
Int  J   Advanced Design and Manufacturing Technology, Vol. 5/ No. 5/ December - 2012  11 
 

© 2012 IAU, Majlesi Branch 
 

Stress Analysis of Rotational 
Shaft with a Constant Angular 
Speed using Strain Gradient 
Theory 
M. Alizadeh 
Department of Mechanical Engineering, 
University of Science & Technology, Iran 
E-mail: ma_alizadeh@iust.ac.ir  

M. Homayouni* & S. M. A. Alvani 
Department of Mechanical Engineering, 
University of Science & Technology, Iran 
E-mail: homayouni_mh@yahoo.com, ma_alvani@yahoo.com 
*Corresponding author 

Received: 25 July 2011, Revised: 6 August 2012, Accepted: 30 October 2012 

Abstract: In classical mechanics, considering Hook’s law, stress is a linear 
function of strain. While in strain gradient theory, stress is a function of strain and 
strain differentials. In this paper, Novel formulation relating stress and strain and 
also new boundary conditions are derived based on minimum potential energy 
principle. In strain gradient theory a length coefficient parameter is defined. This 
statistical parameter shows that material behaviour in microscopic scale depends 
on material dimensions. In classical elasticity dependency of the material 
behaviour on material size could not be described due to the lack of length 
coefficient parameter. Here also a total stress tensor, different from the Cauchy’s 
stress tensor, is defined which can be used as a total stress tensor in momentum 
equation. Using strain gradient theory, strain field for a rotational shaft with a 
constant angular speed is analytically studied. Knowing displacement field, total 
stress tensor can also be computed. A material constant is present in the derived 
displacement field in addition to the two Lame constants. Formulations based on 
strain gradient theory turn to those of classical mechanics if length coefficient is 
neglected. Results of stress analysis using strain gradient theory and those of 
classic mechanics are compared. 
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1 INTRODUCTION 

Kinetic quantities are functions of kinematic quantities. 
For instance stress (as a kinetic quantity) is dependent 
on strain (as a kinematic quantity). Thus kinetic 
quantities can be described as functions of kinematic 
quantities e.g. in simple linear theory they are linear 
functions of kinematic quantities. In classical 
mechanics, stress is a function of only strain and 
therefore density of the potential energy stored into the 
material due to the deformation can be described as a 
function of strain. In strain gradient theory in the higher 
order equations are considered.  For instance, in this 
linear deformation theory, density of the potential 
energy is a function of both strain and strain 
differentials. This theory was first introduced by 
Mindlin [1] and Toupin [2].   
In an elastic material, considering theory of elasticity 
Mindlin derived equilibrium equations, boundary 
conditions and constitutive equations. It was shown that 
density of the potential energy is a binomial in small 
strains with first and second orders of strain 
differentials. For isotropic materials Mindlin [3] 
developed the third order of strain gradient with 18 
material constants and two Lame’s constants. It was 
shown that in an elastic continuum state if it is assumed 
that density of the potential energy in addition to strain, 
depends on revolution gradients; then elasticity theory 
yields a coupled stress tensor in addition to the general 
stress tensor. Higher orders continuum mechanics 
especially relies on nonlinear concepts and large 
deformation and non linear behaviours.  
High order strain gradient theory which includes length 
coefficient shows that material behaviour in micro 
scale depends on material dimensions. This 
dependency could not be described in classical 
elasticity theory due to the lack of the length coefficient 
parameter. Fleck and Hutchinson [4] for the first time 
used coupled equations to introduce length coefficient 
parameter. To apply length coefficient parameter in 
equations, Cosserat theory can be used. The concept of 
the Cosserat continuum circumstance was first defined 
by Cosserat brothers [5] in 1990. As mentioned before 
in this circumstance in addition to force effects, the 
effect of couples on a physical element is also 
considered. This theory states that by applying force on 
material in addition to stress, moments will exist in 
material which should be considered in equilibrium 
equations of the particles.  
However investigations on the numerous material-
related parameters in the constitutive equation of higher 
order materials hinders the use of this theory. Therefore 
elastic strain gradient theory which considers a constant 

