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Abstract: Cable driven parallel manipulator (CDPM) is a special class of parallel 
manipulator in which the rigid extensible links are replaced by actuated cables. It is 
necessary to take into consideration the cable dynamics, i.e.; its mass, flexibility 
and curved shape for manipulating a long-span CDPM. These terms complicate 
governing equation of motion in a way that special tactic are applied for simulation 
and solving this problem. Flexibility and mass of cables impose vibration and error in 
path trajectory planning. Effect of varying stiffness in precise performance of 
CDPM is surveyed. The cables are modelled, in ADAMS software to illustrate the 
dynamical behaviours of the manipulator for comparison with the simulated 
results. Moreover, an algorithm is developed to study the effects of velocity and 
acceleration of the end-effector on the dynamics of CDPMs. Moreover it is shown 
that the evolutionary computing algorithms are so effective in solving complicated 
nonlinear dynamic path trajectory planning. Simulations for different trajectories 
of two CDPMs are included to demonstrate the efficiency of the proposed 
algorithm. 
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1 INTRODUCTION 

Cable driven parallel manipulators (CDPMs) are a class 

of parallel manipulators (PMs) which utilize multiple 

actuated cables to manipulate objects. They offer some 

advantages over the conventional PMs; Since the rigid 

links have been replaced by cables in their structures, 

they offer some valuable characteristics such as; overall 

mass and inertia of the manipulator are reduced 

tremendously, they are cheaper and easier to build, 

their ability to store significant lengths of cables on 

winches provide them the possibility of very large 

workspaces and their payload to weight ratio increase.  

Moreover, they are also suitable for high acceleration 

applications; their transportability and re-

configurability by changing the positions of the motors 

are improved. Therefore they have recently attracted 

the attention of researchers from both academia and 

industries. They found many applications, such as  

NIST RoboCrane which is a large-workspace CDPM 

which was developed  to be used in shipping ports [1], 

McDonnel-Douglas Charlotte that had been designed 

for use in the International Space Station [2], Sky cam 

which is a remote-controlled aerial camera suspended 

being used in sport facilities [3], haptic devices [4], 

receiver support systems for large radio telescopes [5], 

rehabilitation systems [6], robots for assembly-

disassembly operations [7] and interaction with 

hazardous environment [8]. Moreover, CDPMs have 

been employed for service robots [9], long range 

positioning devices [10] and high speed manipulation 

[11]. The most important limitation of a CDPM is that, 

the cables cannot support the compressive load and 

they must be in tension in the whole workspace. Based 

on this property, CDPMs can be classified into two 

categories; namely under constrained and fully 

constrained ones [12-14].  

In the general case of fully constrained manipulator, the 

end-effector (EE) should be connected to the base by at 

least seven cables [15]. While, for under constrained 

CDPM, the cables are six or less; therefore, the cables   

do not fully constrain the EE [16]. In most of the 

existing literatures, the cables are assumed to be mass-

less linear elements that can only work in tension and 

therefore their tensions are assumed constant along 

their entire lengths. Upon this simplification, the 

dynamics of a CDPM is reduced to the dynamics of a 

single rigid body, i.e. the EE with several external 

forces acting from the cables to the EE. Therefore, 

dynamical characteristics of the cables, such as the 

mass, flexibility and vibration are neglected. The 

kinematic, workspace and dynamic analysis, and 

control of this simplified CDPM have been studied 

extensively in the literature [17-20]. However, 

neglecting the masses of the cables is not justified in 

general. In fact, when the weight of a cable is relatively 

significant with respect to the weight of the EE, it has 

significant effects on   the foregoing analyses and the 

stability, accuracy and control of the manipulator. 

Moreover, cables are usually flexible which lead to 

pose errors of the EE. Vibration of a CDPM may be a 

concern for some applications which require high 

bandwidth or high stiffness of the system. Reported 

studies on the effect of cable flexibility on modelling, 

optimal design and control of such manipulators are 

very limited [21]. In some studies, cables were 

modelled by mass-less springs which lead to vibration 

of the EE [22], [23]. Some assumed the cables as 

straight line members with time varying lengths [24]. 

Moreover, considering cable mass and flexibility, some 

derived the equations of motion but some complicated 

terms in equations were ignored [25].  

This paper deals with the dynamics of CDPM 

considering the mass, flexibility and the curvature 

shapes of the cables in 3-diminsional space. In a long 

span CDPM, especially when one deals with high 

velocity or acceleration, the effects of the foregoing 

terms are significant. Including these terms lead to 

complicated dynamic governing equation of motion 

and demand special tactic for simulation and solving. 

Currently, a few works have focused on the dynamic 

characteristics of such cables and their effects on 

precision of the trajectory performance.  

