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Abstract: In manufacturing industry, it has been acknowledged that tool wear 
prediction has an important role in higher quality of products and acceptable 
efficiency. Being an emerging area of research in recent years, drilling tool wear is 
an important factor which directly affects quality parameters of machined hole 
such as hole centring, roundness, burr formation and finished surface. In this paper, 
the genetic equation for prediction of drilling tool flank wear was developed using 
the experimentally measured wear values and genetic programming for two 
different materials, AISI1020 and AISI8620 steels. These equations could be used 
to compare the behaviour of wear in both mentioned materials and analyse the 
effect of materials characteristics on wear rate and wear pattern. The suggested 
equations have been shown to be corresponding well with experimental data 
obtained for flank wear when machining in various cutting conditions. The results 
of experiments and equations showed that properties of work material can affect 
drill bit flank wear drastically. It was concluded that greater toughness and strength 
of AISI8620, compared to AISI1020, lead to higher cutting stresses and 
temperatures, resulting more flank wear.  
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1 INTRODUCTION 

In order to achieve improved efficiency in 

manufacturing industry and higher quality of products 

in metal cutting processes such as drilling, prediction of 

wear, especially flank wear, is of great importance. The 

reason for acquiring drill wear state information is to 

enhance the predictive capability of drilling process 

and detecting tool state during cutting process. This 

capability allows the machine operator to schedule tool 

change or regrind just in time to avoid underuse or 

overuse of tools, avoid shutdown of machines due to 

damage, and to minimize scrap or rework [1]. 

Furthermore, drill wear has a remarkable effect on 

drilled hole quality such as roundness, burr formation 

at drill exit, centring and finished surface roughness 

[2]. In the majority of researches relating to drill tool 

wear prediction, progressive flank wear is the dominant 

failure mode and has been extensively investigated [1]. 

A typical view of drill flank wear, VB, is shown in   

Fig. 1. 

The most performed researches in the literature are 

techniques applied to online tool wear monitoring by 

using some process variables such as force [3], torque 

[3], acoustic emission [4], Vibration [1], etc. However 

it must be said that sometimes it is really difficult to 

decide on the most proper parameters to sense and 

measure. The cost of selected sensory system is another 

problem which in most cases is not justifiable for 

production shops. Therefore, offline wear prediction 

still remains highlighted, though there is a little 

research in the field of drilling flank wear prediction 

before applying tool in drilling process. The main 

reason of this shortage is the complexity of behaviour 

of different materials in specific machining conditions 

which makes it difficult to predict tool wear in various 

conditions. 

 

Fig. 1      A typical view of drill flank wear, VB 

 

In the field of analysing cutting parameters on tool 

wear, A. Taskesen and K. Kutukde investigated the 

effect of various parameters in drilling process of 

reinforced alloys and introduced optimized condition 

based on performed tests and presented models [5]. 

Chethan, Ravindra, Gowda, and Kumar considered EN-

8 material as the workpiece and used machine vision 

applied with Taguchi method, tried to present a model 

and optimize cutting parameters [6]. Considering the 

effect of work material on tool wear, V. P. Astakhof 

compared W5 and Inconel 718, and realized that the 

influence of cutting speed on the contact characteristics 

at the flank-workpiece interface cannot be generalized, 

because it differs considerably from one work material 

to another [7]. 

In another work, Lim C. Y., Lau, and Lim S. C. 

investigated the flank wear pattern of AISI1045 and 

AISI4340 during machining with a TiC coated tool 

insert. They found an optimum condition for tool wear 

regarding with various cutting speeds and different 

materials [8]. Considering performed research in this 

field, it can be concluded that developing an analytical 

model to predict tool wear is extremely a difficult task 

since a wide variety of parameters in various cutting 

conditions can affect the wear pattern. Furthermore, 

high strain rate in the cutting zone applies more 

complexity to the modelling of wear. Due to these 

shortages and difficulty in developing a practical 

model, there is a great need to implement intelligent 

methods such as Artificial Neural Networks (ANN) and 

Genetic Programming (GP) which can connect the 

influential input to output parameters.  

In the last decade, various ANNs with different 

structures and learning algorithms have been utilized 

widely in tool wear prediction, e.g. selective artificial 

neural network ensemble model [2], multilayer 

perceptron [9], back propagation networks (BPN) [10], 

radial basis function networks [11], learning vector 

quantization (LVQ)[12], fuzzy LVQ (FLVQ) [12], 

fuzzy forward connected neural network (FFCNN) [13] 

and neural network with differential evolution learning 

[14]. 

