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Abstract: Sliding Mode Control (SMC) is a powerful approach to solve the 
tracking problem for dynamic systems with uncertainties. However, the traditional 
SMCs introduce actuator chattering phenomenon which performs a desirable 
behavior in many physical systems such as servo control and robotic systems, 
particularly, when the zero steady state error is required. Many methods have been 
proposed to eliminate chattering from SMCs which use a finite DC gain controller. 
Although these methods provide a free chattering control but they only deal with 
the steady state error and are not able to reject input disturbances. This paper 
presents a fuzzy combined control (FCC) using appropriate PID and SMCs which 
presents infinite DC gain. The proposed FCC is a free chattering control which 
guarantees a zero steady state error and rejects the disturbances. The stability of the 
closed loop system with the proposed FCC is also proved using Lyapunov stability 
theorem. The proposed FCC is applied to a two degree of freedom robot 
manipulator to illustrate effectiveness of the proposed scheme.  
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1 INTRODUCTION 

Sliding mode control (SMC) has been recognised as a 
powerful method for designing robust controllers for 
complex high-order nonlinear dynamic plants operating 
under various uncertainty conditions. The major 
advantage of SMC is low sensitivity to plant parameter 
variations and disturbances which relaxes the necessity 
of exact modelling [1]. 

In the traditional SMC theory, the control switches 
between two different sub-controllers repeatedly, 
leading to an undesirable phenomenon, the so-called 
chattering. However, in practice, this type of switching 
is impossible due to finite time delays and physical 
limitations. Many methods have been proposed for 
eliminating or reducing chattering including the 
boundary layer, continuous approximations and higher 
order SMC approaches. Using the boundary layer 
approach a continuous control associated with the 
original SMC is introduced to enforce the trajectories to 
remain nearby the sliding surface within a specified 
region, well-known as a boundary layer. If system 
uncertainties are large, an SMC design based on the 
boundary layer techniques requires a high switching 
gain with a thicker boundary layer to eliminate the 
influence of the chattering. However, using a boundary 
layer with large thickness, a sliding motion may not 
occur as the system trajectories may not be sufficiently 
close to the sliding surface. Therefore, the boundary 
layer SMC with large thickness may not guarantee the 
insensitivity with respect to the matched uncertainties. 
However, this method yields a finite steady state error 
due to finite non-switching gain of the controller in the 
steady state [2].  

Another approach which prevents the occurrence of 
chattering is based on the generation of an ideal sliding 
mode in the auxiliary loop including using an observer. 
The observer-based chattering suppression obviously 
requires additional effort in control design; the plant 
parameters must be known to obtain a proper observer. 
However, including an observer in the control system 
may bring extra benefits such as identification of 
uncertainties and disturbances, in addition to its value 
in estimating unavailable states [1, 3]. Since the 
magnitude of chattering is proportional to the switching 
gain, some chattering reduction approaches are based 
on reducing the values of the switching gain to 
decrease the amplitude of chattering preserving the 
existence of sliding mode. Some of these approaches 
may benefit from the idea of proposing a state-
dependent gain method [4, 5, 6]. In this method the 
amplitude of the discontinuous control input is 

significantly reduced as the states stabilise, however 
chattering arises in the presence of unmodelled 
dynamics. The switching gain also can be adjusted in 
other manners, e.g. it may be a function of the non-
switching part of SMC (continuous part, say the 
equivalent control). This methodology also looks 
promising since the equivalent control decreases as the 
sliding mode occurs along the discontinuity surface. In 
this method, the input signal contains chattering 
although its amplitude decreases as the system 
trajectory is sufficiently nearby the sliding surface [1]. 
Some methods embed an SMC in a fuzzy logic 
controller (FLC). In these methods, a set of fuzzy 
linguistic rules based on expert knowledge are used to 
design the switching control law using either the output 
error or the change of output error as input of the fuzzy 
controller [7]. Many other methods, apply the distance 
between the states and the sliding surface as the input 
of FLC. In these methods, since the switching 
performance is not present, the system gain in the 
steady state is finite and the steady state error may still 
exist [8]. To remove this obstacle, an FLC is proposed 
in [9] that combines an SMC with a feedback 
linearization with integral action. This method assures 
the infinite gain of controller in the neighbourhood of 
the sliding surface so that the zero steady state error is 
achieved. This method deals only with the stability 
problem of SISO systems. Moreover, the method of 
stability proof is restricted to achieving the same phrase 
for the time derivative of the Lyapunov function when 
each control law is applied to the system, this prevents 
considering uncertainties in the theoretical results. In 
this paper, a combination of SMC and proportional plus 
integrator with derivation (PID) controller is proposed 
to solve the tracking problem of a class of nonlinear 
MIMO system. First, an SMC with integral action is 
studied in the presence of structured uncertainties of the 
system. Then it is shown that in the neighbourhood of 
the sliding surfaces, the system can be considered as a 
linear time variant system. A suitable PID control is 
proposed to guarantee the asymptotic tracking and 
input disturbance rejection of the closed-loop system in 
this region. These control laws are combined using 
suitable fuzzy rules and input variable to introduce the 
fuzzy combined controller (FCC). The system stability 
with FCC is shown using the Lyapunov stability 
theorem. This paper is organised as follows: Section 2 
describes the class of nonlinear systems which is 
considered in this paper. The procedures of the SMC 
and PID control design are addressed in Section 3. Also 
this section introduces the fuzzy control system with 
FCC and provides analytical results on the stability of 
the closed-loop system. In Section 4, the proposed FCC 
is applied to a two degree of freedom robot manipulator 
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(2DOFRM) to support the theoretical results and prove 
the effectiveness of the proposed scheme. Conclusions 
are given in Section 5.  

