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Abstract: Researchers have a special fondness for continuum robots (CRs) due to 
their various applications. CRs have been modeled in different ways. One of these 
methods is called lumped model. Although the lumped modeling of CRs needs 
multiple degrees of freedom, researchers have considered only a few degrees of 
freedom. But considering such structures led to some issues in the accuracy of the 
controller. Therefore, in this paper, the dynamic modeling of a CR which is based 
on the lumped model is developed in a general form. Additionally, a control strategy 
based on sliding mode back-stepping control is proposed after introducing the first 
and second Lyapunov functions for stability proof. Moreover, a new function in the 
control law is used to avoid chattering phenomena. The proposed controller can 
reduce the settling time, which is one of the most important factors in controlling 
such robots. To demonstrate the efficiency of the proposed method, three different 
case studies are conducted for a planar 8-DOF continuum manipulator and the 
simulations are compared with the feedback linearization method (FL). The 
simulations show the effectiveness of the proposed method for controlling the 
continuum robot. 
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1 INTRODUCTION 

Recently, a new class of robots called continuum robots 

(CRs) has been introduced. These robots resemble 

flexible robots with many joints and degrees of freedom 

that allow them to adapt to and move easily in 

convoluted places. CRs are considered a special group 

inspired by some parts of animals such as octopuses, 

elephants or the tail of reptiles [1-4]. CRs are mainly 

used in medical surgery [5], e.g., in the 

cardiorespiratory, digestive and urogenital systems [6-

9]. Although CRs have many advantages and 

applications, nevertheless they do not have sufficiently 

rigid structures, so this situation makes it hard to find a 

relationship between actuators and end-effector. There 

are some different methods for modeling CRs: classical 

methods [10], emerging techniques [11] and combined 

methods [12-13]. Although the classical methods 

provide an exact solution for the statics of the continuum 

robot, there are pitfalls in extending them to the 

dynamics, as this would involve the solution of a system 

of partial differential Equations (PDE) [14]. The PDE 

can represent the Equations of motion of CRs with 

Cosserat rod dynamics [15]. Since such Equations are so 

complicated, emerging techniques have been 

introduced. Reference [11] attempts to overcome the 

limitations of constant curvature modeling by replacing 

circular curves with Euler curves, which were found to 

be more suitable for a pneumatic continuum robot. 

Furthermore, some other methods were used in the 

modeling of the CRs. For instance, the backbone model 

is like ropes and strings with infinite degrees of freedom. 

Mochiyama and Suzuki, using the Frenet-Serret 

formulas, could approximate the kinematics and 

dynamics of such a model [16]. Yoon and Yi designed a 

flexible 4-DOF robot, cable-driven CRs, consisting of 

two modules with a backbone spring [17]. This model 

was imitated from the biological backbone and its main 

goal was considering collision avoidance. In another 

research, the Equations of motion of planar continuum 

manipulators were extracted by Tatlicioglu et all. 

considering the effects of potential energy. However, 

this model has not been experimentally validated [18]. 

The control of CRs can be divided into three different 

types. The first would be kinematic control [19]. This 

method uses a forward and inverse kinematic modeling 

of the system. The second type is the feedforward 

position control strategy which is based on a Piecewise 

Constant Curvature hypothesis. This method improved 

the robustness against disturbances of the system [20-

21]. The third one is differential kinematics, which is 

partially effective for redundant manipulators because it 

allows multi-task control [22]. However, this method 

requires some assumptions that reduce the accuracy of 

the system. To address this problem, adaptive and 

learning approaches have been introduced by some 

researchers. These approaches are based on data 

gathering [23]. In another study, the authors proposed an 

observer control based on Youla parameterization for a 

flexible link with the lumped tip mass [24-25]. The idea 

of this method was based on the using Youla parameter 

instead of finding the transfer function. But, the 

limitation of this method is that the dynamics Equations 

should be linearized.  
There are many challenges in modeling CRs because the 

structure has an unlimited number of degrees of 

freedom, which makes the formulation very complex. 

