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Abstract  
 

In this article, using the method of dislocation distribution and separation of variables, the mechanical fracture behavior of a 

thin rectangular plane made of piezoelectric material with limited length and width containing several cracks under out-of-

plane mechanical and in-plane electrical loading is investigated. It is assumed that the behavior of the elastic medium is 

linear and the surfaces of the cracks are smooth. At first, the governing equations of the problem are solved according to the 

boundary conditions, and then the components of stress and electrical displacement in the body without cracks under 

external loading at the hypothetical crack location are presented. Then, according to Buckner's principle, the stress field 

obtained in the main problem and using the dislocation distribution method, the equations for analyzing the problem of 

several cracks are presented. By solving these equations and obtaining the distribution functions of dislocations, it is possible 

to obtain the stress and electric displacement factors at the tips of cracks. In this article, examples are given to verify the 

results and also to investigate the effects of the length, arrangement and interaction between the cracks on the field intensity 

factors. 
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1. Introduction 
 

Stress analysis in the vicinity of defects is 

necessary as the first step in the design process, and 

for this, the state of stress intensity at the tips of 

cracks is investigated. In the problems of fracture 

mechanics, using the dislocation method for stress 

analysis in limited and unlimited mediums is a 

common method. From a mathematical point of 

view, the crack can be considered as a set of 

dislocations, and using the superposition principle, 

the effects of the relative movement of the edges of 

the crack relative to each other, and as a result, the 

stress intensity factor can be calculated. 

Piezoelectric materials are a class of smart 

materials that have the ability to communicate 

between the fields of electricity and mechanics. 

Based on this property, the application of 

mechanical stress causes electrical displacement in 

the material, and in the same way, placing the 

material under an electric field causes mechanical 

strain. Due to the lack of valuable studies on the 

problems of cracks in the piezoelectric rectangular 

plane, this issue can be investigated. At first, a 

review of the research done in this field is done. 
Dislocation is one of the sources of internal stress 

in the body, and Volterra [1] was one of the first to 

define dislocation. Zhang [2] obtained the dynamic 

stress intensity factor in a finite rectangular plane 

containing a pair of edge cracks under out-of-plane 

mechanical loading.  
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The stress field in a rectangular sheet containing an 

eccentric crack under the mode III of fracture 

mechanics was studied by Ma and Zhang [3]. 

They determined the stress intensity factor for the 

crack tip and investigated the geometrical 

parameters. Zhou et al. [4] investigated the stress 

field in the vicinity of two parallel cracks 

perpendicular to the edges of the isotropic strip. In 

this problem, the cracks are symmetrical with 

respect to the central line of the strip and are 

subjected to out-of-plane loading. Stress analysis in 

an isotropic layer weakened by two parallel cracks 

located on the centerline of the strip under out-of-

plane shear was performed by Zhou and Ma [5]. Li 

and Wu [6] studied the problem of moving crack 

under out-of-plane loading between two layers of 

dissimilar piezoelectric material. To solve the 

problem, they used integral cosine Fourier 

transformation and obtained the effects of crack 

moving speed on stress intensity factor. Singular 

stress and electric field for a rectangular plane 

made of piezoelectric materials under out-of-plane 

mechanical and in-plane electrical loading were 

analyzed by Lee and Kwon [7]. They used the 

piezoelectric linear theory in this study. In another 

article by Kwon and Lee [8], the stress and electric 

displacement intensity factrors as well as the 

energy release rate under electromechanical 

transient load in a rectangular plane made of 

piezoelectric ceramic materials containing a central 

crack were investigated. The problem of interaction 

between repeated cracks at the interface of several 

elastic layers under out-of-plane loading is 
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presented by Wang and Gross [9]. In this study, the 