2 PROBLEM STATEMENT 

Consider the nonlinear MIMO system in the following 
form: 

 (1) ( ) ( )
x x2i 1 2i

n
x f x g x u i 1, 2, , n2i 2i 2i,i ii 1

T
y x , , x1 2n 1

=−
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where [ ]T 2n
1 2n xx x , , x R= ∈Ω ⊂L  is the state 

vector and the operating region xΩ  is a compact set. 
Also nu R∈  and ny R∈  are the control input and the 
system output, respectively. The mappings 

2n
2if : R R→  and 2n

2i,ig : R R→  are partially known as 
Lipschitz continuous functions of their arguments and 

( )2i,i xg x 0, x≠ ∀ ∈Ω , which means ( )2i,ig x  is 
either positive or negative on the compact set xΩ . In 
fact, the system (1) presents the general form of n 
degree of freedom dynamics of robot manipulators with 
rigid links [10]. For the sake of simplicity and without 
loss of generality, here the proposed control method is 
derived for n=2, although the results can be 
straightforwardly extended to any system in the form of 
(1) with a higher order. For n=2 the system dynamics 
is: 

(2) 
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The goal is to design a chattering free combined control 
such that the outputs track the desired reference signals 

d 1d 3dy [y , y ]=  with zero tracking error. Moreover, the 
closed-loop system eliminates the effect of the 
disturbance on the outputs. Next section presents 
various features of the proposed control method. 

3 CONTROLLER DESIGN METHOD 

In this section, first an SMC with integral action is 
studied in the presence of modelling errors. Then a 

suitable PID controller is proposed to stabilise the error 
dynamics when the system trajectories are near the 
sliding surface. Finally, to remove the chattering 
phenomenon without loosing the advantages of SMC, a 
fuzzy control is designed using the PID and SMCs. 
 

3.1. Sliding mode controls 

Let the uncertainties on 2f  and 4f  be in additive form 
as follows: 

(3) f̂ f F i 1, 22i 2i 2i− ≤ =  

where ( )2f̂ x and ( )4f̂ x  are estimates of ( )2f x  and 
( )4f x  respectively. Also, consider the uncertainties on 

the input matrix in the multiplicative form as:  

(4) 
( ) ˆ ˆG x G(x) G(x);  

;  i 1, 2,  j 1, 2
ij ij

− = Δ ⋅

Δ ≤ γ = =
 

where 
g g21 22G
g g41 42

=
⎡ ⎤
⎢ ⎥
⎣ ⎦

 and G is an estimate of G.  

Assumption 1: The maximum eigenvalue of the matrix 

11 12

21 22

γ γ
Γ =

γ γ

⎡ ⎤
⎢ ⎥
⎣ ⎦

 is less than 1, that is max ( ) 1λ Γ < . Note 

that since Γ is a matrix with nonnegative real entries, 
then it has a nonnegative real eigenvalue which 
dominates the absolute value of other eigenvalues of 
Γ .  