Among mentioned intelligent methods, only a few have 

acceptable accuracy and relatively high convergence 

speed to be used in online operations. In addition, 

ANNs, which are used to model processes only act as a 

black box and do not offer an explicit objective model. 

On the contrary, by applying genetic programming, GP, 

in modelling of processes, not only acceptable accuracy 

is accessible for a given data set, but also it is possible 

to develop a mathematical equation on the basis of 

independent input parameters and dependent output 

parameters. In this paper, a precise numerical way to 

predict drill flank wear has been proposed by the use of 

genetic programming which will be applied into 

manufacturing process for the determination of flank 
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wear with a small number of experiments. Allowing the 

optimization of extremely difficult structures, GP can 

be applied to a wide variety of problems [15]. This 

relatively new automatic programming technique was 

first described by Koza [16]. In engineering, especially 

manufacturing engineering, GP is frequently used to 

model various processes and conditions. Some 

applications of GP have been reported in prediction of 

tool chip contact length in orthogonal cutting [17], 

prediction of surface roughness [18], nonlinear system 

modelling [19], investigation of the cutting force in ball 

end milling [20], machine scheduling problems [21] 

and tool wear prediction in turning process using chip 

geometry [22]. 

According to shortages mentioned about the 

applicability and correctness of analytical and 

intelligent methods in modelling of machining 

processes, in this paper GP is utilized to model and 

predict the flank wear in drilling process. Two 

independent data sets were obtained for both AISI1020 

and AISI8620 steels on the basis of experimental 

measurements: training data set and testing data set. 

Spindle speed (or cutting speed in other means), feed 

rate and drill bit diameter were used as the independent 

input variables, while the value of flank wear was the 

dependant output variable. An equation of flank wear 

was developed on the basis of training data set and the 

accuracy of obtained model was proved on the testing 

data set by using fitness functions. The overview of the 

methodology used in this paper is shown in Fig. 2. 

2 GENETIC PROGRAMMING 

Being one of the most applicable members of 

evolutionary computation methods, genetic 

programming, GP, was first introduced by Koza in 

1990s [18]. GP can be considered as a domain-

independent method that creates computer programs for 

solving complicated problems using the principles of 

Darwinian natural selection [16]. This computer 

programs are called chromosomes or organisms and 

their form change during process of evolution. In GP, 

the structural blocks, terminal set and function set, are 

defined first, and subsequently, the evolutionary 

process tries to find the best computer program or, in 

other words, optimal mathematical equation with 

relevant coefficient.  

The set of terminal genes can be defined as 

T={a1,a2,…,an} where n is the number of terminal 

genes and the set of function genes can be specified as 

F={F1,F2,…,Fm} where m is the number of function 

genes. The set of terminal genes T can include various 

constants such as numerical and logical constants or it 

may contain various variables. The set of function 

genes F includes basic arithmetical functions, relation 

functions, Boolean functions, and functions defined 

regarding with the problem [17]. GP triggers with 

randomly created of initial population or computer 

programs, consisting of T, the set of terminal genes, 

and F, the set of function genes. In the next step, fitness 

for each member of population is calculated [18].  

In the process of genetic evolution, computer programs 

are subject to some operations such as reproduction, 

crossover, and mutation. The reproduction operation or 

natural selection has a selective nature and transmits 

specified number of successful computer programs to 

the next generation. 

 

Fig. 2 Overview of the methodology used in this paper 

  

 

 

Fig. 3 Schematic process of crossover and mutation in GP 

[17] 
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By using crossover operation, a node in two computer 

programs is selected randomly and then the set of 

terminals and functions from the two programs are 

swapped to create two new offspring or new computer 

programs. The mutation operation increases the 

population diversity by changing a function or terminal 

from a computer program at random [16]. Fig. 3 

presents the schematic process of crossover and 

mutation. 

The following steps are performed in each step of GP: 

I. Generation of initial random population. 

II. Determination of population fitness for all 

members in the population. Furthermore, if a 

specified criterion is reached, such as certain 

fitness or certain number of generations, the 

process is terminated and the member with the 

best fitness is introduced as the final result. 

III. Applying genetic operators (reproduction, cross 

over, and mutation) to current population and 

replacing the current population by new 

population. 

IV. Return to step II [17]. 

 

A graphic representation of the GP method is depicted 

in Fig. 4.  

 

 

Fig. 4 Schematic flowchart of GP method 

 

In this paper, for determination of the relationship 

between cutting parameters and flank wear of drill bit, 

genetic equations with genetic programming have been 

proposed. On the basis of experimental data and with 

the selection of proper algorithm settings, the genetic 

equation for flank wear is developed as Eq. (1). 

