

Journal of Applied Chemical Research, 10, 4, 123-133 (2016)

Sonosynthesis and Characterization of TiO₂/ZrO₂ Nanocomposite and Photocatalytic degradation of Congo red Dye under UV Light

Khatere Jalili¹, Shokufeh Aghabeygi^{1*}, Behroz Mirza²

¹Department of Chemistry, East Tehran Branch Islamic Azad University, Tehran, Iran ²Department of Chemistry, South Tehran Branch Islamic Azad University, Tehran, Iran (Received 12 May 2016; Final version received 17 Jul. 2016)

Abstract

NanoTiO₂, nanoZrO₂ and TiO₂/ZrO₂ nanocomposite were prepared via sol gel method by using ultrasonic irradiation. The precursor sol of zirconium was prepared from an aqueous solution of ZrCl₄ and titanium tetra 2-propoxide was diluted by 2-propanol and deionized water The TiO₂/ZrO₂ nanocomposite was synthesized from directly mixing Titanium dried gel into Zirconium gel. The reaction mixture was placed under ultrasonic irradiation probe for 2 hours. The filtrated composite gel was washed and calcinated at 500 °C for 3h in furnace. The FT-IR spectroscopy and the XRD study were exhibited that the crystal structure and purity of the TiO₂/ZrO₂ nano composite FESEM images were indicated the morphology and the average size of the NPs. The mean crystallite size of the NanoTiO₂, nanoZrO₂ and ${\rm TiO_2/ZrO_2}$ nanocomposite were determined 57, 19 and 23 nm respectively. The photocatalytic performance was highly increased when nano-composite of TiO₂/ZrO₂ was used to degradation of Congo red (CR) solution. The TiO₂/ZrO₂ nano composite was shown higher photo-degradation efficiency than the pure nanoTiO₂ and nanoZrO₂.

Keywords: Nanocomposite, Photocatalyst, Ultrasonic, Zirconia, Titania.

Introduction

semiconductors with different band gaps Photo-catalytic material is coming more to form hetero-junctions in photo-catalytic attractive due to its great potential to solve systems has become a primary focus of researchers in recent year because of their environmental problem. Combining some

*Corresponding author: Shokufeh Aghabeygi, Department of Chemistry, East Tehran Branch Islamic Azad University, Tehran, Iran. Tel: +98 912 226 1873. Email: saghabeygi@yahoo.com.

somewhat unique properties not existed in the individual nano-material arising from the interfacial interaction at the nano-scale. For example, it can efficiently reduce the recombination rate of the photo-generated charge carriers in the use of environmental purification and remediation. It also can significantly enhance the optical adsorption of photocatalyst [1–4]. TiO_2 has proved to be one of the most promising materials for various applications such as solar energy conversion, fuel cells, paints and photo-catalysts, especially in environmental remediation processes, due to its high chemical stability, availability and low cost [5].

Titanium dioxide (TiO₂) has been a wellknown photo-catalyst for the degradation of wastewater due to its high photo-catalytic activity absence of toxicity, relatively low cost, and excellent chemical stability under various conditions [6]. When TiO₂ is irradiated by ultraviolet light, electron-hole pairs are generated and then produce a powerful reactive oxygen species, which can decompose most organic compounds. However, TiO, can only absorb a small portion of solar spectrum in the ultraviolet region and has high recombination probability of photo-induced electron-hole pairs. The efficient use of solar light becomes an appealing challenge for developing photocatalysis. One approach for achieving this objective is compositing other materials [7]. ZrO₂ has unique characteristics, such as weak

acidity, basicity, red-ox and high thermal stability Since the beneficial physical–chemical properties strongly depend on the particle size, the controlled and reliable preparation of nano-ranged materials represents a particular challenge being reflected by numerous approaches, for instance flame synthesis [8], chemical vapor deposition [9], sol–gel processes [10], hydrothermal synthesis [11] and combustion synthesis [12]. Due to its unique properties ZrO_2 is widely used for gas sensors, ceramics, sorbents and catalysts; concerning the latter, ZrO_2 is particularly employed as catalyst carrier in the selective catalytic reduction of NO by NH₃ [13].

In most cases, the precursors are soluble zirconium salts like ZrO(NO₃), xH₂O, Zr $(NO_3)_4$, ZrOCl, xH₂O and ZrCl₄ [14-16] whereas organic zirconium compounds have been used as well [17-19]. Moreover, the sol-gel method allows for the homogeneous mixing of transition-metal ions at a molecular level, which enhances the formation of polycrystalline particles with special properties [20]. The crystalline phase of ZrO₂ strongly influences its catalytic activity, selectivity and photo-degradation [21-23]., The composition of two semiconductors provides a novel approach to achieve more efficient charge separation, an increased lifetime of the charge carriers, and an enhanced interfacial charge transfer to adsorbed substrates [24]. TiO₂ /ZrO₂ binary oxides catalysts have been

investigated for their catalytic properties with organic compounds, especially for degradation reactions in environmental remediation {25–33]. Recently, the ultrasonic irradiation has been used extensively to generate nano materials with unusual properties, since it can form particles of much smaller size, higher surface area and more narrow size distribution than those prepared by other methods [34-40].

Experimental

Materials and Preparations

The reagents and solvents were commercially available from Merck Co. and were used without further purification. The IR spectra were performed as KBr disks from 4000 to 400 cm-1 on a Bruker Tensor 27 FT-IR spectrometer. X-ray powder diffraction (XRD) measurements were performed using an X'pert diffractometer (Philips Company) with monochromatized Cu-K α radiation ($\lambda =$ 1.54056 Å). The samples were characterized with a Field Emission Scanning Electron Microscope (Hitachi S4160 (Cold Field Emission) with gold coating.