Consider the system (2), and define the error state 
vector as: 

(5) 

T
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Then the error dynamics can be written in the following 
form: 

(6) 
( ) ( ) ( )

( ) ( ) ( )

e e1 2
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where [ ]1 1 3 3y : , , , T
d d d d dy y y y= & & , in which 1dy  and 

3dy  are the desired trajectories 1x  and 3x , respectively. 
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Now let the sliding surfaces 1σ  and 3σ  be defined as 
follows: 

(7) 
( )
( )

2 te e e d01 1 1 1
2 te e e d03 3 3 3

σ = + λ + λ τ τ∫

σ = + λ + λ τ τ∫

&

&
 

where λ  is a positive constant. Sufficient conditions 
for enforcing the error trajectories reaching the sliding 
surfaces in finite times and remaining on it afterwards, 
are that the SMC, [ ]1 2u , Tu u=  is designed such that 
the following condition is fulfilled: 

(8) ( )1 d 2 2
1 3 1 1 3 32 dt

σ + σ ≤ −η σ − η σ  

where 1η  and 3η are small positive numbers.  
Proposition 1. Consider the SMC 

 (9) 
( )
( )

f̂ E k sgn1 2 1 s1 1ˆu GSM f̂ E k sgn4 3 s3 3

− − − σ−
=

− − − σ

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

with 2
1 1 1 1: dE e e yλ λ= + −& && , 2

3 3 3 3: dE e e yλ λ= + −& && , 
then there exists the vector gain 1 3k [ , ]Ts s sk k= , which 
satisfies the reaching conditions (8). 

Proof: Consider the following Lyapunov function: 

(10) 
1 12 2V 1 32 2

= σ + σ  

Using (2) and (7), the time-derivative of (10) becomes: 

 (11) 
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Applying the control law (9) yields: 

 (12) 
( )
( )

f̂ E k sgn Ef 1 2 1 s1 1 12 ˆV GG1 3 ˆ Ef f E k sgn 34 4 3 s3 3

− − − σ−
= σ σ + +

− − − σ
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Substituting 1ˆGG I Δ− = +  into (12) and using (4), the 
time-derivative of V is:  

( )
( )

( ) ( )
( ) ( )

( ) ( )

f̂ E k sgnf 1 2 1 s1 12 11 12V 1 3 ˆf 1 f E k sgn4 21 22 4 3 s3 3
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Then the bound defined in (3) and (4) gives: 

(13) 

( )
( )( ) ( )

( )( )

ˆ ˆV F f E f E2 11 2 1 12 4 3 1

ˆ1 k k F f E11 s1 s3 12 1 4 21 2 1 2
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If the following conditions are satisfied  

(14) 

( )

( )

ˆ ˆ1 k F f E f E11 s1 2 11 2 1 12 4 3

k12 s3 1

ˆ ˆ1 k F f E f E22 s3 4 21 2 1 22 4 3

k11 s1 3

− γ ≥ + γ − + γ −

+ γ + η

− γ ≥ + γ − + γ −

+ γ + η

 

then the sliding mode reaching conditions (6) are 
verified:  

(15) V 1 1 3 3≤ −η σ − η σ&  

Note that in general, if u u= SMα with 0 1< α ≤  is 
applied to the plant the above conditions are replaced 
with: 
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(16) 

( )

( )

F 12 ˆ1 k f E
11 s1 11 2 1

1f̂ E k 1 k
12 4 3 12 s3 22 s3

F 14 ˆ ˆf E f E
21 2 1 22 4 3

3k
11 s1
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η
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⎝ ⎠

⎛ ⎞
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Using the Frobenius-Perron Theorem, it can be shown 
that there exists the positive vector [ ]s1 s3k k  such that 
inequalities (16) hold. Consider the above inequalities 
as follows: 

(17) 
ks1 111 12I
k 321 22 s3
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βγ γ
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where 1 0β > and 3 0β > are chosen such that:  

(18) 

F 12 1ˆ ˆf E f E1 11 2 1 12 4 3
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Since Γ  is a positive definite matrix, according to the 
Frobenius-Perron Theorem, if ( ) 1maxλ Γ < (see. 
Assumption 1) then there exists some unique positive 

s1k  and s3k  which satisfy the equation (17). Hence 
from (17) and (18) it can be concluded that there exist 
the gains [k k ]s1 s3  which satisfy (16).  

When the system trajectory is near the sliding surface, 
the SMC normally deals with the chattering 
phenomenon. So a control should be designed to 
eliminate the chattering. Based on this fact, a PID 
controller is proposed to control the system in the 
neighbourhood of the sliding surface. 