In this paper, dynamic analysis of CDPMs with long 

span workspace is addressed, focusing on a foregoing 

complicity in model involving cables mass, curvature 

shape, flexibility and time-varying lengths. Here, 

dynamics partial differential equations of a cable are 

derived and converted into the ordinary differential 

equations through a spatial finite difference 

discretization method. Then, the governing dynamics 

equations of the EE motion are derived and solved 

along with the former equations. Moreover, an 

algorithm is developed to study the effects of velocity 

and acceleration of the end-effector on the dynamics of 

CDPMs. Finally, some simulations for different 

trajectories of two CDPMs are included to demonstrate 

the efficiency of the proposed algorithm.  

2 DYNAMICS OF CDPM 

A CDPM consists of an EE platform connected by n 

parallel cables to the base, as depicted in Fig. 1. 

Therefore, a CDPM is mainly composed of two kinds of 

sub-systems, i.e. an EE and some cables. In this section 

the models of these sub-systems are considered, and then 

the dynamics of the CDPM system, as a whole are 

derived. 

 

 

 



Int  J   Advanced Design and Manufacturing Technology, Vol. 9/ No. 3/ September – 2016                                   59 

 

© 2016 IAU, Majlesi Branch 

 

Dynamics of EE 

Consider an inertial coordinate frame nf  in base nO  

with 3n,n,n 21  unit vectors, the moving frame bf  with 

the unit vectors 321 b,b,b  attached to the mass center of 

the EE, bO . Moreover,the pose of the EE is specified by 

the position vector of  bO  in  nf and its Euler angles 

  .
T

bbb zyx x In which ,   and   are 

the Euler angles.The governing equations for the dynamic 

analysis of the EE can be written in the following general 

form [20]. 

tJg(x))xc(x,xM(x)
T                                             (1) 
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Where 3I  is 3*3 identity matrix, I is the inertia matrix 

for the system, g(x)  is  the gravity vector, m is the mass 

of the platform, 130  is 3*1 zero vector, t is tension 

vector of the cables, iu  is unit vector in the direction of 

the   th cable and ir  is the vector from the  origin of the 

EE to the   th cable attachment point to the EE. Now, it is 

easy to convert the foregoing equation into a state-space 

form equation. 

 

 

Fig. 1 a) Planar CDPM b) six degrees of freedom CDPM  

 

Dynamics of the cables 

The cables are considered here as flexible elements with 

uniform masses, curved element with negligible bending 

and torsional stiffness. Consider a flexible cable of an un-

stretched length L . The un-stretched curve length along 

the connected base point to a point P on the cable is 

denoted by s , and the corresponding stretched length by

es . Thus the axial strain of the cable is given as: 

ds

dsdse 
                                                                     (2) 

Where 

2222
dzdydxdse 

                                                    (3) 

In which ,x y and z are the global coordinates of point 

P in the cable. Substituting the value of eds  from Eq. (3) 

into Eq. (2), upon simplification leads to: 
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Moreover, the tangent unit vector at each point of the 

cable is given as: 
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Where  Ttsztsytsxts ),(),(),(),( r  is the position 

vector of point P  in the cable. Therefore, the equations 

of motion of the cable can be described as the following 

form [25]. 
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Where  is the linear density of the un-stretched cable, 

E is the Young’s modulus and A  is the cross-sectional 

area of the cable. Substituting the value of ),( tsb from 

Eq. (5) into Eq. (6), upon simplification leads to:  
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Moreover, one can write  
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Now, one can solve Eq. (7) by a finite difference method 

in which the cable is divided into n  equal parts from

0s  to Ls  .Where point 0 is attached to a very small 

pulley and point n  is connected to the EE, as depicted in 
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Fig. 1-a. Moreover, it is assumed that the number of 

nodes remains the same in different times: 

 

ntLtl )()( 
                                                                 (10) 

Using the finite difference algorithm, Eq. (7), can be 

expressed as: 
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With nLisi
  , in which i  denotes the ith node.  

Finally, Eq. (11) can be written in state-space form, as:  
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Wherethe state space parameter ,~x  terms n~  and L are as 

in Eq. (13). In which 0x , 0y  and 0z  are the coordinates 

of the position vector of the actuated driving motor 

connected to the cable. nx , ny  and nz are the same for 

the cable attachment point to the EE, and followed by 

relation in Eq. (14). 
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It is noted that for each time, the displacement of the node 

number 0 which is connected to the base is zero, while 

the position and velocity of node (n) which is connected 

to the EE take the same values of those for the EE. 

Moreover, for the other points, the initial boundary 

conditions are given from the static analysis.   
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3 SIMULATION 

In this sub-section, two examples and simulation are 

included to justify the dynamic modeling. It is noted that 

only for a positive axial strain of whole cables nodes, the 

cables are in tension and therefore the CDPM is 

controllable. 

 
Two cables planar CDPM 

The model of a planar CDPM consists of a concentrated 

mass EE actuated by two cables as shown in Fig. 1-a. 

Based on the proposed modeling, dynamic analysis is 

performed for this manipulator. Upon knowing the 

position of the EE, the problem is to determine the cables 

lengths, for i=1,2 by solving the inverse kinematic 

problem. It is noted that a flexible cable can take a curved 

shape under its own weight.  