number of layers is arbitrary and cracks can be 

located in any of the layers. They used the Fourier 

series and converted the combined boundary value 

problem to Hibbler singular integral equations. Lee 

and Kwon [10] investigated the moving crack 

located at the interface of a layer of ceramic 

piezoelectric material and two layers of orthotropic 

material under electrical loading. Solving was done 

with the help of Fourier transform and the effect of 

crack length, layer thickness, direction of electric 

loading and crack speed on dynamic stress intensity 

factor was investigated. Li [11] presented an 

analytical solution for the orthotropic strip problem 

containing two parallel cracks perpendicular to the 

edge layer. In this problem, the cracks are 

symmetrical with respect to the central line of the 

layer and are subjected to out-of-plane loading. Li 

and Lee [12] performed an electroelastic stress 

analysis for a crack with an arbitrary position in a 

rectangular plane made of piezoelectric ceramics 

under out-of-plane mechanical and in-plane 

electrical loading. The problem of a crack located 

at the interface between two dissimilar orthotropic 

layers under out-of-plane loading was done by Li 

[13] and the stress intensity factors were obtained 

analytically. Zhou et al. [14] presented the solution 

of the piezoelectric/piezomagnetic material 

problem under out-of-plane mechanical and in-

plane electromagnetic loading, and the 

relationships between electric displacement, 

magnetic field and stress field near the crack tips 

were determined. The out-of-plane deformation of 

the orthotropic layer containing several cracks and 

cavities was obtained by the Faal et al. [15]. In this 

research, the stress analysis in an orthotropic strip 

including a Volterra-type dislocation was carried 

out, and by using the dislocation solution, the 

integral equations for a layer weakened by cracks 

and cavities under out-of-plane loading were 

determined. Solving the problem of functionally 

graded electromagnetoelastic rectangular plane 

containing a moving crack under out-of-plane 

mechanical and in-plane electromagnetic load was 

done by Qin et al. [16]. The effect of geometry, 

crack moving speed and piezoelectric material 

constants on the stress intensity factor was 

investigated. Stress analysis of electromagnetic 

elastic material containing a coin-shaped crack and 

two parallel cracks under out-of-plane mechanical 

and in-plane electromagnetic transient loading was 

performed by Zhong and Zhang [17]. The dynamic 

analysis of fracture mechanics of a homogeneous 

electromagnetoelastic rectangular sheet containing 

a crack was obtained by Zhang [18] and in this 

paper, Schmidt's method was used. Fall et al. [19] 

solved the problem of fracture mechanics in an 

isotropic rectangular plane weakened by several 

cracks and cavities with different boundary 

conditions under out-of-plane loading. They used 

the method of separation of variables to solve the 

dislocation problem of  Volterra type. Bagheri et al. 

[20,21] investigated the layer made of piezoelectric 

and electromagnetoelastic material with 

functionally properties. They presented the effect 

of crack length and speed and material parameters 

on field intensity coefficients. Ayatollahi et al. [22] 

investigated a half plane made of electromagnetic 

elastic material with a functionally graded property 

containing several moving cracks. In another study, 

Bagheri et al. [23] investigated the piezoelectric 

layer reinforced with a coating of orthotropic 

material with functionally graded properties under 

static out-of-plane mechanical and in-plane 

electrical loading. Stress analysis of a rectangular 

plane with functionally behavior containing several 

straight and curved cracks under out-of-plane 

loading based on the dislocation distribution 

method was presented by Faal and Dehghan [24]. 

They studied the effect of crack length and the 

interaction between them on the stress intensity 

factor. 

In this article, stress analysis is performed on a 

rectangular plane made of piezoelectric material 

containing several cracks under anti-plane 

mechanical and in-plane electrical load. The 

dislocation method and the method of separation of 

variables have been used to obtain the governing 

equations of the problem. The equations are solved 

according to the boundary conditions and the multi-

quantity of displacement and electric potential on 

the dislocation line and stress and electric 

displacement fields are provided. Then, using the 

dislocation distribution method, the equations for 

analyzing the problem of several cracks in a 

rectangular plane are obtained. At the end, 

examples are given to validate the results and 

investigate the effects of length, arrangement and 

interaction between cracks on field intensity 

factors. 

 

2. Basic relationships governing piezoelectric 

rectangular plane 

 

In this problem, out-of-plane mechanical loading 

and in-plane electrical loading in x and y plane are 

considered. As a result, the displacement 

components in the direction of the x and y axes are 

zero and there are only displacement components 

perpendicular to the plane. Also, the in-plane 

components of the electric field (Ez) are zero in the 

direction of the z-axis and in the direction of the x 

and y axes, they are represented by Ex and Ey, 

respectively. As a result, the following relations 

will exist. 