VB=F(s,f,d)                                                                 (1) 

 

Where F is a function which relates input parameters of 

spindle speed, s, feed rate, f, and drill bit diameter, d, to 

output parameter which is flank wear, VB. Various 

parameters are involved in GP algorithm. It is obvious 

that the selection of parameters affects the model 

performance and its accuracy. These parameters are 

selected based on values obtained from trial and error 

approach or from some previously suggested values 

[17]. The parameter settings are shown in table 1. Two 

data sets are used for training and validation of 

presented GP model. The training data are utilized for 

learning step of evolution and the validation or testing 

data are used to measure the performance and accuracy 

of obtained genetic equations. 

Table 1 The evolutionary parameter settings for the GP 

algorithm in this paper 

Parameter Setting 

Function set +, -, , X2, X3, exp 

Population size 300 

Number of generations 1000 

Mutation rate 0.044 

Crossover rate 0.5 

Reproduction rate 0.25 

Maximum tree depth 4 

Maximum number of genes 7 

Elitism 0.01% of population 

 

The best models are selected on the basis of following 

criteria: 

• Simplicity 

• Fitness 

The both objectives can be reached by selecting proper 

parameter selection (e.g., number of genes or number 

of generations). Absolute fraction of variance, R
2
, root 

mean squared error, RMSE, and mean absolute error, 

MAE, are used to evaluate the fitness of the proposed 

equations. These statistical measures are defined as 

below: 
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Where n is the number of data points, Y predicted, m 

and Y experimental, m, respectively, indicate the 

predicted value and the target value from experimental 

data of point m. 

3 EXPERIMENTAL WORK 

All the experimental tests were performed on milling 

machine (M.S.T. Group, FP4M model) and under dry 

condition. In order to establish the genetic equation, 

various combinations of spindle speed, s, federate, f,  

and drill diameter, d, were chosen for the experiments 

based on full factorial method from values illustrated in 

table 2. The obtained sets are used to train genetic 

model. 
 

Table 2 The cutting parameters limitations 

Spindle speed 

[rev/min] 
224 560 710 1120 

Feed rate [mm/rev] 0.05 0.12 0.19 0.3 

Drill diameter 

[mm] 
4 6 8 10 

 

Table 3 The composition and relevant mechanical properties of AISI1020 and AISI8620 

 Element weight [%] Tensile strength [MPa] 

 C Mn P S Si Cr Ni Mo Ultimate Yield 

AISI1020 0.20 0.6 0.02 0.02 - - - - 393.4 290 

AISI8620 0.19 0.72 0.02 0.02 0.16 0.55 0.53 0.15 533.1 380.4 

 
Table 4 Testing data set 

No. 
Spindle speed 

[rpm] 

Feed rate 

[mm/rpm] 

Drill 

diameter 

[mm] 

1 224 0.05 4 

2 560 0.12 4 

3 710 0.19 4 

4 1120 0.3 4 

5 224 0.12 6 

6 560 0.05 6 

7 710 0.3 6 

8 1120 0.19 6 

9 224 0.19 8 

10 560 0.3 8 

11 710 0.05 8 

12 1120 0.12 8 

13 224 0.3 10 

14 560 0.19 10 

15 710 0.12 10 

16 1120 0.05 10 

 
High speed steel standard twist drills were used in these 

tests as the cutting tool. The wear on the flank side of 

the tool is known as the flank wear. For the 

measurement of the flank wear, drill bits were 

examined thoroughly using an optical microscope 

equipped with image processing software.  

In order to evaluate the effect of work material on the 

flank wear of drill bit, two different steels, AISI1020 

and AISI8620, were selected as the workpiece material. 

The actual chemical composition has been analysed 

using a Spectro Spark Analyzer. The composition and 

relevant mechanical properties were given in table 3. 

The cutting parameters selected for testing step of 

genetic equations are shown in table 4. Before entering 

the training dataset into GP, the dataset pre-processing 

(i.e., standardization) must be implemented. 

Standardization is to make input training data into a 

constant range through a linear transformation process. 

The standardization is needed, because GP can be 

trained on a certain range of data. In this study, the 

normalization is used for pre-processing of dataset, 

which makes the input data to be between 0.1 and 0.9.  