3.2. PID control design 

As stated before, the chattering phenomenon occurs 
when the system trajectory is in the neighbourhood of 
the sliding surfaces, that is 1σ ≤ δ  where 1δ , is a 
small positive value.  

To eliminate chattering, the SMC should be designed 
such that switching control performance is avoided. 
Therefore, a suitable set of fuzzy rules is applied to 
activate an appropriate PID controller when the system 

trajectory is in the vicinity of the sliding surfaces. This 
importance is addressed in the next section. Using the 
following lemma it can be shown that under condition 
of 1σ ≤ δ  where T

σ : 1 3= σ σ⎡ ⎤⎣ ⎦ , the nonlinear error 

dynamic (6) can be approximated as a linear time 
variant system. 

Lemma 1: let σ 1≤ δ  then 1
e 4 2 1≤ + δ

λ
⎛ ⎞
⎜ ⎟
⎝ ⎠

. 

Proof: Appling the Laplace transform to (7) gives: 

(19) 
E (s)2 1(s) sE (s) 2 E (s)1 1 1 s

Σ = + λ + λ  

where E (s) L e (t)1 1= ⎡ ⎤⎣ ⎦  and (s) L (t)1 1Σ = σ⎡ ⎤⎣ ⎦ . 
Equation (19) yields:  

(20) ( )
s

E (s) (s)1 12
s

= Σ
+ λ

 

From σ 1≤ δ  it can be concluded that 1 1σ δ≤  and 

3 1σ δ≤ . Also let define the auxiliary variable 

( )
11z (t) : L (s)1 1s

: Z (s)1

−
= Σ

+ λ

=

⎡ ⎤
⎢ ⎥
⎣ ⎦1442443

, which is bounded as: 

(21) 
( )

(t )tz (t) e ( ) d01 1

(t ) (t )t 1 1e d 1 e01

−λ −τ
≤ σ τ τ ≤∫

δ δ−λ −τ −λ −τ
δ τ ≤ − ≤∫

λ λ

 

Now the bounds on 1e  and 1e&  can be derived using 
(20) and (21) as follows: 

( )

( )

s1 1e ( t ) L E (s) L (s)1 1 12
s

1L Z (s) Z (s)1 1s

( t )t e z ( )d z ( t )0 1 1

− −
= = Σ

+ λ

−λ−
= + =

+ λ

−λ −τ
−λ τ τ +∫

⎡ ⎤
⎢ ⎥⎡ ⎤⎣ ⎦ ⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥
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Hence,  

(22) ( )z (t ) 1e (t) 1 e z 21 1
λ δ−λ −τ

≤ − + ≤
λ λ

 

Also the bound on 1e&  can be calculated as: 
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( )

( )

2s1 1e (t) L sE (s) L (s)1 1 12
s

2
1L Z(s) 2 Z(s) (s)1s

(t )2t e z ( )d 2 z (t) (t)0 1 1 1

− −
= = Σ =

+ λ

λ−
− λ + Σ

+ λ

−λ −τ
= λ τ τ − λ + σ∫

⎡ ⎤
⎢ ⎥⎡ ⎤⎣ ⎦ ⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥
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Thus, using 1 1σ δ≤  and (21), it gives: 

(23) ( )
2 z (t )e (t) 1 e 2 z 41 1 1

λ −λ −τ
≤ − + λ + σ ≤ δ

λ
&  

Using similar procedures, the bounds on 2e  and 2e&  
can be obtained. Now (5), (22) and (23) yields: 

(24) 
1

e e e e e 4 21 1 2 2 1≤ + + + ≤ + δ
λ

⎛ ⎞
⎜ ⎟
⎝ ⎠

& &  

The trajectories eventually enters into a small ball 

1
14 2 δ
λ

⎛ ⎞≤ +⎜ ⎟
⎝ ⎠

e , and if 1δ  is selected to be 

sufficiently small, then e-trajectories move within this 
ball close to the origin. To stabilise the error system 
when the trajectories are inside this ball, a PID sub-
controller is designed. Since the behaviour of the 
nonlinear system (6) and its linearised counterpart are 
the same, to prove the system stability the following 
associate linear system is considered.  

(25) 

e e1 2
T Te a e b u2 2 2

e e3 4
T Te a e b u4 4 4

=

= +

=

= +

⎧
⎪
⎪
⎨
⎪
⎪
⎩

&

&

&

&

 

where 

( ) fT 2a y2 d e e 0

∂
=

∂ =

, ( ) ( )Tb g 0, y , g 0, y2 21 22d d= ⎡ ⎤⎣ ⎦  

 ( ) fT 4a y4 d e e 0

∂
=

∂ =

and ( ) ( )Tb g 0, y , g 0, y4 41 42d d= ⎡ ⎤⎣ ⎦ .  

