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increase of thermal conductivity thickens thermal boundary layer, so heat transfer rate 
decreases. In addition, intensification of magnetic field and the presence of radiation lower 
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sheet. On the contrary, the increase of suction and material parameter has positive influence 
on cooling rate of the sheet. 
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1 INTRODUCTION 

Fluid flows on an elastic sheet play important roles in 

industrial applications such as extrusion process in metals 

industry, continuous glass casting, etc. Since many fluids, 

such as micropolar fluids cannot be modeled as Newtonian 

ones, so the importance of studying the behavior of such 

fluids is undeniable. On the other hand, electromagnetic 

reactions are one of the new events in modern technology, 

and many researchers have focused on it. Also, the 

significance of radiation heat transfer in final quality of 

products, produced in high temperature processes, is crucial. 

Therefore, the investigation of micropolar fluid flow in 

different governing conditions is the favorite topic of many 

researchers. 

Wang [1] explained unsteady developing flow around a 

stretching sheet. He transformed Navier-Stokes equations to 

nonlinear ODEs with similarity solution, and represented an 

exact solution for them. Mahapatra and Gupta [2] 

considered stagnation-point flow of a steady, two-

dimensional and incompressible viscoelastic fluid flow on a 

stretching surface at constant temperature. The existence of 

steady, viscous flow on a shrinking sheet with considering 

the suction effects was explained by Miklavcic and Wang 

[3]. They concluded that there is a dual solution for some 

suction values, and there is no solution for boundary layer in 

a special span of suction. Wang [4] described the stagnation 

flow towards a shrinking sheet, and achieved dual solution 

for some values of shrinking ratio and for some stagnation 

flow rates. Fang [5] studied the boundary layer flow over a 

continual shrinking sheet with power-law velocity of 

surface. Ishak et al. [6] described non-Newtonian power-law 

fluid flow over a shrinking sheet with suction. They solved 

boundary-layer equations and considered the effects of 

power-law index and suction parameter. Bachok et al. [7] 

analyzed two-dimensional stagnation-point of nanofluid 

over an exponentially stretching/shrinking sheet with 

similarity transformation for three types of nanoparticles in 

different solid volume fractions and elastic parameters. 

Also, they found that the solutions for a shrinking sheet are 

not unique. Xu et al. [8] described the unsteady flow and 

heat transfer of nanofluids over a stretching elastic surface, 

and reported a linear relationship between the film thickness 

and the unsteadiness parameter. To consider micropolar 

fluid flow, the mathematical model, presented by Eringen 

[9] is often used. A good work by on incompressible 

micropolar fluid flow over a stretching sheet was done by 

Sankara and Watson [10]. Hassanien and Gorla [11] studied 

the heat transfer to a micropolar fluid passing through the 

stretching sheet with suction and blowing effects. They 

considered surface mass transfer rate and power-law 

constant for the wall temperature as the remarkable 

parameters in improvement of heat transfer rate. Alomari et 

al. [12] presented analytical solution for micropolar fluid 

flow over a continuous moving surface. In their study the 

microinertia density is variable, and the effects of viscous 

dissipation were considered. Yacob and Ishak [13] 

investigated the flow and heat transfer characteristics for a 

steady two-dimensional micropolar fluid flow over a 

shrinking sheet. They found that the solution exists only 

with adequate suction, and there is dual solution for certain 

suction and material parameters. Hassanien et al. [14] 

presented an analysis to consider heat transfer features of 

combined forces and free convection flow of a micropolar 

fluid. They observed that heat transfer rate is reduced by 

increase of micropolar material parameter. Mehraban Rad 

and Aghanajafi [15] analyzed laminar flow in a 

michrochannel under uniform wall temperature in the 

presence of radiation. They reported that the existence of 

thermal radiation and using nanofluids improve heat 

transfer. Ali et al. [16] considered unsteady and 

axisymmetric boundary layer flow over a shrinking sheet 

with radiation. They solved the boundary layer equations 

with Keller-box method, and understood that the separation 

of boundary layer is delayed by suction parameter. Hussain 

et al. [17] considered radiation heat transfer in an unsteady 

thermal boundary layer of a micropolar fluid over a 

permeable stretching sheet. They used homotopy analysis 

method, and reported that dimensionless temperature 

increases by unsteadiness and radiation parameters, but it 

decreases by stagnation parameter. Ouaf [18] established an 

exact solution for radiation heat transfer with magneto-

hydrodynamics (MHD). Fang and Zhang [19], in regard to 

suction effects, presented a closed-form exact solution of 

MHD viscous flow on shrinking porous sheet. They 

observed that the boundary layer thickens by reduction of 

suction parameter. Taklifi et al. [20] investigated the effect 

of MHD on the total heat transfer from a porous fin, 

attached to a vertical isothermal surface by using Rosseland 

approximation and Darcy model. They reported that heat 

transfer rate is declined by intensification of magnetic field 

strength for negative Eckert numbers and it would be 

enhanced for positive Eckert numbers. Noor et al. [21] 

studied the hydromagnetic flow with radiation on an 

inclined surface. They found that flow with injection has 

more influences on distributions of velocity and temperature 

than suction has, but their effects on concentration 

distribution are exactly opposite. Taklifi and Aghanajafi 

[22] analyzed the effect of MHD on steady two-dimensional 

laminar mixed flow over a vertical porous surface. They 

solved the transformed boundary layer equations with 

Keller-box method, and reported that raising the magnetic 

field parameter results in increase of dimensionless velocity 

and reduction of dimensionless temperature. 