4 RESULTS 

For determining the relationship between cutting 

parameters and tool flank wear in drilling operation of 

AISI1020 and AISI8620 steels, the genetic equation 

was developed with GP approach. Processing of GP 

starts with the training step on the basis of training data 

set. The evolution process lasted up to the generation 

1000. In every 100 generations, the evolutionary 

process was stopped to record the model and relevant 

statistical measures. When the number of generations 

reached to 1000, the process was terminated and the 

best model was selected and tested with testing data set. 

Genetic equations obtained for AISI1020 and AISI8620 

steels are as follows: 
AISI1020: The best model for drilling flank wear in 

AISI1020 is presented by Eq. (5). 

93

2

4123

×f]93))[(exp(f-4.      

 6)]×exp(f-2.6 [(f-2.81)      

-s)+(s0.4×dVB







                              (5) 

AISI8620: the best model of tool flank wear in drilling 

of AISI8620 is obtained as Eq. (6). 



98                                       Int  J   Advanced Design and Manufacturing Technology, Vol. 10/ No. 1/ March – 2017 
  

© 2017 IAU, Majlesi Branch 

 

]-0.0782.24×s)1exp[-(1.24        

2.8)×(sf)0.136×(d        

0.574×s-s0.453×sVB

3

22

34







                  (6) 

 

 
Fig. 5 Variation of flank wear, VB, versus spindle speed 

and feed rate in AISI1020 according to Eq. (5), drill dia. 6 

mm 

In which s is the normalized form of spindle speed, f is 

the normalized form of feed rate and d is the 

normalized form of drill diameter. The variation of the 

drill tool wear with the input parameters spindle speed, 

s, and feed rate, f, for AISI1020 and AISI8620, in drill 

diameter  of  6mm  according  to  Eqs. (5)  and  (6)  are  

shown in Fig. 5 and Fig. 6. The values of R
2
, RMSE, 

and MAE for obtained genetic equations are shown in 

table 5. 

 

 
Fig. 6 Variation of flank wear, VB, versus spindle speed 

and feed rate in AISI8620 according to Eq.(6), drill dia. 6 mm 

 
Figs. 7 and 8 show a comparison between the predicted 

tool wear by genetic programming and the measured 

tool wear from the testing data of AISI1020 steel and 

AISI8620 respectively. The results of table 6, Fig. 7, 

and Fig. 8 indicate that the tool wear predicted by 

genetic programming closely agrees with the values of 

measured tool wear, which further approves the good 

prediction performance of GP. 

Table 5 Statistical measures for obtained genetic equations according to Eqs. (2), (3), and (4) 

 Training Testing 

 R2 RMSE MAE R2 RMSE MAE 

AISI1020 0.97 0.014 0.012 0.96 0.015 0.012 

AISI8620 0.98 0.017 0.013 0.97 0.022 0.019 

 

 

Fig. 7 Comparison of Measured and predicted results for 

AISI1020 testing data set 

 

 
Fig. 8 Comparison of Measured and predicted results for 

AISI8620 testing data set 

5 DISCUSSION 

In this paper it is tried to predict the drill flank wear by 

genetically developed Eqs. (5) and (6) for AISI1020 

and AISI8620. Considering the experimental results 

and genetically developed models, it can be concluded 

that any increase in feed rate and drill diameter leads to 

increase in wear values. But in the case of spindle 

speed and cutting speed, in other words, the problem 

slightly differs. As acknowledged, the cutting forces 

acting on flank-workpiece interface play an important 

role in the physical phenomena occurring in shear zone. 

The normal force in cutting processes is in fact the 

force needed to overcome the work material resistance 

against tool penetration into workpiece. This force 

depends on some geometrical features of cutting tool 
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such as the curvature of the flank edges and work 

material properties such as yield strength of the work 

surface layer. So it can be concluded that the work 

material properties can influence the normal force or 

stresses applied in cutting. In other words, an increase 

in the yield strength of the surface layer of the 

workpiece leads to an increase in the force required to 

perform cutting process, thereby, wear rate will rise. 

On the other hand, in drilling process, extremely high 

and localized strains, strain rates and temperatures are 

encountered. Therefore, the amount of introduced stress 

into tool’s faces and produced temperature in the shear 

zone are crucial factors in development of wear 

phenomena. 

Therefore it is undeniable that the mechanical 

properties of work material are of great importance in 

flank wear during drilling operation. As such, the 

cutting speed has extremely great effect [7], since it can 

change stresses and temperature drastically during 

cutting process. 

By considering the results shown in Fig. 5, it can be 

said that the minimum tool wear for AISI1020 occurs 

at an optimum cutting speed, vopt. A similar trend was 

reported by Astakhov for turning W5 steel and by 

C.Y.H. Lim et al. for turning AISI1045 and AISI4340. 