To stabilise the above controllable system the 
following PD controller may be used.  

k k 0 011 12u K (t)e eePD 0 0 k k23 24
= =

⎡ ⎤
⎢ ⎥⎣ ⎦

 

In order to guarantee the asymptotic tracking and input 
disturbance rejection of the closed-loop system, an 
integral action is added to the controller. Let the new 
state variables be defined as 

t

1 10
p : e ( )d= τ τ∫  and 

t

3 30
p : e ( )d= τ τ∫ . Now the augmented open-loop plant 

can be presented as:  

 

(26) 

{

p p0 1 0 0 0 0 0 01 1
e e0 0 1 0 0 0 0 01 1
e 0 a a 0 a a ed b b2 21 22 23 24 2 21 22 u
p p0 0 0 0 1 0 0 0dt 3 3

0 0 0 0 0 1 0 0e e3 3
0 a a 0 a a b be e41 42 43 44 41 424 4

: A : b: ep pp

= +

= ==

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦⎣ ⎦ ⎣ ⎦ 1424314444244443

 

A new PID controller is proposed to stabilise the 
closed- loop error dynamics. 
 

(27) 
k k k k k k11 12 13 14 15 16u K (t)e ep p pPID k k k k k k21 22 23 24 25 26

= =
⎡ ⎤
⎢ ⎥⎣ ⎦

 

Since ( )A , bp p  is controllable, it is always possible to 
place the eigenvalues of A b Kp p p+  in the desired 
locations. Here the control gain K ( )p t is obtained such 
that all eigenvalues of the following matrix are negative 
 

(28) 

A b K 0p p p 6 6
T ˆ0 Λ G(y )K 0p6 6 d

: QG

+ ×

<×

=−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

14243
 

where 
2 2 1 01 3Λ 20 2 11 3

λ λ ×=
λ λ×

⎡ ⎤
⎢ ⎥
⎣ ⎦

. Note that there are 

sufficient free parameters ijk i 1,2 j 1, ,6= = K  to 
hold the condition (28). Hence the stable closed loop 
dynamics can be presented as: 

 

(29) 
( )e A b K ep p p p p

Acl

= +&
14243

 

Fig. 1 shows the closed-loop system with the added 
integral control. 

 



Int  J   Advanced Design and Manufacturing Technology, Vol. 5/ No. 2/ March - 2012  
 

© 2012 IAU, Majlesi Branch 
 

65

 
Fig. 1 Closed-loop system with an integral action 

 

Now it is shown that the system trajectories (29), 
asymptotically tend to the origin along the sliding 
surface 1 3σ σ∩ . 

Proposition 2: The time derivative of the Lyapunov 
function (10) is negative on closed loop dynamic (29). 

Proof: The Lyapunov function (8) can be rewritten as: 

(30) 
1 1 0TV σ σ

0 12
= ⎡ ⎤

⎢ ⎥⎣ ⎦
 

where [ ]1 3
Tσ σ=σ , in which 1σ  and 3σ  are 

defined in (7) and can be represented as: 

(31) 

p12 22 1 e 2 1 0 e ,p1 1 1 3
e2

p32 22 1 e 0 2 1 ep3 3 1 3
e4

σ = λ λ = λ λ ×

σ = λ λ = λ λ×

⎡ ⎤
⎢ ⎥⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎢ ⎥
⎣ ⎦
⎡ ⎤
⎢ ⎥⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎢ ⎥
⎣ ⎦

 

Substituting (31) into (30), yields:  

(32) {
1 T TV e Λ Λ ep p
2 P

=  

where P is a symmetric positive definite matrix. Using 
(29), the time-derivative of (32) becomes: 

( )

1 1 1T T T TV e Pe e Pe e A Pep p p p p pcl2 2 2

1 1T T Te PA e e A P PA ep p p pcl cl cl2 2

= + = +

= +

& & &

 

The stability of Acl  ensures existence of the symmetric 
positive-definite solution P of the following algebraic 
Riccati equation.  