as a material parameter drew the attentions and showed 
to be useful in solution of vast variety of problems. 
Altan and Aifantis [6] suggested a new model for strain 
gradient theory. In this theory three elastic and two 
Lame’s constants are present in formulations. This 
model, due to its simplicity, was applied to analyze 
numerous problems.  
Therefore, there was a growing need to completely 
formulate this simple elastic strain gradient theory 
based on the first principle of mechanics (minimum 
potential energy principle). To respond this demand a 
new modified formulation of strain gradient theory was 
introduced by Park and Gao [7]. In this paper a review 
on formulations in gradient theory was first performed. 
Then based on developed formulations displacement 
field was computed for a rotational shaft. Total stress 
tensor which depends on higher differentials of the 
strain was introduced. After computing displacement 
field, total stress tensor components are calculated and 
comparison was made between results of strain 
gradient theory and those of classical mechanics. 

2 A REVIEW OF STRAIN GRADIENT ELASTICITY 
THEORY 

Considering studies conducted by Mindlin and Eshel 
[8], for an isotropic material in strain gradient theory, 
strain energy density is a function of two parameters 
namely strain and strain gradient 
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where ’∇ ’ is gradient operator and ‘u’ is the 
displacement field. Therefore ‘ u∇ ’ is strain 
and’ u∇∇ ’ is strain gradient. In this condition total 
strain energy ‘U’ for a mass with the volume of ‘Ω ’ 
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with the assumption that it is linearly deformed can be 
defined as follows. 
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where
><2
τ and

><3
μ are Cauchy and double stress tensor 

components respectively. Each of these parameters can 
be calculated using equations introduced by Mindlin 
and Eshel [8] and Eq. (1). 
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Using the first principle of classical mechanics in a 
steady state equilibrium and fundamental subject of 
calculus of variation, the following equilibrium 
equations are obtained for gradient-dependent material 
body [1], [8]: 

 

0f. =+σ∇                                                (7) 

 

In Eq. (7) f  and σ  are body force and total stress 
tensor components respectively. They can be defined 
by Equations introduced by Altan and Aifantis [9] as 
follows: 
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In Eq. (8) ‘λ’ and ‘μ’ are Lame’s constants and ‘ ’ is 
the length scale parameter. It is worth to mention that 
the dimension of length scale parameter is length 
square. ∇ , .∇  and 2∇  are gradient, divergence and 
Laplasian operators and ‘I’ is the unity tensor of the 
second order. Taking divergence from both sides of the 
Eq. (8), Eq. (9) yields as: 
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Considering u) curl(curlu).(u2 −∇∇=∇  Eq. (9) 
changes to a simpler form which is given in Eq. (10): 
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Substituting Eq. (7) by Eq. (10), Eq. (11) can be 
derived as: 
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Eq. (11) is the equilibrium equation in the form of 
tensor and it depends on displacement field u . It is 
clear that the equilibrium equation introduced by strain 
gradient theory, in addition to two Lame’s constants 
(λ ,μ) there is a material-scale parameter. The 
boundary condition can be defined by Eq. (12): 
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where 
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3 SOLUTION OF A ROTATIONAL SHAFT WITH A 
CONSTANT ANGULAR SPEED 

Classic solution of the rotational shaft with a constant 
angular speed is introduced by Timoshenko and 
Goodier [10], even though in their solution there is no 
length parameter due to disability of classical 
mechanics to reveal the dependency of the material 
behaviour on material dimension.  
In this paper solution of the rotational shaft is taken 
into account using strain gradient theory. Displacement 
field for this problem is obtained using mentioned 
formulations in the previous section. Contrary to the 
classic solution, here in addition to the two Lame’s 
constants there is an extra parameter named length 
coefficient which can demonstrate the effect of material 
dimension on its behaviour. The problem is considered 
in the plane strain state. Fig. 1 shows assumed shaft 
with outer and inner radii of ‘ ir ’ and ‘ or ’ respectively 
and constant angular velocity of ‘ω ’ and density of 
‘ ρ ’:  
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Fig. 1 Rotational shaft with a constant angular velocity  