For this reason, researchers have considered limited 

degrees of freedom in modeling based on a lumped 

model [26]. However, modeling and control of CRs 

require accurate dynamic models. To improve the 

efficiency of dynamic modeling and the difficulties 

mentioned in the previous paragraph, this paper extracts 

the kinematic and dynamic Equations in general form 

through the Lagrangian formulation. In addition, the 

accurate position control of the end-effector by the 

sliding mode back-stepping control (SMBSC) method is 

investigated. The accuracy and speed in controlling this 

type of robot are crucial in surgical and medical 

applications. By introducing such a controller, not only 

is the error negligible but also the settling time decreases 

sharply. This paper is organized as follows. In the first 

section, the dynamic modeling of this robot is presented 

and the Equations of motion of this system are 

developed using the Lagrangian formulation. Section 2 

explains the formulation of SMBSC. Section 3 shows 

how to linearize a nonlinear system using the input-

output with the feedback linearization method. 

Simulation using MATLAB software is presented in 

section 4. Section 5 contains the conclusion of the paper. 

2 MODELING 

One model of CRs comprises a 2n degrees of freedom 

arm which is demonstrated in “Fig. 1”. The idea of this 

model was obtained from [26]. System dynamic is 

obtained with Lagrange method: 

 

d L L D
Q

dt q q q

       
       

       
 (1) 

 

 

Where, L represents the kinetic energy minus potential 

energy of the system. In addition, Q is the vector of 

generalized forces. The Equations of motion are 

demonstrated as: 
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Where I demonstrates mass matrix which is symmetric 

positive definite, C (q, q ̇) represents the forces of 

centrifugal and Coriolis force, G(q) is the gravity vector 

and u(t) is the vector of inputs which include the forces 

acting on the springs and dampers. In the given 

Equation, q shows the generalized coordinates, d(t) is the 

torque that expresses finite disturbance, modelling 

uncertainties, and unmodulated dynamics.  

 

 

 
Fig. 1 Continuum robot manipulator via springs and dampers structure. 

 

 

 

3 SLIDING MODE BACK-STEPPING CONTROL 

In this section, an SMC law for the convergence of robot 

variables to optimal values is designed. Robust nonlinear 

SMC control is an effective technique and its 

applications have greatly increased in recent decades. 

The most important feature of SMC is insensitivity to 

changes and disturbances in system parameters and 

external disturbances. In addition, it provides a fast-

passing response. In the SMC method proposed in this 

section, by back stepping design, sliding switching 

plates are introduced, and then, this rule is designed for 

asymptotic stability of the closed-loop error system. In 

general, conventional SMC does not have the desired 

ability to control the system due to the sign (σ) function; 
Because the existence of the sign function due to 

discontinuity around zero, causes the phenomenon of 

chattering, which is sharp fluctuations around the 

equilibrium point of error at zero. It is worth mentioning 

that this problem is considered in the design of the 

control law. 

System description 

The first step in designing an SMC law is to define the 

appropriate sliding plates. But, before that, and in order 

to start the design process, first the state space of this CR 

is considered.  

(3)  
1

2

( ) ( )

( ) ( )

x t q t

x t q t




 

The robot dynamic Equations can be written as follows: 

 
(4) 

          
1 2

1

2 2 2 2 1 2 1 2 1 2 1

( ) ( )

( )
n n n n n n

x t x t

x t I u d C G


    



   
 

 

In fact, in the SMBSC method, according to the control 

diagram showing in the “Fig. 2”, the switching plates are 

designed in such a way that after applying the controller, 

the time Equation of this plate and its derivative 

becomes zero, and when they become zero, the system 

modes also converge to zero. For this purpose, sliding 

plates are defined as follows [27].  

(5) 
1 1,2i i ix i     

Where, 𝛼0 = 𝑥1𝑑  shows the optimal value for 𝑥1, σ𝑖  

represents the sliding plate vector, and 𝛼𝑖 represents the 

ideal state vector for 𝑥𝑖 and is an intermediate value.
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Fig. 2 SM control structure diagram. 

 

Designing sliding mode back-stepping control 

The design of the control law in this section will be done 

in two steps. In the first step, virtual control input is 

designed and then, the control law will be performed to 

stabilize the whole design system and prove its stability 

through Lyapunov. In the first stage, the first subsystem 

in modeling is the Equation �̇�1 = 𝑥2 in which 𝑥2 is a 

virtual input for this system and the derivative of the first 

sliding plate (σ1 = 𝑥1 − 𝑥1𝑑) with respect to time is: 

 

(6) 1 1 1 2 1d dx x x x     

 

On the other hand, according to “Eq. (5)”, σ2 = 𝑥2 − 𝛼1 

and by placing 𝑥2 in “Eq. (6)”: 

 
(7) 

1 1 1 2 1 2 1 1d d dx x x x x         

 

In order to converge the first subsystem to the sliding 

plate and move on it, the virtual control rule is defined 

as follows: 

 
(8) 

1 1 1 1dk x    

 

Where: 𝑘1 > 0. 