 

u=0 , v=0 , w=w (x,y)  

Ex = Ex (x,y),  Ey(x,y)  Ez=0       (1) 
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 The relationships between electric field and electric 

potential ϕ are: 

Ex=  −
𝜕𝜙

𝜕𝑥
  Ey=  −

𝜕𝜙

𝜕𝑦
       (2) 

 

For the mode III of the fracture mechanics, the 

components of stress and electrical displacement in 

the piezoelectric plane will be as follows: 
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In relation (3) c44, e15, ε11 are elastic constant, 

piezoelectric constant and dielectric constant, 

respectively. In the absence of body forces and 

electric flux, the stress and Maxwell equations are: 
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By placing relations (3) in relations (4) and 

simplifying them, the only equations that need to 

be satisfied are: 
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To solve equations (5), the method of separation of 

variables is used, which for a rectangular plate 

containing horizontal dislocation created in the 

medium, displacement and electric potential are 

obtained as follows: 

that the unknown coefficients (Akm, Bkm, Ckm, Dkm), 

(Ekn, Fkn, Gkn, Hkn) as well as λkm, λkn should be 

determined using the boundary conditions, where 

the indices k=1,2 refer to the lower and upper part 

of the dislocation, respectively. 
 

x

y

h

a

rectangular plane

),( 

1

2

 
Fig. 1. Representation of dislocation in the 

piezoelectric rectangular plane in the state of two free 

edges and two fixed edges. 
 

A rectangular quadrilateral with dimensions a×h is 

considered according to Fig. 1 where the edges y=0 

and y=h are fixed and the other two edges are free. 

A screw dislocation of the Volterra type is 

considered with the Burgers vectors bz and bϕ in the 

(η,ζ) coordinate, which creates a cross section in 

the direction of the x axis. This dislocation divides 

the rectangular plane into two upper and lower 

parts, the lower part is marked with number 1 and 

the upper part is marked with number 2. The 

boundary conditions for this problem are: 
 

0)0,()0,(

0),(),(

0),0(),0(
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The conditions related to multi-valued 

displacement and electric potential due to the 

existence of mechanical and electric dislocation are 

expressed as follows: 

 

)(),(),(  


xHbxwxw z  

)(),(),(   


xHbxx
       (8) 

 

where H(.) is the Heaviside step function and the 

components of stress and electrical displacement 

on the dislocation line have continuity, and these 

conditions are: 

 

),(),(


  xx zyzy  

),(),(


  xDxD yy         (9) 
 

By applying boundary conditions (7) to relation 

(6), the following results are obtained: 

2,1))sinh()cosh())(sin()cos((),(
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Using relations (10) and applying continuity 

conditions (9), the following relations are obtained: 
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On the other hand, for cosine functions, the 

orthogonality property can be shown as follows: 
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which in the obtained relations, δnq, δmp are 

Kronecker's deltas. With conditions (8) and using 

the orthogonality property expressed in relation 

(12), the following relations result: 
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By inserting relations (13) into relations (11), the 

following relations can be obtained: 
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Finally, by using relations (13) and (14) in relations 

(10), the mechanical displacement field and electric 

potential are obtained as follows: 

By having the field of mechanical displacement 

and electric potential and placing it in relations (3), 

the components of stress and electric displacement 

are obtained as follows. 
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3. Stress fields and electrical displacement  
Stress fields and electrical displacement due to 

loading on the border of a rectangular piezoelectric 

plane without cracks with two fixed edges and two 

free edges 

A rectangular plane made of piezoelectric material 

with dimensions a×h is considered according to 

Fig. 2 where the edges y=0 and y=h are fixed and 

the other two edges are free. The load applied on 

the border of x=0 and y=y0 of the piezoelectric 

rectangle is a point force Ʈ0 and electric 

displacement D0, which are shown by the following 

relations: 
 

   00,0 yyyzx  
 

   00,0 yyDyDx  
      (17) 

 

where δ(.) stands for the Dirac delta function. 

 

 

 
 

x
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h

a

0y

00D

 
Fig. 2. Representation of rectangular piezoelectric 

plane under point load in the state of two fixed edges 

and two free edges. 
 

The boundary conditions for this problem are: 
 

  0),(,  yaDya xzx
 

0)0,()0,(  xxw 
 

0),(),(  hxhxw 
 

 00),0( yyyzx  
 

 00),0( yyDyDx  
      (18) 
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By applying the boundary conditions in relations 

(6), the mechanical displacement field and electric 

potential are obtained as follows: 

By having the field of mechanical displacement 

and electric potential and using relations (3), the 

components of stress and electric displacement are 

obtained as follows. 