(33) TPA A P Qcl cl+ = −  

where Q  is an arbitrary symmetric positive-definite 
matrix. Hence, 

(34) 
21 1TV e Qe (Q) e 0p p pmin2 2

= − ≤ − λ ≤&  

 

3.3. Fuzzy combination of PID and SMC 

To remove chattering without loosing the advantages of 
SMC such as asymptotic tracking and robustness, a 
fuzzy combination of PID and SMC is used. In this 
approach, based on the rules, a fuzzy system decides 
about the activation of the PID and SMCs. In this 
method, a continuous fuzzy switch makes smooth 
changes between these two controllers based on the 
following fuzzy IF-THEN rules: 

(35) 
Rule 1: IF σ  is S, THEN u uPID=                  

Rule 2: IF σ  is L, THEN u uSM=  

Where S and L are fuzzy sets defined on input fuzzy 
variable σ , which is applied to the fuzzy controller. 
Also uSM  and uPID are the outputs of the fuzzy 
inference engine for the above fuzzy rules. In the above 
fuzzy rules, there exists at least one nonzero degree of 
membership [ ]( ),  ( ) 0,1S Lμ σ μ σ ∈  corresponding to 
each rule as depicted in Fig. 2 in which 2δ  is a positive 
small number.  

 

  

Fig. 2 Membership function of fuzzy variable σ  
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Appling the weighted sum defuzzification method, the 
overall output of the fuzzy controller can be written as: 

(36) 
( )u ( )uPID LS SMu

( ) ( )LS

μ σ + μ σ
=

μ σ + μ σ
 

Using the following property of input matrix of robot 
manipulator system, G, the stability of the closed-loop 
system over the entire operation range of the fuzzy 
logic control system is studied.  

Lemma 2: Consider the estimated input matrix of a 
2DOFRM system as 1ˆ ˆG(x) H−=  where 

c d cos x c d cos x11 11 3 12 12 3Ĥ(x)
c d cos x c12 12 3 22

+ +
=

+

⎡ ⎤
⎢ ⎥⎣ ⎦

 

and 3x is the angle of second joint of manipulator as 

depicted in Fig. 3. If 2δ<σ  and 2 1δ
λ

, then the input 

matrix can be considered as:  

(37) 2ˆ ˆG(x) G(y ) Δ (y , e) Δ 2wG Gd d
δ

= + ≤
λ

 

where w  is a positive constant. 
Proof: Using (5) and expanding Ĥ , gives: 

( ) ( )
( )

c d cos e y c d cos e y11 11 3 12 12 33d 3dĤ(x)
c d cos e y c12 12 3 223d

c d cos e cos y c d cos e cos y11 11 3 12 12 33d 3d
c d cos e cos y c12 12 3 223d

d sin e sin y d sin e sin y11 3 12 33d 3d             
d sin e sin y 012 3 3d

+ + + +
=

+ +

+ +
=

+

−

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥⎣ ⎦

 

Since 2 1δ
λ

, 3 1cose ≈  and 3 3sin e e≈ , therefore, 

d sin y d sin y11 123d 3dˆ ˆH(x) H(y ) e3d d sin y 012 3d

T

≈ −
⎡ ⎤
⎢ ⎥⎣ ⎦

�
144424443

 

Applying the inverse of sum of matrix formula, 
and 1ˆ ˆG(x) H−= , yields 3

ˆ ˆG(x) G(y ) Δ (y , )d G d e= +  

Where ( )( )1ˆ ˆ ˆΔ (y , e ) G(y ) I TG(y )e TG(y ) eG 3 3 3d d d d

Δ1

−
= −
1444442444443

 

As it was shown in Lemma 1, 2δ<σ  ensures 

that 2
3e

2δ
<

λ
. So 2

G 1 3Δ Δ e 2w δ
= ≤

λ
 where w is 

defined as the upper bound of 1Δ .            

Theorem 1: Consider the fuzzy control (36), with the 
membership function as depicted in Fig. 2, and let 

max ( )λ Γ  be sufficiently small then the closed-loop 

system is asymptotically stable if 2δ
λ

 is selected such 

that: 

( ) ( ) ( )( ) 2ˆQ G(y ) 2 Δ 1max maxG 1min d

Λ Kp

δ
λ > λ Γ + + λ Γ

λ

⎛ ⎞
⎜ ⎟
⎝ ⎠  

Proof: It can be seen from Fig. 2 that, for any value 
of σ , only one of the following two cases will occur: 

1) Either Rule 1 or Rule 2 is active. In this case 
1σ ≤ δ  or 2σ ≥ δ . 