Now, the first Lyapunov function is considered as 

follows:  

 
(9) 

1 1 1

1

2

TV   

By calculating the derivative of the Lyapunov function 

(“Eq. (9)”) and placing “Eq. (7)” and “Eq. (8)” in it, “Eq. 

(10)” is obtained: 

 
(10) 2

1 1 1 1 1 1 2

T TV k        
 

In the second stage, the second sliding plate is σ2 =
𝑥2 − 𝛼1. The derivative of the second sliding surface 

with respect to time would be as “Eq. (11)”. The “Eq. 

(4)” and “Eq. (7)” are used as follow: 
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With the following definitions: 

 

(12) 

1

1 2 1 2

1 2 1 1 1

1

( , ) ( )[ ( , ) ( )]

( )

( )

d d

f x x I x C x x G x

k x x

g I x
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
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According to the “Eq. (12)”, “Eq. (11)” is obtained as 

follows: 

 
(13) 

2 1 2( , ) ( ) ( )f x x gu t gd t    
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Now the control law is proposed as follows: 

(14)  1

1 2 2 2 1 2( ) ( , ) si ( )u t g f x x k d g gn       

 

By placing “Eq. (14)” in “Eq. (13)”: 

 
(15) 

2 2 2 1 2si ( ) ( )k d g gn gd t        
 

By considering the Lyapunov function:  

 
(16) 

2 1 2 2

1

2

TV V    

 

The derivative of the Lyapunov function with respect to 

time becomes as “Eq. (17)”. In this Equation, “Eq. (10)” 

has been utilized. 

 
(17) 2

2 1 2 2 1 1 1 2 2 2

T T TV V k            
 

By placing the derivative of second sliding plate (“Eq. 

(15)”) in “Eq. (17)”: 

 

(18) 

2 1 2 2

2

1 1 1 2

2 2 2 1 2

2

1 1 1 2 2

( si ( ) ( ))
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T

T

T

T
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k
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 
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    
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The expressions σ1
𝑇σ2 is transpose of σ2

𝑇σ1 and are 

therefore equaled and deleted with each other. 

 

(19) 

2 2
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On the other hand, according to the assumption 

‖𝑑(𝑡)‖ ≤ �̅� where �̅� ∈ 𝑅+, the Equation ‖𝑑(𝑡)‖ − �̅� ≤
0 is gained and consequently �̇�2 < 0. Therefore, the �̇�  is 

negative for all values of σ, and as a result, according to 

the definition of sliding plates and Lyapunov's theorem, 

it can be concluded that when the sliding plate becomes 

zero, the error value converges to zero and finally 𝑥1 →
𝑥1𝑑 . 

Improving the discontinuity in the controller 

In the controller expressed in “Eq. (14)”, the sign 

function with a coefficient in the Equation is used. The 

sign function 𝑢 = �̅�𝑠𝑖𝑔𝑛(σ), which can also be 

expressed as: 𝑢 = �̅� σ ‖σ‖⁄ , is a discontinuous function 

around σ = 0. This discontinuity in the law of control can 

provide difficulty and cause a phenomenon called 

chattering. This phenomenon causes fluctuations in the 

input value of the robot system, especially when the 

system is exposed to noise. To counteract the chattering 

phenomenon, the value of u in the control law must be 

changed. To address this issue, proposals such as using 

tanh (σ) or saturation function (sat (σ)) instead of 

σ ‖σ‖ ⁄ have been suggested. However, another idea is 

used in this paper. Due to the fact that this discontinuity 

occurs when σ convergences to zero, the best choice to 

prevent discontinuities and unevenness in u is to add a 

term and consider it as follows: 

 
2

( )

d
u

d t







 (20) 

 

Where, Γ(t) is a positive function such that ∫ Γ(𝑡)𝑑𝑡
∞

0
<

∞ (tends to zero over time). By selecting the sign 

function in the control law as “Eq. (20)”, the obstacle of 

discontinuity in the control law will be solved. The 

choice of this function is arbitrary and for example one 

of the options can be as follows: 

 
1

( ) , 2
1 n

t n
t

  


 (21) 

 

It should be noted that when Γ(t) becomes zero, the value 

of u in “Eq. (20)” will be similar to the 𝜌 σ ‖σ‖⁄  . 

