next section. 

3 RESULTS AND DISCUSSION 

In order to verify the validity of the preceding analysis, 

the solution of the upper-bound analysis for a 

bimetallic extrusion process in a conical die was 

compared with experimental and upper-bound results 

presented in [9]. The work-piece dimensions are given 

in table 1.  

 

Table 1 The workpiece and die dimensions. 

Parameter Value 

Core radius (mm) 9 

sleeve outer radius (mm) 15 

core and sleeve length (mm) 60 

die angle 15° 

area reduction ratio 0.25 

 

The core and sleeve metals are Aluminum and Copper, 

respectively. The exponential stress-strain 

relationships, σAl=189.2ε
0.239 

Mpa and σcu=335.2ε
0.113 

Mpa are used for characterizing their deformation in 

the plastic region. The sticking model with constant 

friction factor of m=0.2 is employed for describing the 

friction condition between the sleeve and the die 

surfaces. The results are compared in Fig. 3. It can be 

seen that the proposed upper-bound analysis is in good 

agreement with experimental data. Furthermore, it has 

higher accuracy than the upper-bound approach 

presented in [9]. 

 

 
Fig. 3 Verification of the analysis results 

 

The variation of the extrusion force with the die semi-

angle is shown in Fig. 4. According to this figure, there 

is an optimum die angle (approximately 12° in this 

case) that minimizes the forming force. This 

observation can be explained by the fact that the 

contact area between the die and the workpiece and 

consequently the frictional power loss decreases with 

increasing the die angle. However, in higher die angles, 

the shear power loss on velocity discontinuity surfaces 

increases.  

 

 
Fig. 4 Variation of the extrusion force with the die semi-

angle  

 

Consequently, for each forming condition, there is an 

optimum die angle for which the total power and 

accordingly the forming force is a minimum. This 

interpretation is also confirmed by Fig. 5 which shows 
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the forming force variation with die angle in different 

values of friction coefficient. Based on this figure, the 

optimum die angle increases with increasing friction 

coefficient. This is due to the fact that by increasing the 

friction coefficient, the friction power loss makes a 

more significant contribution in the total power of the 

process. Therefore, the optimum die angle tends to 

higher angles where the frictional power decreases. 

 

 

Fig. 5 Variation of the extrusion force in different friction 

coefficients 

 

 

Fig. 6 Comparison of extrusion force in different values of 

area reduction 

The variation of the extrusion force with area reduction 

percentage is presented in Fig. 6. It can be seen that the 

extrusion force increases with increasing the area 

reduction. This stems from the fact that by increasing 

the area reduction the material undergoes larger 

deformation which leads to increase of the internal 

power of deformation and accordingly the total power 

and the extrusion force. 

 

4 CONCLUSION 

In this paper, the extrusion process of bimetallic rods 

was analyzed by an improved upper-bound approach. A 

novel velocity field was developed for this purpose. 

The results were compared with available experimental 

data and good agreement was found. It was 

demonstrated that using the exponential function for 

the shape of the entrance boundary to the deformation 

zone improves the accuracy of the upper-bound 

analysis in comparison to the spherical function used in 

previous studies. Furthermore, it was observed that 

there is an optimal die angle that minimizes the 

extrusion force. The value of this optimum angle 

increases with friction coefficient. 

5 NOMENCLATURE 

σ0 mean flow stress of the material 

εij strain rate tensor 

m constant friction factor 

V volume of plastic deformation zone 

SV area of velocity discontinuity 

Sf area of frictional surfaces 

Δυ velocity discontinuity 

Rf 

outer radius of sleeve material after 

extrusion 

Rcf 

inner radius of sleeve material after 

extrusion 

Ri outer radius of sleeve metal before extrusion 

Rci inner radius of sleeve metal before extrusion 

α die semi-angle 

β angle of boundary between core and sleeve 

Vi inlet velocity 

Vf outlet velocity 

ρ,θ,ϕ spherical coordinates 

b 
parameter determining the shape of 

boundary 

S1,S2,S

3 velocity discontinuity surfaces 
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