4. Integral equations in medium containing 

cracks 
The dislocation solution obtained in the previous 

section can be used to find the field intensity 

afactors of a rectangular plane with two fixed edges 

and two free edges containing a crack under the  

mode III of fracture mechanics. The dislocation 

distribution method has been used many times by 

various researchers to analyze the mediums with 

cracks. It is assumed that the rectangular plane is 

weakened by N the cracks. The configuration of 

cracks may be described in parametric form as: 
 

)(qxx ii   

)(qyy ii   
11,...,2,1  qNi

      (21) 

The movable orthogonal t, n coordinate system is 

chosen such that the origin may move on the crack 

while the t-axis remains tangent to the crack face. 

The anti-plane traction and in-plane electric 

displacement on the face of the i-th crack in 

Cartesian coordinates become: 

izxizynz  sincos 
 

ixiyn DDD  sincos 
      (22) 

 

Where θi is the angle between x and t-axis. The 

components of traction, electric displacements on 

the boundary of the ith crack caused by the 

presence of the above-mentioned distributions 

yield: 

The kernels Kij
11, Kij

12, Kij
21and Kij

22 in integral Eq. 

(23) are coefficients of bz and bϕ in stress 

components Ϭzn = Ϭzy Cosθi – Ϭzx Sinθi and electric 

displacements Dn = Dy Cosθi – Dx Sinθi in Eq. (22), 

respectively. The left-hand side of the integral 

equations, having an opposite sign, is the traction 

and electric displacement caused by an external  

      dttytxtbtqKtbtqKqyqx jj
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 loading on the presumed crack surfaces in the 

intact rectangular plane.  

After calculating the dislocation density on the 

cracks located in the rectangular plane, relations 

should be provided that can be used to calculate the 

stress intensity factors at the tips of the cracks 

according to the dislocation density on the cracks. 

Using the definition of the dislocation density 

function, the opening of the crack opening and the 

electric potential for the jth crack, it is obtained 

from the following relations: 
 

   



q

jjjzjj dttytxtbqwqw
1

2'2'
)()()()()(

   



q

jjjjj dttytxtbqq
1

2'2'
)()()()()( 

Nj ,...,2,1
        (24) 

 

The single-valued property of displacement and 

electric field out of a crack surface yields the 

following closure conditions: 
 

     ,0)()()(
1

1

2'2'
wkdttytxtb jjkj     (25) 

 

It may be shown that the kernel of integral 

equations (23) has only Cauchy-type singularity. 

Hence, the dislocation densities are of the forms: 
 

 ,,11,
1

)(
)(

2
wkt

t

tf
tb

kj

kj 




    (26) 
 

The bounded function fkj(t) may be acquired by 

making use of the numerical method. The fields 

intensity factors for embedded cracks are: 

For brevity, the details of the derivation of field 

intensity factors are not mentioned in here. 
 

5. Numerical Results and Discussion 
 

Using the obtained out-of-plane dislocation 

solution, examples of a rectangular plane made of 

piezoelectric material containing several cracks are 

presented. This part of the article is divided into 

two main parts. In the first part, examples are given 

to verify the results and relationships, and in the 

second part, examples are given to show the effect 

of crack length and interaction between cracks, 

point load application location and piezoelectric 

material constants on stress and electrical 

displacementintensity factors. In this article, the 

properties of piezoelectric material is considered as 

follows: 
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In the following examples, the quantity in order to 

make the field intensity factor dimensionless is 

defined as: 
 

lK M 00 
,       

)/()( 15011000 ledK D 
 

 

where l represents the half-length of the crack. 

Additionally, λD=D0e150/Ʈ0d110 is a representation 

of the electro-mechanical coupling factor. 

Moreover, unless otherwise stated, a piezoelectric 

rectangular plane is under point-load anti-plane 

mechanic shear Ʈ0 and in-plane electric loading D0. 

Fig. 3. shows the dimensionless stress intensity 

factor KM/K0M in terms of dimensionless distance 

Xc/a. yc is the vertical distance of the crack center 

from the bottom edge of the rectangular plane and 

U and L represent the upper and lower tips of the 

crack, respectively. 
 

 
 

Fig. 3. Variations of dimensionless mechanical stress 

intensity factor in terms of Xc/a under point load. 