If 1σ ≤ δ  then PIDu u= . According to Proposition 1,  

(38) 
21

V (Q) epmin2
≤ − λ&  

Also from (30) and (31), 
2σ e PeT

p p= , so 

(39) ( ) ( )
2 22

P e σ P ep max pminλ ≤ ≤ λ  

Then (37) and (38) yields: 

(40) ( )
(Q) 2minV σ

2 Pmax

λ
≤ −

λ
&  

1δ≤σ  guarantees that 0V <&  except when 0=σ  
which implies 0V ≤& . In this case from (7), it can be 
concluded that 0p =e . On the other hand, 
when 2σ δ≥ , u uSM= . Therefore from (15) 

(41) V σ1 1 3 3 min≤ −η σ − η σ ≤ −η&  

where { }m in 1 3m in ,η = η η . Since σ 0≠ , (40) shows 
0V <&  

2) Either Rules 1 and 2 are active simultaneously, i.e. 
1 2σδ < < δ . 

In this case, the overall control is the convex 
combination of the PID and SMCs which is applied to 
the system. 
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( )u u 1 uPIDSM= α + − α  where L0 1
LS

μ
< α = <

μ + μ
.  

Consider the Lyaponuv function (10). Using (2) and 
(7), the time-derivative of V  becomes: 

( )

x E1 1 1V 1 3 1 3 x E3 3 3

Ef 12 Gu 1 GuPIDSM 1 3Ef 34

σ +
= σ σ = σ σ =

σ +

+ α + + − α σ σ

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎛ ⎞⎡ ⎤⎡ ⎤ ⎡ ⎤⎜ ⎟ ⎣ ⎦⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠

& &&
&

& &&

 

Appling the SMC (9) with the conditions (16), yields: 

(42) ( ) T TV 1 e Λ Gup PID1 1 3 3≤ −η σ − η σ + − α&  

Substituting from (4), (37) and (27): 

( ) ( )
( )

( )

T T ˆ ˆV 1 e Λ G(x) Gp1 1 3 3
T TK e 1 e Λp p p1 1 3 3

ˆ ˆG(y ) G(y ) K ep pG Gd d

≤ −η σ − η σ + − α + Δ ⋅ ×

≤ −η σ − η σ + − α ×

+ Δ + Δ ⋅ + Δ Δ

&

 

Using (28), ˆQ Λ G ( y ) KT
G d p= − , where QG is a 

positive matrix and the bounds defined in (4) and (7), 
gives:  

(43) ( )
2

V 1 ee p1 1 3 3≤ −η σ − η σ − − α η&  

where 

( ) ( ) ( )( ) 2ˆQ G(y ) 2 Δ 1 Λ Ke min G max d 1 max p
δ⎛ ⎞

η =λ − λ Γ + +λ Γ⎜ ⎟⎜ ⎟λ⎝ ⎠
Assume that the uncertaintyΔ , defined in (4), and 
respectively ( )maxλ Γ  is sufficiently small. Moreover 

let 2δ
λ  be selected small enough such that the 

following condition holds:  

(44) ( ) ( ) ( )( ) 2ˆQ G(y ) 2 Δ 1 Λ Kmax max pG 1min d
δ

λ > λ Γ + + λ Γ
λ

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

Then, (43) guarantees the stability of the closed-loop 
system over the entire operational region of the fuzzy 
logic control system.  

 

4 EXAMPLE  

The performance of the proposed controller is shown 
through simulations using a two degree of freedom 

robot manipulator (2DOFRM) (see Fig. 3). The 
dynamics of this system is described by the following 
differential equations [2]: 

H(q)q M(q, q)q N(q) τ+ + =&& & &  

with 1 2q [ , ]Tq q= being the two joint angle and 
1 2[ , ]Tτ τ=τ being the joint inputs. H is the mass 

matrix, and M is the vector associated with the Coriolis 
and centrifugal forces. The elements of H and M are as 
follows: 

2 2 2H I I m l m l m l 2m l l cos q11 1 2 1 c1 2 1 2 c2 2 1 c2 2

2 2H m l I , H H m l I22 2 c2 2 12 21 2 c2 2

m l l cos q2 1 c2 2

= + + + + +

= + = = + +   

( )M m l l q sinq , M m l l q q sinq11 2 1 c2 2 2 12 2 1 c2 1 2 2

M m l l q sinq , M 021 2 1 c2 1 2 22

= − = − +

= =

& & &

&

 

( )( )
( )

N m l g cos q m g l cos q q l cos q1 1 c1 1 2 c2 1 2 1 1

N m l g cos q q2 2 c2 1 2

= + + +

= +

 

Where m1, m2, l1, l2, I1, I2 are masses, lengths and 
inertia moments of the arms, respectively, and 
l 0.5l , l 0.5lc1 1 c2 2= = . 

