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Abstract: The nonlinear bending analysis of thick functionally graded plates 
subjected to mechanical loading is studied in this paper. The formulation was 
derived based on the third-order shear deformation plate theory and Von Kármán 
type non-linearity. Young’s modulus is assumed to vary according to the power law 
distribution in terms of the volume fractions of the constituents. The principle of 
virtual work was used to obtain the weak form of the governing differential 
equations. The most important advantage of employed numerical solution in this 
work is that the whole plate was considered as one element and the components of 
displacement field were interpolated over the entire domain, then a hierarchical 
finite-element scheme was developed. The validity and accuracy of the method 
was verified by comparisons made with other solutions. In addition, the effect of 
numbers of interpolation functions on the accuracy of results was studied. It is 
concluded that accurate results are obtained even by few numbers of interpolation 
functions. 
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1 INTRODUCTION 

Functionally graded materials (FGMs) have received 
considerable research efforts, recently. That is why 
application of FGMs in variety of industries is growing 
significantly. Compared with the laminated composites, 
FGMs are inhomogeneous whose material properties 
vary continuously from one surface to another, which 
leads to elimination of interface problems and 
mitigation of thermal stress concentrations. Apart from 
much research conducted over the past years on FGMs 
fabrication, recently, solution of functionally graded 
(FG) plates subjected to small and large deformation 
has drawn much attention.  
For analysis of plates the following theories were 
employed:  
1. Classical plate theory 
2. First-order shear deformation plate theories 
3. Higher-order shear deformation plate theories such 
as REDDY’s third-order theory [1], [2] 

Since the classical plate theory, based on the Kirchhoff 
hypothesis, neglects the effects of transverse shear and 
normal strains, it is inaccurate for analyzing the 
distribution of displacements and stresses in thick 
plates with moderately large deformation. Therefore; a 
number of first-order shear deformation plate theories 
have been developed for taking into account these 
effects. Since in these theories the transverse shear 
strains are assumed to be constant through the 
thickness, shear correction factors have to be 
incorporated to adjust the transverse shear stiffness. 
The accuracy of the first-order shear deformation plate 
theory will be dependent on predicting better estimates 
for the shear correction factors. It has been shown that 
the classical and first-order shear deformation plate 
theories are inadequate to predict the accurate results 
for FG plates. Several refined higher-order plate 
theories that include the effects of transverse shear 
strains have been proposed. In third-order shear 
deformation plate theory proposed by REDDY the 
transverse shear strains are assumed to be parabolically 
distributed through the thickness of plate; hence, there 
is no need for shear correction factors [1], [2]. 
The solution of FG plates has been carried out both 
analytically and numerically. Cheng and Batra 
established an exact relationship between deflections of 
a simply supported functionally graded polygonal plate 
governed by either the third-order shear deformation 
theory or the first-order one and that of an equivalent 
homogeneous Kirchhoff plate [3]. Woo and Meguid 
proposed an analytical solution obtained in terms of 
Fourier series for the large deflection of functionally 
graded plates and shallow shells under transverse 
mechanical loading and a temperature field using Von 
Kármán theory [4].  