4 FEEDBACK LINEARIZATION CONTROL BY 

INPUT-OUTPUT METHOD 

In this method, nonlinear system dynamics transform 

into a (fully or partly) linear one, so that linear control 

techniques can be applied. First of all, we have to 

generate a direct relationship between the output y(t) and 

the input u(t). By taking two differentiations, the control 

input will appear to the output of this system and 

accordingly the relative degree of each of the outputs is 

equal to 2. It is obvious that if the control input never 

appears after more than n differentiations, the system 

would not be controllable. Also, in some cases, internal 

dynamics must be studied. Since the number of inputs 

and outputs are the same in this system, there is no 

internal dynamics. Also, it is indispensable to define a 

suitable output vector describing the system’s attitude 

properly. The output of the system is all generalized 

coordinates and is defined as “Eq. (22)”: 

 

1 2 1 2[ , ,..., , , ,..., ]n ny s s s     (22) 
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Then, according to the Equations of motion governing 

the system, the new input of the system is equaled to: 

   
          

2 1 2 1
1

2 2 2 1 2 1 2 1 2 1

n n

n n n n n n

q

I C G u d


 



    

 

   
 (23) 

 

The state-space representation of the system is: 

 

 
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 
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 
 
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

 (24) 

 

In this part, u must be selected in such a way as to 

eliminate the nonlinear terms of the system. Therefore, 

according to “Eq. (23)”, “Eq. (25)” is obtained: 

           
2 1 2 2 2 1 2 1 2 1 2 1n n n n n n n

u I C G d
     
     (25) 

 

The following form of “Eq. (24)” is converted to “Eq. 

(26)”: 

 

   

   
 

 

 
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(2 2 ) (2 2 ) (2 2 )
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4 1
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I
x n

I
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 


 
 
  

  
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     
(2 2 ) (2 2 )

[ 0 ] 2 1
n n n n

y I x n
 

    

(26) 

5 NUMERICAL SIMULATION IN MATLAB 

In this section, the model proposed in the first section is 

considered. This continuum robot contains four masses 

of rigid rod and eight springs and dampers. The 

generalized coordinates are chosen as: 

 

1 2 3 4 1 2 3 4[ , , , , , , , ]Tq s s s s      (27) 

 

The dynamic characteristics of the robot are presented in 

the following “Table 1”. In the following, three different 

cases are considered. 

 

 

Table 1 The dynamic characteristics of continuum robot 

parameters value unit 

iM  
1 2 3 4

0.2 ; 0.15 ; 0.15; 0.1M M M M     Kg  

iI  
1 2 3 4

0.001I I I I    
2.Kg m  

ik  
11 12 13 14

21 22 23 24

30 ; 25 ; 15 ; 15

30 ; 25 ; 15 ; 15

k k k k

k k k k

   

   
 

1.N m   

ic  
11 12 13 14

21 22 23 24

10

10

c c c c

c c c c

   

   
 

1.s.N m   

0iS  01 01 03 040.2 ; 0.15S S S S     m  

l  0.2l   m  

g  9.81g   
1.N kg   

 

 

Case study 1: point-to-point control design 

In this subsection, point-to-point controller with SMC 

and FL is considered. The start and end points of the 

point-to-point motion are considered as 

 0.3,0.25,0.2,0.15ip  and   0.4,0.35,0.3,0.25fp m , 

respectively. The initial and desired angles are

 0.15,0.1,0.05,0.05  and   0.25,0.2,0.1,0.1 rad , 

respectively. The results of simulation are shown in 

“Fig. 3” to “Fig. 9”. Figure 3 and “Fig. 4” display the 

time varying changes of the extension of each module 

with FL and SMS methods. It is observed that state 

variables start from their initial conditions and finally 

reach to their final positions. All the states with SMC 

method reach their desired values way sooner. Figure 5 

and “Fig. 6” represent the change in orientation of the 

rigid rod angles starting from their initial conditions to 

their final positions.  