Defining the state vector as [ ]T1 1 2 2x : q ,q ,q ,q= & & and 

the input vector as [ ]T1 2u : ,= τ τ  the above system can 
be rewritten as 1 1 2 2x f (x) g (x)u g (x)u= + +&  where 

( ) ( )

( ) ( )

x2
h M x N h M x N h M x11 11 2 1 12 21 2 2 11 12 4f(x)

x4
h M x N h M x N h M x12 11 2 1 22 21 2 2 12 12 4

− + − + −
=

− + − + −

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

0 0
h h11 12g ( x ) , g ( x )1 20 0
h h12 22

= =

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 

With h h1 11 12H
h h21 22

−
=
⎡ ⎤
⎢ ⎥⎣ ⎦
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Fig. 3 A two degree of freedom robot manipulator model  

 

The simulations have been carried out using the 
following parameters and initial conditions.  

m 1.2kg,  m 0.82kg,  l 0.73m,  l 0.65m,1 2 1 2= = = =

2I 0.0833kgm ,1 =  
2I 0.0652kgm1 = x (0) 0.1rad,  x (0) 0 rad / s,1 2= − =

 x (0) 0.8 rad,  3 = − x ( 0 ) 0 .1 ra d / s4 = − . Also the 
parameter uncertainties are considered as 

ˆˆ ˆm 1.05m ,  m 1.05m ,  l 1.04l ,  1 1 2 2 1 1= = = l̂ 0.97l ,2 2=

ˆ ˆ I 1.05I ,  I 0.95I1 1 2 2= = . 10λ =  is selected and the fuzzy 

controller parameters are chosen as 0.1, 11 2δ = δ = . 

First the SMC is applied to the system with 
s1 s2k k 1= =  as Figs. 4 and 5 show the tracking error 

exists due to plant uncertainties. In spite of the control 
signal (see Fig. 6) chattering is free. To compensate the 
tracking error, the sliding gains are increased to 

s1 s2k k 5= = . In this case, the asymptotic tracking is 
achieved, but the control signals contain chattering.  
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Fig. 4 The first joint tracking performance using the SMC 

and the proposed FCC 
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Fig. 5 The second joint tracking performance using the 

SMC and the proposed FCC   
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Fig. 6 SMC signals with various gains and the proposed FCC action 
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Fig. 7 Validation of condition ( )max 1λ <Γ  
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Fig. 8 Comparison of tracking errors using SMC and FCC in the presence of disturbance 
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Fig. 9 SMC signals with various gains and the proposed FCC action in the presence of disturbance  
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To remove the chattering the fuzzy combined controller 
is applied. The results show both goals are achieved, 
zero tracking error is obtained, and the control signal is 
chatter free (see Fig. 6).  

The validity of the necessary condition stated in 
Assumption 1, is verified in Fig. 7. The disturbance 
rejection ability of the proposed combined controller is 
examined by applying a step disturbance with 
amplitude of 10 N/m at 13sec.t = As Fig. 8 shows, the 
SMC with the gain s1 s2k k 5= = , cannot reject the 
disturbance and so the tracking error is increased, this 
causes the system trajectories to move further from the 
sliding surfaces. To achieve proper disturbance 
rejection under the SMC, it is required to increase the 
control gains to s1 s2k k 35= = . These high sliding 
mode gains guarantee perfect tracking, but if chattering 
of the control signal is very large and cannot be 
neglected (see Fig. 9), using the proposed FCC with 

s1 s2k k 5= = , as the sliding mode gains for the SMC 
part would reject the disturbance and produce 
chattering free control signals. 

5 CONCLUSIONS  

A fuzzy combined control for a class of nonlinear 
MIMO system was proposed in this paper. The 
proposed method relays on the combination of 
conventional PID and SMCs. The proposed controller 
has the advantages of both controllers including the 
robustness of SMC and the smooth control signal, zero 
steady state error and the disturbance rejection property 
of PID control. The overall stability of FCC has been 
shown using the Lyapunov direct method. Simulations 
carried out for the 2DOFRM in the presence of 
parameter uncertainties, illustrate good performance of 
the proposed method. 
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