Ma and Wang related the solution of the axisymmetric 
bending and buckling of functionally graded circular 
plates based on third-order plate theory (TPT) to those 
of isotropic circular plates based on classical plate 
theory (CPT) [5]. In addition, they studied effects of 
the gradient of material property and shear deformation 
on the axisymmetric bending and buckling of 
functionally graded plates according to first-order plate 
theory (FPT) and third-order plate theory, and 
comparisons of the TPT solutions with the FPT and 
CPT solutions were presented.  
Chi and Chung studied a simply supported elastic 
rectangular FG plate subjected to transverse loads [6]. 
The material properties were assumed to vary 
continuously through the thickness, according to the 
volume fraction of the constituents based on power-
law, sigmoid, and exponential functions. The classical 
plate theory and Fourier series expansion were 
employed to reach the series solutions. Nosier and 
Fallah reformulated the governing equations of the 
first-order shear deformation plate theory for FG 
circular plates into those describing the interior and 
edge-zone problems [7]. Then, they presented 
analytical solutions for axisymmetric and asymmetric 
behavior of isotropic FG circular plates within various 
boundary conditions under mechanical and thermal 
loadings.  
Bo, et al. extended the method proposed by Mian and 
Spencer in order to consider an orthotropic FG plate 
subjected to uniform loading applied on the top surface 
[8], [9]. Then, they put forward elasticity solutions for 
an FG rectangular plate in cylindrical bending. 
Matsunaga presented a two-dimensional higher-order 
deformation theory for analysis of displacements and 
stresses in FG plates subjected to thermal and 
mechanical loadings [10]. He derived a set of 
fundamental governing equations which can take into 
account the effects of both transverse shear and normal 
stresses through the principle of virtual work using the 
method of power series expansion of continuous 
displacement components.  
Mechab, et al. presented the bending analysis of FG 
plates using a two-variable refined plate theory, and 
Navier solution was used to obtain closed-form 
solutions for simply supported FG plates [11]. Suresh 
Kumar, et al., investigated nonlinear bending behavior 
of functionally graded plates according to higher-order 
theory [12]. The nonlinear simultaneous equations were 
obtained using Navier’s method.  
Fereidoon, et al., employed the differential quadrature 
(DQ) method for analyzing the isotropic functionally 
graded (FG) and functionally graded coated (FGC) thin 
plates [13]. They studied, then, the applicability of 
polynomial and harmonic differential quadrature (PDQ 
and HDQ) methods for bending analysis of these plates 
accurately under the transverse loading .The classical 
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thin plate theory was considered for the analysis. 
Woodward and Kashtalyan studied bending of an 
isotropic FG plate under localized transverse load by 
combination of 3-D analytical and computational (finite 
element) methods [14].  
The aim of the current paper is to investigate the 
nonlinear bending behavior and static characteristics of 
FG plates subjected to mechanical loadings for two 
kinds of boundary conditions. The third-order shear 
deformation plate theory was employed to take into 
account the transverse shear strains, and the Von 
Kármán-type nonlinear strain-displacement relationship 
was adopted.  
The principle of virtual work was used to obtain the 
weak form of the governing differential equations. The 
most important advantage of employed numerical 
solution in this work is that the whole plate was 
considered as one element and the components of 
displacement field were interpolated over the entire 
domain, then a hierarchical finite-element scheme was 
developed. To evaluate the accuracy of the method, the 
present results were compared with those of other 
researches. Studying the effect of numbers of 
interpolation functions on the results revealed that 
reaching the accurate results is possible even by few 
numbers of interpolation functions. 
 
 
 
 
 
 

 

 

 

 
 
 

Fig. 1 Geometry of plate 

2 Kinematics and constitutive equations 

Consider a rectangular plate of length a , width b , and 
thickness h  (Fig. 1). The origin of the coordinate 
system is located at the corner of the mid-plane at 
which displacements in yx,  and z directions are u , v  
and w . xψ  and yψ  are defined as the mid-plane 
rotations of the normal about the y  and x  axes, 
respectively. According to REDDY’s third-order shear 
deformation plate theory [1], [2], the displacement 
components are assumed to be of the following forms 
[15]: 
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The strains of the plate related to the displacement field 
given in Eq. (1) are: 
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Where: 
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The stress constitutive equations may be written as: 
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For FG plates Qij are given by: 
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In the above equation, Young’s modulus is assumed to 
vary through the thickness according to the following 
power law distribution. 
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Where n  is the power law index, h  is the plate 
thickness, and Ec , Em are the Young’s modulus of 
the ceramic and the metal, respectively. The stress 
resultants and couple stresses are given by: 
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Where iN  and iQ  are the membrane and transverse 

shear forces, iM  is the moment, and Pi  and Ri  are 
the higher-order moment and shear force, respectively. 
The constitutive relations of the plate can be yielded 
through substituting Eq. (4) into Eq. (7), and taking Eq. 
(2) into account.  
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Where BA ijij, etc., are the plate stiffnesses, given by: 
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3 NUMERICAL SOLUTION SCHEME  

For any point on the mid-plane, five degrees of 
freedom defined as components of displacement and 
rotation vector which are considered in matrix U : 
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In this study, the rectangular plate in Cartesian 
coordinates is mapped into a standard square. For 
numerical solution, the components of the 
vector U must be interpolated on the whole domain of 
the plate region. For in-plane components of the vector 
U , the following simple polynomials are used: 
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Where θ1 and θ 2 are natural coordinate systems and 
the functions P1 and P2 are used to satisfy in-plane 
boundary conditions. For interpolation of out-of-plane 
components, the following functions are used 
where H k for 4,3,2,1=k  are Hermitian shape 
functions that are used for satisfying out-of-plane 
boundary conditions.  
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Finally, two-dimensional interpolation functions can be 
written as: 
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Where X̂  is the generalized coordinate system and 
N is the shape function matrix. By this definition, 
U can be written as: 
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After formulation of components of displacement and 
rotation in accordance with hierarchical finite-element 
method, the mid-plane strains and curvatures expressed 
in Eq. (3) will encounter what follows: 
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The weak form of the governing differential equations 
can be derived by using the principle of virtual work. 
The principle of virtual work in the present case yields: 
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By substituting Eq. (16) into virtual work, Eq. (18) can 
be written as: 
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                                                                             (18) 
 
In Eq. (18), X̂  is an unknown matrix whose value is 
computed by means of Newton Raphson method. 