 

          )1()1()1(
2

)1()1()1(
2

)( 4

1
2'2'154

1
2'2'44  piiimiiiLi

m

III fyx
e

fyx
c

K

          )1()1()1(
2

)1()1()1(
2

)( 4

1
2'2'154

1
2'2'44

piiimiiiRi

m

III fyx
e

fyx
c

K 

          )1()1()1(
2

)1()1()1(
2

)( 4

1
2'2'114

1
2'2'44  piiimiiiLi

D

III fyxfyx
c

K


          )1()1()1(
2

)1()1()1(
2

)( 4

1
2'2'154

1
2'2'44

piiimiiiRi

D

III fyx
e

fyx
c

K 
  (27) 

h
00D

U

L

l2

cy
hy 5.00  cx



 

45 

 Journal of Environmental Friendly Materials, Vol. 6, No. 2, 2022, 45-54. 

 
 

Fig. 4. Variations of dimensionless mechanical stress 

intensity factor in terms of y0/h under point load. 

 

 
 

Fig. 5. Variations of KD/K0D in terms of Xc/a under 

point load. 
 

This diagram shows the effect of increasing the 

horizontal distance of the crack center from the left 

edge of the rectangular plane when the point load is 

fixed, and it indicates that the stress intensity factor 

for the two crack tips decreases by moving away 

from the point load. It is in good agreement with 

the results presented by Faal and Dehghan (2015). 

It is also shown in this diagram that the 

dimensionless stress intensity factor increases with 

the increase of the crack length. 
 

 
 

Fig. 6. Variations of KD/K0D in terms of yc/h under 

point load. 
 

Fig. 4. shows the dimensionless stress intensity 

factor KM/K0M in terms of the dimensionless 

distance yc/h. In other words, this diagram shows 

the effect of increasing the vertical distance of the 

crack center from the bottom edge of the 

rectangular plane when the point load is fixed. This 

means that the dimensionless stress intensity 

factors for two crack tips increases initially as the 

point load approaches and then decreases as the 

load moves away from the crack tips, which is in 

good agreement with the results presented by the 

Faal and Dehghan in 2015. On the other hand, it 

can be seen that the dimensionless stress intensity 

factor increases with the increase of the crack 

length. 

Fig. 5. shows the effect of the electro-mechanical 

coupling factor on the dimensionless electric 

displacement intensity factor for a vertical crack in 

terms of the dimensionless distance Xc/a with the 

dimensionless crack length (l/h=0.1). In this graph, 

it can be seen that with the increase in the value of 

Xc, the distance of the crack from the point load 

increases and this leads to a decrease in the 

displacement intensity factor, and on the other 

hand, on the other hand, KD/K0D increases with the 

increase of the electro-mechanical coupling factor. 

Fig. 6 shows the effect of the electro-mechanical 

coupling factor on the electric displacement 

intensity factor for a vertical crack in terms of 

dimensionless distance yc/h with dimensionless 

crack length l/h=0.1. This example shows that by 

increasing the vertical distance of the center of the 

crack from the bottom edge of the rectangular 

plane, the dimensionless displacement intensity 

factor at the crack tip increases initially as it 

approaches the point load and then decreases as it 

moves away from the load. It also shows that as the 

electroelastic dependence coefficient increases, 

KD/K0D increases. 

 

 
Fig. 7. Variations of mechanical stress intensity factor 

according to dimensionless distance y0/h  under point 

load. 

 

Fig. 7. shows the effect of increasing the 

dimensionless crack length on the dimensionless 

mechanical stress intensity factor for a vertical 

crack in terms of dimensionless distance y0/h and 

different dimensionless crack lengths l/h=0.07, 

0.08, 0.09. This diagram shows that with the 

increase of the vertical distance of the point load 

from the bottom edge of the rectangular plane y0, 

the dimensionless stress intensity factor at the crack 

tip increases initially as the point load approaches 

the crack tip and then as it moves away from the 

point load of the crack tip decreases. It also shows 

that the dimensionless stress intensity factor 

KM/K0M increases with the increase of the crack 

length. 
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Fig. 8. Variations of electric displacement stress 

intensity factor according to dimensionless distance 

y0/h under point load. 