 
Cylindrical coordinate system was considered in 
development of the solution. Due to the symmetry of 
the geometry and loading conditions, displacement 
field can be defined as: 
 

re)r(uu =  (14) 
 
Noticing that displacement field depends on the radial 
component r and is independent of circumferential 
component θ ; this problem can be considered as a 1D 
problem even generally it is a 2D problem. Considering 
Eq. (14), Eq. (15) can be computed. 
 

re)r(uu =  (15) 
 
Inserting Eq. (15) in Eq. (11), the equilibrium equation 
can be simplified based on Eq. (10) as follows:  
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Here, body force in the volume unit is 2rf ωρ= and 
hence by substituting body force in Eq. (16), Equations 
(17-19) are calculated. 
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Inserting Equations (18) and (19) into Eq. (17) yields: 
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Ignoring ‘ ’ in the second term of Eq. (20) it can be 
simplified as presented as Eq. (21): 
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And linear differential operator L is defined by Eq. 
(22): 
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Substituting Equations (21) and (22) into Eq. (20), Eq. 
(23) can be written: 
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Differential equation of equilibrium in strain gradient 
theory ( 0≠ ) is of the forth order. Therefore, 4 
boundary conditions are needed to solve the equation. 
Boundary conditions in strain gradient theory are 
defined in two sections by using fundamental subject of 
the calculus of variations and principle of minimum 
total potential energy. When ( 0= ) this equation can 
be simplified as Eq. (24): 
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Eq. (24) is an Eulerian non-uniform differential 
equation of the second order. By solving this equation, 
Eq. (25) can be computed: 
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where ‘A’ and ‘B’ are constants which can be solved 
using boundary conditions. This solution is a classic 
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solution which was introduced by Timoshenko and 
Goodier [10]. As mentioned earlier in classical solution 
there is no material-scale parameter. Eq. (23) is a    
non-uniform solution consisting of general and specific 
responses. Solving this equation yields displacement 
field in strain gradient theory.  
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In Eq. (26), )0(I1  and )0(K1  are modified Bessel 
functions of first and second orders. A-D are constants 
known by boundary condition.  
As it can be seen in Eq. (26) displacement field 
depends on the length scale parameter. Considering 
Equations (2) and (14), strain tensor is computed using 
Eq. (27).  
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Substituting Eq. (27) in Eq. (5) Cauchy stress tensor 
components can be found based on Eq. (28).  
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Considering Eq. (6) total stress tensor ‘σ ’ which 
depends on the Cauchy stress tensor is as defined in Eq. 
(29):  
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Substituting Equations (26) and (27) into Eq. (29), total 
stress tensor can be computed. Boundary conditions 
which were defined in Eq. (12) can be rewritten as 
below: 
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By substituting Equations (26) and (28) in Eq. (30), Eq. 
(31) can be computed: 
 

( )( )
( ) ( )

( )( )
( ) ( )

2

2 4

2

0 12 3

2 2 2

2

2 4

2

0 12 3

2 2 2

2 4( 2 2 ) ( )

2 4( ) ( )

1 2 2 3
2

8 1

2 4( 2 2 ) ( )

2 4( ) ( )

1 2 2 3
2

8 1

4

i i

i i

i i i

i

o o

o o

o o o

o

A B
r r

r rK K D
r r r

r

A B
r r

r rK K D
r r r

r

μ μλ μ

μ λ μ

ν λ μ
ρω

ν μ

μ μλ μ

μ λ μ

ν λ μ
ρω

ν μ

μ

− − + + +

⎡ ⎤⎛ ⎞
− − =⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
− +

−
−

− − + + +

⎡ ⎤⎛ ⎞
− − =⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
− +

−
−

( )( )
( )