Mukhopadhyay [23] studied heat transfer and boundary 

layer flow with MHD on an exponentially stretching sheet 

by using shooting method. He understood that fluid velocity 

is reduced by increase of magnetic parameter while heat 

transfer rate at the surface in presence of thermal 

stratification is enhanced.  

In this research, the micropolar fluid flow is supposed to be 

two-dimensional, incompressible and steady; besides, the 
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magnetic field is uniform and the body forces are neglected, 

and the fluid passes over a stretching, permeable sheet. The 

simultaneous effects of thermal radiation, magnetic field, 

porousness on heat transfer rate from the stretching sheet, 

and considering the impacts of thermal conductivity are the 

most significant aspects of this study which distinguishes it 

from other researches.  

2 PROBLEM FORMULATION 

Fig. 1 shows the physical schematic of the problem. It is 

micropolar fluid flow over a porous, stretching sheet. By 

using boundary layer approximation, the governing 

equations for micropolar fluid with heat transfer are written 

by: 

 
Fig. 1 The physical schematic of the problem 
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In regard to large optical thickness for desired medium, the 

medium is called diffusion, so the Rosseland approximation 

for radiation can be applied:  
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Term 
4T  is expanded by Taylor series: 
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Finally, the energy equation is transformed into: 
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According to the problem, the boundary conditions are 

written as follows: 

Due to the linear stretch of the sheet: 

 u cx , 0c   (9-a) 

Because of the porous wall, it has suction/blowing effect, 

which is supposed as a velocity in perpendicular direction, 

this value is assumed constant. So: 

wv v , suction 0wv   and blowing 0wv   (9-b) 

Angular velocity is defined as: 

u
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And: 

  wT T  (9-d) 

And far from the wall (y→∞) 

0u U  , 0N  ,T T  (10) 

By using similarity solution, the PDEs are transformed into 

ODEs. Stream function can be used because the flow is 

assumed two-dimensional and incompressible. Finally, by 

substituting similarity transformations (Eq. (11)), the 

governing equations are reduced into non-linear ODEs. 
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Momentum equation: 
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Angular momentum equation: 
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By applying similarity transformations, the boundary 

conditions (9) and (10) are converted into form bellows: 
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The applied dimensionless parameters in the above are 

defined as follows: 
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Here, the boundary value problem is transformed into initial 

value problem by using shooting method; finally, they are 

solved by fourth-order Runge-Kutta method in Maple 

package. 

3 RESULTS AND DISCUSSIONS 

Constant m, in boundary conditions is a value between 0 

and 1. As m=0, then N=0 and it shows that particle flow is 

concentrated, and micro-elements are close to the wall and 

cannot rotate [24], this status is known as the strong focus 

on micro-elements [25]. On the other hand, m=0.5 is the 

representative of vanishing the asymmetric part of stress 

tensor, known as the weak focus on micro-elements [26]. 

Also, to model turbulence boundary layer m=1 is applied 

[27]. In this study, the governing equations are solved, and 

the results are extracted for two microrotation parameter, 

consisting of m=0, 0.5. 

According to Eqs. (12-14), variation in thermal conductivity 

is ineffectual in ( )f   and ( )h  , but it is an important 

parameter in temperature profiles because of varying 

Parndtl (Pr) number and radiation parameter, so this status 

could be very useful when only the variation of temperature 

profiles is required. Therefore, in this study, a constant as α 

is defined to consider the changes of Pr number and 

radiation parameter by local variation in thermal 

conductivity, as follows: 
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In order to validate the results, the value of    in this 

research is compared with [28], [29], [30], [31], and they 

are presented in table 1. As it is shown, the results are close 

together, and certify the present results. 

Table 1 Values of  0  for various values of R, K and Pr 

when Ha=0, S=0, m=0.5 

R K Pr 

Grubka 

and 

Bobba 

[28] 

Ali 

[29] 

Chen 

[30] 

Ishak 

[31] 
Peresent 

0 0 0.72 0.4631 0.4617 0.46315 0.4631 0.463145 

0 0 1 0.5820 0.5801 0.58199 0.5820 0.581977 

0 0 3 1.1652 1.1599 1.16523 1.1652 1.16525 

0 0 10 2.3080 2.2960 2.30796 2.3080 2.308 

1 0 1    0.3547 0.354438 

1 1 1    0.3893 0.391301 

 

Figs. 2-8 show temperature profiles thermal conductivity for 

various parameters. The negative values of wall temperature 

gradient show that heat transfer is from the sheet to the 

fluid. 