4 NUMERICAL RESULTS AND DISCUSSIONS  

In this study, the nonlinear analysis of FG plates was 
conducted for one type of ceramic and metal 
combination. The materials were considered to be 
Aluminium and Alumina. It is assumed that the upper 
surface is pure ceramic and the lower surface is pure 
metal. Since the Poisson’s ratio varied in a small range 
it was assumed to be constant through the thickness of 
the FG plate. The material properties adopted here for 
obtaining the numerical results are: 
 
Metal (Aluminium, AL ): =Em mN 291070× ; .3.0=ν  
Ceramic(Alumina, OAL 32 ): =Ec mN 2910380 × ;

.3.0=ν  

In all cases the plate was subjected to a sinusoidally 
distributed load given by: 

b
y

a
xqyxq ππ sinsin),( 0=                                          (19) 
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Fig. 2 Non-dimensionalized center deflection of SSSS FG 

plate versus aspect ratio 
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Fig. 3 Non-dimensionalized center deflection of SSSS FG 

square plate versus side-to-thickness ratio 
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Two different boundary conditions were considered as 
follows: 
1- All edges simply supported (SSSS) 
2- All edges clamped (CCCC) 

In order to verify the accuracy of the presented method, 
hierarchical finite-element results of SSSS FG plates 
are compared with those of Matsunaga and Mechab 
available in literature [10], [11]. Figures 2 and 3 show 
non-dimensionalized center deflection of SSSS FG 
plate versus aspect ratio and side-to-thickness ratio for 
various volume fraction exponents )(n .  
It can be observed that the deflection is maximum for 
the fully metal plate and minimum for the fully ceramic 
plate, which can be attributed to the fact that the 
Young’s modulus of ceramic is higher than that of 
metal. Deflection of FG plates is intermediate to that of 
the metallic and ceramic plates. Moreover, it is 
concluded from the figures that the deflection decreases 
by a rise in the aspect ratio, while it may be unchanged 
as the side-to-thickness ratio increases.  
Figures 4 and 5 show through-the-thickness variations 
of non-dimensionalized normal stresses in x  and y  
directions at the center point of SSSS FG plate for 
various side-to-thickness ratios and aspect ratios. It can 
be seen that the normal stresses are compressive 
throughout the lower half and tensile throughout the 
upper half of plate. As demonstrated, minimum value 
of zero for the normal stresses occurs at 153.0=hz , 
which is independent of side-to-thickness ratio and 
aspect ratio. 
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Fig. 4 Through-the-thickness variation of non-

dimensionalized normal stress in x direction at the center 
point of SSSS FG square plate 

 
The effect of volume fraction exponent )(n  on non-
dimensionalized normal stress in x direction of SSSS 
FG square plate is shown in Fig. 6.  
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Fig. 5 Through-the-thickness variation of non-

dimensionalized normal stress in y direction at the center 
point of SSSS FG plate 
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Fig. 6 Through-the-thickness variation of non-

dimensionalized normal stress in x direction at the center 
point of SSSS FG square plate 
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Fig. 7 Variation of non-dimensionalized deflection of 

SSSS and CCCC FG square plate along (x, b/2) 
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In Figs. 7 to 9 the nonlinear analysis is conducted for 
both fully simply supported and fully clamped FG 
square plates, and the results are compared with each 
other. The variation of non-dimensionalized deflection 
along )2,( bx  for various side-to-thickness ratios is 
plotted in Fig. 7. Non-dimensionalized center 
deflection versus load for various volume fraction 
exponents )(n  is shown in Fig. 8, and Fig. 9 depicts 
through-the-thickness variation of normal strain at the 
center point for different values of n . In this figure: 

3044
0 =hEaq m .    
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Fig. 8 Non-dimensionalized center deflection of SSSS and 

CCCC FG square plate versus load 
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In the presented method, accurate results have been 
obtained even by few numbers of interpolation 
functions. In order to prove the idea, variation of center 
deflection of SSSS FG square plate versus numbers of 
interpolation functions are plotted in Fig. 10. It is 
observed that by using this method, there is no need to 
increase the numbers of interpolation functions. 
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Fig. 10 Non-dimensionalized center deflection of SSSS FG 

square plate versus numbers of interpolation functions 

5 CONCLUSION 

Analysis of nonlinear bending behavior of thick FG 
plates subjected to sinusoidal loading for two kinds of 
boundary conditions has been carried out in the current 
study based on the third-order shear deformation plate 
theory and Von Kármán type non-linearity. The most 
important advantage of the employed numerical 
solution in this work is that the whole plate was 
considered as one element and the components of 
displacement field were interpolated over the entire 
domain, then a hierarchical finite-element scheme was 
developed. The method is computationally efficient and 
the numerical results are well in line with other 
solutions. Studying the effect of numbers of 
interpolation functions on the results revealed that 
reaching the accurate results is possible even by few 
numbers of interpolation functions. In general, it can be 
said that considering the whole plate as one element 
and using few numbers of interpolation functions save 
solution time. 
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