7                                  Seyed Shoja Amini et al. 

 

 
Fig. 3 The time varying changes of parameter s1 and s2. 

 
Fig. 4 The time varying changes of parameter s1 and s4. 

 

 
.1 2( , )  The change in orientation of the rigid rod Fig. 5 

 

In “Fig. 7”, the trajectory of the end-effector of robot is 

shown. The structures of the robot in initial and desired 

points are demonstrated too. In “Fig. 8” and “Fig. 9”, the 

amount of inputs is indicated.  

 
Fig. 6 The change in orientation of the rigid rod 

3 4( , )  . 

 

 
Fig. 7 The trajectory of the end-effector. 

 

 
Fig. 8 The inputs value of the robot with FL method. 
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Fig. 9 The inputs value of the robot with SMC method. 

 

According to the input diagram, it is clear that in the FL 

method, initially, the amount of inputs changes until 

states reach their references. But, over time these inputs 

reach fixed values at the end of the path. Due to the fact 

that the dynamic model of the system has gravitational 

acceleration, the values of the inputs cannot reach zero. 

Also, according to the diagrams of the SMC method, it 

can be seen that in this method states reach their desired 

value sooner so inputs show the stable trend. 

Case study 2: point-to-point control design with 

disturbances 

In this part, some disturbances between 1.5 and 2.5 

seconds are introduced to this system. As well as this, all 

parameters and dimensions of the robot remain 

unchanged. The target of this case study is to examine 

the performance of the controllers despite the 

disturbance. Figure 10 and Fig. 11” illustrate the time-

varying changes of the extension of each module with 

FL and SMS methods.  

 

 
Fig. 10 The time varying changes of parameter s1 and s2. 

 
Fig. 11 The time varying changes of parameter s1 and s4. 

 

It can be seen that before the time when the disturbances 

are applied, FL controller tries to reach desired points. 

But, when figures with FL method reach the time when 

there are disturbances, their states move away from the 

desired values. After this period, the controller tries to 

revise this situation and reach references. On the other 

hand, these disturbances have little effect on the system 

with SMC method. Figure 12 and “Fig. 13” represents 

the change in orientation of the rigid rod angles starting 

from their initial conditions to their final positions. The 

trajectory of the end-effector of the robot is indicated in 

“Fig. 14”.  

 

 
Fig. 12 The change in orientation of the rigid 

rod(𝜃1, 𝜃2). 
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Fig. 13 The change in orientation of the rigid 

rod(𝜃3, 𝜃4). 

 
Fig. 14 The trajectory of the end-effector. 

 

The end-effector of the robot until 1.5 seconds (before 

disturbance time) reaches (-0.08, -1.19) location. When 

disturbance starts, the trajectory of the end-effector 

changes. In the simulation, it is shown that the robot's 

path remains unchanged after 4.93 seconds. To be more 

exact the end-effector reaches the endpoint. In “Fig. 15” 

and “Fig. 16”, the amount of inputs with disturbances are 

presented.  

 
Fig. 15 The inputs value of the robot with FL method. 

 
Fig. 16 The inputs value of the robot with SMC method. 

 
According to the input diagram, it is clear that after 1.5 

seconds many changes are made in the input charts in 

the FL method. Compared to the input diagrams in “Fig. 

8”, the power input changes of force F11 are significant. 

But as it turns out, after 6 seconds it reaches the same 

input values of the form without disturbance. Moreover, 

the least change is related to force F22. The main 

justification for this trend is the small effects of 

disturbance on the
3 1 2,S and   variables according to 

the pattern of “Fig. 11” and “Fig. 12”. Likewise, “Fig. 

9”, the disturbances had little effect on the input 

diagrams in “Fig.16”. Therefore, the SMC controller has 

better performance. 

Case study 3: Circular trajectory design 

The desired trajectory selected is a circular path on the 

plane that needs to be followed by the end-effector. 

Therefore, this path is assumed to be as follow:  

 

   cos(2 ) sin(2 )des desx z t t  (28) 

 

For this purpose, it is necessary to solve the inverse 

kinematics to find the desired values of the variables q. 