 

 

Fig. 2    The Temperature profiles for different values of α in 

m=0.5, S=1, K=1, Ha=1 
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Fig. 3     The Temperature profiles for different values of α in    

m=0, S=1, K=1 

 

 
Fig. 4    The Temperature profiles for different values of α in 

m=0.5, S=1, K=1 

 

As it is shown in Fig. 2, for m=0.5, increase of α enhances 

the thickness of thermal boundary layer, and declines the 

temperature gradient on the sheet (absolute values), so heat 

transfer rate from the sheet decreases. It is noticeable that 

when Prandtl number decreases, thermal diffusion could 

suppress viscous forces, results in increasing temperature in 

the boundary layer.  

Also, it is seen that the thickness of thermal boundary layer 

is developed, and the absolute temperature gradient is 

lowered in the presence of radiation, so heat transfer from 

the sheet is declined.  

This is because of the radiation effect on increasing the rate 

of energy transport to the fluid [32]. According to Eq. (5) 

the effect of thermal radiation intensity on thermal boundary 

layer might be explained by absorption coefficient, which 

its decrease causes more radiation heat flux over the fluids. 

 

 
Fig. 5     The Temperature profiles for different values of α in    

m=0, S=1, Ha=1 

 

 
Fig. 6 The temperature profiles for different values of α in m=0.5, 

S=1, Ha=1 
 



24                                                           Int  J   Advanced Design and Manufacturing Technology, Vol. 9/ No. 2/ June– 2016 
  

© 2016 IAU, Majlesi Branch 

 

 
Fig. 7   The Temperature profiles for different values of α in m=0, 

Ha=1, K=1 

 

 
Fig. 8   The temperature profiles for different values of α in m=0.5, 

Ha=1, K=1 

 

The existence of magnetic field effect is appeared by 

Hartmann number (Ha≠0). Figs. 3, 4 show that the presence 

of magnetic field thickens thermal boundary layer, and 

decreases the absolute temperature gradient on the sheet; 

hence, the cooling rate of the sheet is lowered. This 

behavior occurs because of Lorentz force, induced by 

magnetic field which creates a drag force and lower the 

fluid’s velocity while temperature in the thermal boundary 

layer is enhanced [32]. Also it is clear that increase of α, 

results in thicker thermal boundary layer and lower heat 

transfer from the sheet. As it is shown in Figs. 5 and 6, the 

thickness of thermal boundary layer of a micropolar fluid 

(K≠0) is less than a Newtonian fluid (K=0), and heat 

transfer from the sheet to the micropolar fluid is more 

because of more absolute gradient temperature.  

Since there are suction/blowing effects in the sheet, mass 

transfer parameter is emerged (S≠0). Figs. 7, 8 show the 

effect of porousness of the sheet in different α for two 

quantities of microrotation parameter. When the fluid 

moves over the porous sheet, it permeates through the sheet. 

Therefore, the thermal boundary layer decreases, and heat 

transfer from the sheet is improved. 

4 CONCLUSION 

In this study, the effects of local variation in thermal 

conductivity on micropolar fluid flow and heat transfer from 

the porous, stretching sheet in the presence of radiation and 

magnetic field effects are studied. The results show that, as 

the thermal conductivity increases, the thickness of thermal 

boundary layer is raised; consequently, the heat transfer rate 

from the sheet is reduced while the velocity profile and 

angular velocity profile are constant. In addition, it is 

concluded that the absolute values of temperature gradient 

are lowered, by intensification of magnetic field; 

conversely, suction parameter leads in enhancement of the 

cooling rate of sheet. 

5 NOMENCLATURE 

B0 Magnetic field intensity (Tesla) 

c Stretching coefficient (s
-1

) 

Cp Specific heat (J.kg
-1

.K
-1

) 

Ec Eckert number 

f Dimensionless steam function 

h Dimensionless angular velocity 

Ha Hartmann number 

j micro-inertia per unit mass (m
2
) 

k Thermal conductivity of fluid (W.m
-1

.K
-1

) 

K Dimensionless material parameter 

m microrotation parameter 

N Angular velocity (rad.s
-1

) 

Pr Prandtl number 

qr Radiative heat flux (W.m
-2

)  

R Radiation parameter 

S Mass transfer parameter 

T Temperature (K) 

u Velocity component in x-direction (m.s
-1

) 

v Velocity component in y-direction (m.s
-1

) 

x Horizontal coordinate (m) 

y Vertical coordinate (m) 

Greek symbols 

α Dimensionless constant 

ψ Stream function 

γ Spin-gradient viscosity (kg.m.s
-1

) 

η Similarity variable 

κ Absorption coefficient (m
-1

) 

λ Vortex viscosity (kg.m
-1

.s
-1

) 

μ Dynamic viscosity (kg.m
-1

.s
-1

) 
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ν Kinematic viscosity (m
2
.s

-1
) 

θ Dimensionless temperature 

ρ Density of fluid (kg.m
-3

) 

σ Electrical conductivity (S.m
-1

) 

ξ Stefan–Boltzmann constant (W.m
-2

.K
-4

) 

Subscripts 

w At the wall 

∞ Condition far from the surface 
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