( )( )
( )

0 13 2 2

2

0 13 2 2
0 0

2

2 2 4( ) ( ) ( )

1 2 2 3
4 1

4 2 2 4( ) ( ) ( )

1 2 2 3
4 1

i i

i i i

i

o o

o

o

r rB K K D
r r r

r

r rB K K D
r r r

r

μ λ μ μ

ν λ μ
ρω

ν μ

μ μ λ μ μ

ν λ μ
ρω

ν μ

⎡ ⎤+
+ + + =⎢ ⎥
⎣ ⎦

− +
−

⎡ ⎤+
+ + + =⎢ ⎥
⎣ ⎦

− +
−

 

(31) 

 
Solving linear system of equations presented in Eq. 
(31), A-D constants can be calculated. It can be 
inferred from Eq. 31 that these constants depend on 
Lame’s constants ( λμ, ), strain gradient coefficient ‘ ’ 
(length scale parameter), geometrical parameters as 
inner ‘ ir ’ and outer ‘ or ’ radii, constant angular 
velocity ‘ω ’ and density ‘ρ ’.  
If these parameters ( oi r,r,,,,, ωρμλ ) are known, the 
constants can be computed using Eq. (31). Substituting 
these into constants Eq. 26, displacement field can be 
obtained. When displacement field is known, total 
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stress components can be found using Equations (28) 
and (29). 

4 RESULTS AND DISCUSSION  

Results from analytical solution in strain gradient 
theory are illustrated in Figs. 2 and 3. In these figures 
total stress tensor components ( )θθσσ ,rr  are compared 
with those obtained from classical mechanics ( )θθττ ,rr . 
Parameters considered in the analysis are 

GPa 7.71E = and 0.28=ν . To study the effects of 
length scale parameters on stress components, different 
amounts were considered in the analysis. Inner radius 
of m1ari μ==  and outer radius of m5bro μ==  were 
assumed. As ρ  andω  were used in the dimensionless 
form, there is no need to specify angular speed and 
density. 

 

 
 

 

 

 

 

 

Fig. 2 Radial stress distributions along the radial shaft  

 
 

 

 

 

 

 
Fig. 3 Circumferential stress distributions along the radial 

shaft  

 

As it can be seen from Figs. 3 and 4, results obtained 
from strain gradient theory discrepant those obtained 
from classic mechanics due to the existence of the 
strain gradients. Total stress tensor varies concurrent 
with the change in the length scale parameter. Results 
are depicted for 5/a=  and 3/a= . In Fig. 2 
transverse stress distribution is shown. According to 
Fig. 3, with an increase in the length scale parameter, 
transverse stress increases and axial stress decreases.  

5 CONCLUSION 

Mentioned formulations were coded using Matlab. 
Solving equations derived by the use of strain gradient 
theory yields displacement field. It has been shown that 
in spite of classic mechanics, here in addition to two 
Lame’s constants, displacement  field depends on the 
material-scale parameter namely length coefficient. 
This parameter has a statistical basis which is appeared 
in nonlinear and large deformation formulations. A 
novel total stress tensor was introduced which can be 
used as total stress tensor in the momentum equation. 
The main objective of this paper was to compute total 
stress components for a rotational shaft with a constant 
angular speed; therefore displacement field was first 
computed using equations developed in strain gradient 
theory and then total stress components were 
calculated. Results using strain gradient theory and 
classic mechanics show discrepancies. These 
differences may be attributed to the existence of strain 
gradients in the strain gradient theory. It was observed 
that with the change in length coefficient, computed 
components of the total stress tensor change. Changes 
are depicted for both components of the total tensor in 
plane strain state. 
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