Therefore, the effect of cable sag should be considered in 

the calculation [26]. The time varying cable length for a 

tracking path is derived from quasi static configurations, 

then with specified time interval is feed to the 

manipulator and the effect of this condition is assessed in 

the dynamic modeling. Considering the static posture of 

the manipulator, the cables lengths to satisfy point to 

point establishment are considered and resulted in 

specified time feed to the cable robot. With cable robot 

dynamic simulation, error in the trajectory can be 

calculated, as well. 

Moreover cable model shown in Fig. 2 is created using 

the cable demo in Adams software to illustrate the 

dynamical behaviors of the manipulator for comparison 

with the simulated results. The cable is discretized with 

appropriate parts, joints and forces (mass, rod-

formulation-based longitudinal stiffness). There is also a 

revolute joint between each cable part. 
 

Table 1 The data of the cables and the EE 

Name Value 

The density for unit 

length 

 

          

The EE mass 

 
      kg 

The cross section times  

the  Young modulus 

 

A               

                 

Distance between cable 

pulleys 
Distance=30 m 

 

The platform poses are calculated by computation of the 

dynamic behavior of the manipulator, imposed by 

varying cables lengths. The data of the cables and the EE 

are given in table 1.  

When the EE moves from an initial pose to a final pose, 

with a constant velocity of sm /1 , the desired straight line 

quasi-static trajectory, dynamic analysis from the data of 

quasi-static analysis and Adams software results are 

depicted in Fig. 3, for different cases. The simulation 

results show that the EE moves along and vibrates around 

its desired quasi-static trajectory.  

 

 

Fig. 2   Adams modeling of planar CDPM 

 

Effects of the cables stiffness on reduction of the 

vibration amplitude are shown. When someone applies a 

high stiffness cables in CDPM construction, the 

oscillations of EE decrease around its desired path. In 

Fig. 3-b. the ratios of the maximum deviation from the 

desired quasi-static path to the average cables lengths are 

0.14% for Adams model and 0.13% for the dynamic 

model introduced in this paper. This shows matching of 

results between models. Also dynamic model in this 

paper illustrates oscillation nature of system clearly 

compared to Adams software model.  
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Fig. 3    Quasi static trajectory, the trajectory from the dynamic 

analysis of quasi-static input data and Adams software modeling 

trajectory. a) AE=    , b)        , c)        and 

d)        . 

The desired and the generated trajectories from dynamic 

analysis of quasi-static input data are depicted in Fig. 4, 

for different velocities, as well. If the EE is excited by 

increasing traveling velocity, the vibration amplitude will 

increase noticeably. 

 

 

Fig. 4   Path trajectory planning for different velocities 

 
Table 2 cable and EE specification 

Name Value 

The inertia matrix of 

EE       [              ]      

Angular position 

between 1n  axis and 

cables attachment 

points in base 

  [                     ]deg 

Angular position 

between 1b  axis and 

cables attachment 

points in EE 

  [                      ]    

Mass of  the EE       kg 

Cross section cable 

area to Young 

modulus 
         

Unit length density 

of cable          

Velocity of central 

mass of EE V= m/s 

 

Six   DOF CDPM 

The simulations for a six under-actuated CDPM are given 

in this sub-section. The manipulator consists of an EE 

connected to the base by six cables. The base points of 

the manipulator are all contained within the same fixed 
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plane as shown in Fig. 1-b. The cables attachment points 

are placed at the same radial distance        from the 

base coordinate system nf that is located at the base 

center. The moving platform has a set of connection 

points located at a distance of       from the moving 

coordinate frame bf attached to the platform center. The 

cables and the EE specifications for the simulation are 

given in table 2. For two different trajectories, the desired 

quasi-static and the generated trajectories from dynamic 

analysis of quasi-static input data of the EE for the fixed 

Euler angels deg,3 deg7 and deg10 are 

illustrated in Figs. 5 and 6. It is apparent that the 

maximum deviations from the desired path are 0.052m 

and 0.027m for these examples. 

 

 

Fig. 5   Trajectory path planning quasi-static compared to 

Dynamic analysis 

 

 

Fig. 6   Circle path planning in dynamic model  

4 CONCLUSION 

In this paper dynamic modelling of cable driven 

parallel manipulator (CDPM), considering the mass, 

flexibility and curvature shape of the cables has been 

derived. Moreover, an algorithm has been developed to 

study the complications of these effects in the dynamics 

of CDPM. Simulations for different trajectories of two 

CDPMs have been included to demonstrate the 

efficiency of the algorithm. It is shown that the 

evolutionary computing algorithms are so effective in 

solving complicated nonlinear dynamic path trajectory 

planning. The results reveals that mass and flexibility 

of the cables have considerable effects on the 

trajectory, therefore they should be considered in the 

dynamic analysis of long span CDPMs. Moreover, it 

has been shown that higher velocities cause poor 

overall performances for CDPMs. 
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