 

Fig. 8. shows the effect of the electroelastic 

dependence coefficient on the electric displacement 

intensity factor for a vertical crack in terms of the 

dimensionless distance y0/h  with the dimensionless 

crack length l/h=0.07. As shown in the figure 

below, with the increase of the vertical distance of 

the point load from the bottom edge of the 

rectangular plane, the dimensionless displacement 

intensity factor at the crack tip increased initially as 

it approached the point load and then decreased as 

it moved away from the load. It also shows that as 

the electroelastic dependence coefficient increases, 

KD/K0D increases. 

Fig. 9. shows the effect of increasing the 

dimensionless crack length on the dimensionless 

stress intensity factor for a vertical crack for 

y0/h=0.1,0.2,0.7. As it is evident from Fig. 9., with 

the increase of the crack length, the dimensionless 

stress intensity factor KM/K0M increases and similar 

to the previous graphs, it is obvious that as the 

point load approaches the crack tip, KM/K0M  

increases. 

 

 
 

Fig. 9. Variations of KM/K0M according to 

dimensionless distance l/h under point load. 

Fig 10 shows the effect of increasing the distance 

of the point load from the bottom edge of the 

rectangular plane on the dimensionless mechanical 

stress intensity factor for two vertical and 

horizontal cracks with different dimensionless 

lengths l/h= 0.2, 0.18. In this diagram, the vertical 

crack tips are examined. This diagram shows that 

the arrangement of two cracks has a significant 

effect on changes in the mechanical stress intensity 

factor because the two cracks may have protective 

or anti-protective effects. 

As can be seen, it is expected that the stress 

intensity factor at the crack tip L1 will be higher at 

the beginning due to being close to the point load, 

and this situation will change when passing through 

the center of the crack, but due to the protective 

effect, the opposite happens. 

 

 
 

Fig. 10. Variations of dimensionless stress intensity 

factors according to dimensionless distance y0/h 

under point load. 

 

Fig. 11. shows the effect of increasing the distance 

of the point load from the bottom edge of the 

rectangular plane on the dimensionless stress 

intensity factor for two vertical cracks, when the 

horizontal distance of the second crack Xc (2) 

changes. This example shows the effect of cracks 

arrangement on the stress intensity factor and it is 

expected that the stress intensity factor will 

decrease when the value of Xc (1) is kept constant 

and Xc (2) increases due to the low interaction of the 

two cracks, but it is reversed due to the protection 

effect and as the value of Xc (2) increases and the 

two cracks move away from each other, the stress 

intensity factor increases. 

 

 
 

Fig. 11. Variations of dimensionless stress intensity 

factors according to dimensionless distance y0/h  

under point load for two vertical cracks. 

 

Fig. 12. shows the variation of dimensionless stress 

intensity factor KM/K0M  for two horizontal cracks. 

As it can be seen, as the L2R2 crack approaches 

L1R1, the interaction between the two cracks 

increases and on the other hand, the L2R2 crack is 

closer to the point load, and these two factors 

increase the KM/K0M. 
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Fig. 12. Variations of dimensionless stress intensity 

factors according to dimensionless distance yc2/h 

under point load for two horizontal cracks. 

 

6. Conclusion 

 

The mode III fracture problem of a piezoelectric 

rectangular plane weakened by multiple cracks 

under concentrated anti-plane mechanical and in-

plane electrical loading is studied. The solution of 

screw dislocation in a piezoelectric rectangular 

plane is obtained by using the integral transform 

technique. The unknown dislocation density on 

cracks surfaces was calculated through solving a 

set of integral equations of Cauchy singular type. 

The solutions are obtained in series expansion 

forms which may be considered as Green’s 

functions in a piezoelectric rectangular plane 

possessing several cracks. The technique of 

Green’s function provides the ability to analyze 

multiple cracks having any smooth configuration. 

Finally, from the solved examples, the following 

results are obtained: 

1. Increasing the length of the crack causes an 

increase in the intensity of mechanical stress and 

electrical displacement. 

2. Increasing or decreasing the distance of the crack 

from the point load increases or decreases the field 

intensity coefficients, respectively. 

3. Increasing the coefficient of electroelastic 

dependence increases the electric displacement 

intensity factor. 

4. The point load application location or in other 

words the distance and proximity of the point load 

to the crack tip will decrease or increase the field 

intensity factors, respectively. 

5. The distance between two horizontal and parallel 

cracks may have protective and anti-protective 

effect. 
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