However this result is in contradiction with Taylor’s 

tool life equation. In fact, it seems that Taylor’s 

equation has only a phenomenological nature and 

cannot consider behaviour of wear physically. To 

explain the variant behaviour of flank wear by 

increasing cutting speed, two crucially important 

factors must be considered.  

The first factor is cutting temperature which will rise 

with any increase in cutting speed or strain rate. This 

increase can originate from two other important 

aspects; friction on the tool’s flank surface and stresses 

as a result of cutting forces. In other words, any 

increase in cutting speed will result higher amount of 

friction and stresses on the tool’s flank which both of 

them contribute to rise the temperature and intensify 

the wear rate in flank face.  

The second important factor is plastic behaviour of 

material during deformation. It is believed that at 

specific temperatures, 0.5-0.6 melting point of material, 

ductility starts to increase because of some changes in 

microstructure and mechanical properties [7]. This 

increase in ductility leads to a drop in stresses on the 

flank contact area. As it can be realized, the two 

important factors which contribute in wearing process, 

temperature and stresses, in some cases work against 

each other. From obtained results it can be concluded 

that in cutting speeds below vopt, although temperature 

is not high, plastic deformation occurs in high stresses 

which results specific wear on the drill flank area.  

As cutting speed rises, temperature of shear zone 

increases which leads to a reduction in stress 

distribution, hence the rate of wear drops gradually. In 

higher cutting speeds than vopt, temperature rises 

drastically and increasing in ductility and reduction in 

stresses cannot be an overwhelming factor any more. 

Therefore the rate of wear will increase rapidly. The 

effect of these parameters is obvious from Fig. 5 during 

drilling process of AISI1020. But referring to Fig. 6, it 

can be seen that such behaviour cannot be observed in 

AISI8620, so it is not an optimum cutting speed in 

drilling process of AISI8620. 

In the case of flank wear in drilling operation of 

AISI8620, two distinct trends are distinguishable 

compared to AISI1020. First, it is realized that wear 

rate in AISI8620 is consistently higher under similar 

machining conditions. Such an observation was 

reported by other researchers [8]. It seems that the 

microstructure and elemental composition of work 

material is of great importance in this case.  

According to table 3, yield strength of AISI8620 is 

greater than AISI1020. Moreover it must be added that 

although both AISI86220 and AISI1020 steels contain 

same content of C, Si and Mn, AISI8620 is more 

alloyed with some alloying elements such as Cr, Mo, 

and Ni and combining with C, Cr and Mo form stably 

hard carbides which can raise the hardness of the steel 

at higher temperatures [8]. These mentioned reasons 

lead to elevated wear in drilling of AISI8620 compared 

to AISI1020. The latter difference between the two 

materials is that no optimum cutting speed, in which 

wear rate is minimum, can be realized in drilling 

operation of AISI8620.  

The main reason of this behaviour is Ni which by 

dissolving in the ferritic matrix, increases the strain 

hardening of AISI8620 steel. Increase in strain 

hardening changes the condition of plastic deformation 

and tends to increase the stresses on the tool flank, 

therefore, the effect of ductility will decrease against 

normal stress and no decrease in wear neither optimum 

cutting speed will appear. Therefore, it can be 

concluded that greater strength and toughness of 

AISI8620 results in higher stresses on the tool’s flank 

and elevated temperature, leading to more severe flank 

wear compared to AISI1020. 

6 CONCLUSION 

In this paper, the genetic programming method was 

proposed to predict tool flank wear in drilling operation 

by developing the genetic equation between input 

cutting parameters, spindle speed, feed rate, and drill 

diameter, and output parameter, flank wear. 

In order to develop the genetic equation, some 

experiments were performed. The results of 

experiments showed that properties of work material 

can affect drill bit flank wear drastically. It was 
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concluded that greater toughness and strength of 

AISI8620, compared to AISI1020, lead to higher 

cutting stresses and temperatures, resulting more flank 

wear. In addition, some other properties of material 

such as strain hardening and thermal softening can 

influence the pattern of wear rate. 

Prediction accuracy of flank wear model developed by 

genetic programming is acceptable for both AISI1020 

and AISI8620 steels. The results obtained from GP 

method was an indicator of its efficiency in the 

modelling field of metal forming processes. This type 

of modelling method is preferable to other traditional 

models such that it present a mathematical relationship 

between input and output parameters and it does not 

assume any predefined functional form of the given 

equation. 
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