The forward kinematic Equations of the robot, which 

expresses the location of the end-effector is: 

 

2 1 3 1 2 4 1 2 3

1 2 1 3 1 2

4 1 2 3

1 2 3 4

sin( ) sin( ) sin( )

cos( ) cos( )

cos( )

x s s s

z s s s

s

     

  

  

    

     

   

  

   

 (29) 

 

Due to the fact that there are 8 variables and the number 

of variables required to follow a circular path is 2 

variables; Therefore, inverse kinematics will definitely 

have countless answers. To solve it, we give the value of 

6 variables: 
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1 2 3 4 1 2, , , , 0.3, 0.4
10 8 5 6

s s
   

          (30) 

 

By placing the values of “Eq. (30)” in the robot 

kinematic Equation in “Eq. (29)”, the other two 

variables, 𝑠3 and 𝑠4, are obtained as follows: 

 

3

4

1.65sin 2 0.39cos 2 1.07

1.29cos 2 1.11sin 2 0.59

s t t

s t t

  

  
 (31) 

 

Therefore, the desired values for 𝑞𝑑𝑒𝑠  are selected 

according to the definition of q (“Eq. (27)”). Besides, the 

initial condition of the system is demonstrated as: 

 

 1;0.8;1.2;0.3;0.5;0.1;0.2;0.7initialp    (32) 

 

In the following, “Fig. 17” to “Fig. 20” show the 

diagrams of the output systems of the system consisting 

of 8 variables along with the desired references with FL 

and SMS methods. The error of all 8 state variables with 

SMC becomes zero in less than 0.5 seconds, and this is 

a sign of the high speed of the designed controller. 

 

 
Fig. 17 The time varying changes of parameter s1 and s2. 

 

 
Fig. 18 The time varying changes of parameter s3 and s4. 

 
Fig. 19 The change in orientation of the rigid rod 

1 2( , )  . 

 
Fig. 20 The change in orientation of the rigid rod

3 4( , )   

 

According to the results of inverse kinematics in “Eq. 

(31)”, the desired path for the variables 𝑠3 and 𝑠4 is in 

the form of trigonometric functions shown in “Fig. 18”. 

Besides, by placing the expression t=0 in “Eq. (31)”, the 

initial values of the mentioned variables are calculated. 
In “Fig. 21”, the trajectory of the end-effector of the 

robot in the 2-D plane is illustrated.  
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Fig. 21 The trajectory of the end-effector. 

 

In “Fig. 21”, the end-effector starts from the initial point 

which has been shown. This point is calculated with 

forward kinematic which was represented in “Eq. (29)”. 

For calculation of the initial point of the path, all 8 

variables are needed. Such parameters were calculated 

in “Eq. (30)” and “Eq. (31)”. This point would be (1.276, 

0.915). Similar to this approach, the final point would be 

(0.3447, 0.9429).  

 

 
Fig. 22 The inputs value of the robot with FL method. 

 

In addition, the path traveled by SMC method has less 

mean squared error than FL method. It is seen that, even 

though both FL and SMC methods have the same 

dynamic modeling, controllers trace the different paths 

during the beginning and circular path. The factor of 

these two paths is the FL approach. In “Fig. 22” and 

“Fig. 23”, the amount of inputs is shown. Now See 

“Table 2”. 

 

 
Fig. 23 The inputs value of the robot with SMC method. 

 

Table 2 The comparison between tacking error with 

SMC and FL methods 

Control 

Method 
Mean Squared Error(m2) 

SMC 0.004 

FL 0.245 

 
It should be noted that even though the inputs by FL 

method is higher than SMC method, the trajectory of the 

end-effector in “Fig. 21” reaches the desired path with 

SMC method much sooner. 

6 CONCLUSIONS 

This paper presents a novel nonlinear control law for 

multi-DOF discrete CR. The dynamic model is based on 

a new structure established recently. However, in this 

work, the model of the system is developed into general 

form. Moreover, the strategy of SMC for a CR was 

presented in this paper with the stability proof of the 

system with Lyapunov theory. Besides, control 

simulation for three different cases was presented with 

SMC and the results were compared with the input-

output feedback linearization method in MATLAB 

software. The results exhibited that the settling time of 

the former method is much lesser than the latter 

approach. It should be noted that the proposed control 

model can be presented in various applications, 

including the medicine, where the rapid control of the 

CRs is so important. 
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