Synthesis of Nano TiO,

25 ml H_2O_2 solution (%30 v/v) was added slowly to 100 ml mixed solution of 2-propanol and deionized water containing Titanium tetra 2-propoxide (20ml). The pH of the solution was adjusted 1.5 by adding nitric acid solution. After aging time (2 days) the precipitant was filtrated and washed and it was dried at room temperature. The product was calcinated at 500 °C for 3 h in furnace.

$$Ti (OC_{3}H_{7})_{4} + 4 H_{2}O \xrightarrow{H^{+}} Ti (OH)_{4} + C_{3}H_{7}OH$$

$$Ti(OH)_4 \longrightarrow TiO_2 + 2H_2O$$

Synthesis of Nano ZrO₂

Firstly $ZrCl_4$ (0. 1 mol, 2.4g) was dissolved in 2-propanol (50ml) to get a precursor solution. 5 ml H₂O₂ solution (%30 v/v) was then dropped into the precursor solution under stirring. The pH of mixture was adjusted 9 by adding ammonium solution (2M) until Zirconium gel {Zr(OH)₄} was prepared. After aging and stirring for 2days the ZrO₂ gel was placed under probe of ultrasonic irradiation for 30 min. After filtrating, the Zirconium gel was calcinated at 500 °C for 3 h. The white powder of nano zirconia was produced.

$$\operatorname{ZrCl}_4 + 2\operatorname{H}_2\operatorname{O}_2 \longrightarrow \operatorname{Zr}(\operatorname{OH})_4 + 2\operatorname{Cl}_2$$

 $\operatorname{Zr}(\operatorname{OH})_4 \xrightarrow{\Delta} \operatorname{ZrO}_2 + 2\operatorname{H}_2\operatorname{O}$

Synthesis of TiO₂/ZrO₂ Nanocomposite

The Titanium precipitant gel was added into Zirconium gel and they were mixed together then the mixtures were irradiated by the probe of ultrasonic instrument for 2h. The mixture was stirred for 48h, then it was filtrated and washed several time. After drying at room temperature, the white precipitated was calcinated at 500 ° C for 3h in furnace.

Photo-degradation process

In order to test the photo-catalytic activity of the as-prepared nanoTiO₂, nanoZrO₂ and TiO₂/ZrO₂ nano-composite catalysts, we were chose Congo red (Formula: $C_{32}H_{22}N_6Na_2O_6S_2$) as a model of water pollution to evaluate the catalytic behavior of the samples. Photo-degradation of 10 parts per million (ppm) Congo red (CR) solution was used to evaluate the performance of, nanoZrO₂, nano TiO_2 and nano TiO_2 / ZrO_2 photo-catalyst. For each condition, 0.075 g of photo-catalyst was dispersed into 150 ml of 10 ppm CR aqueous solution. The 200 ml beaker containing the photo-catalyst and CR solution was placed on a magnetic stirrer plate and a stirrer bar placed in the solution ensured full suspension of the particles throughout the experiment. The photo-catalytic reaction was conducted at room

temperature under UV light from a single 15W UV tube at 254 nm positioned horizontally above the liquid surface. The distance between the lamp and the base of the beaker was 10 cm. Each experiment was conducted for 2 h with 5ml sample aliquots extracted every 15 min (Figure 1) .The decomposition of CR was monitored by measuring the absorbance of the aliquot solution at 502 nm (λ max of CR) using the UV–Vis spectrophotometer (HITACHI ,U-3010). The photo-catalytic degradation (PD) was calculated by the following formula:

$$\%PD = \left[\frac{Ao - A}{Ao}\right] \times 100 = \left[\frac{Co - C}{Co}\right] \times 100$$

Where *Ao* is the initial absorption of CR solution which reached absorbency balance and *At* is the absorption of the dye solution at the irradiation time (t).

Figure1. Schematic process of photo-degradation.

Results and discussion

FT-IR Analysis

The most significant features of FT-IR spectra of the nanoTiO₂, nano ZrO_2 and TiO_2/ZrO_2 nano-composite catalysts are shown in Fig. 2 at the wave number range from 4000 to 400

cm⁻¹. In comparing Figure 2 a, b and c, can be assigned the stretching and bending the modes of vibration of TiO_2/ZrO_2 nanocomposite. Vibrational modes of nano TiO_2 and nano ZrO₂ are summarized in Table 1.

Nano TiO ₂		Nano ZrO ₂	
Wave number (cm ⁻¹)	Characterization of	Wave number (cm ⁻¹)	Characterization of
	Vibration		Vibration
3214	O-H symmetry and	3447	O-H symmetry and
	asymmetry stretching		asymmetry stretching
1627	O-H bending	1630	O-H bending
647	Ti –O-Ti vibration	595	Zr–O-Zr vibration

Table1. Identification of Infrared vibrational modes of nano TiO₂ and nano ZrO₂.

Figure 2. FT-IR spectra of (a) nano TiO₂and (b) nano ZrO₂ and (c) TiO₂/ ZrO₂ nanocomposite.

In Figure 2c, the wide peak at 3420 cm^{-1} has been assigned to the OH symmetry and asymmetry stretching vibration of water molecules. The peak at 1627 cm⁻¹ resulted from bending vibration of the adsorbed H₂O molecules, which were not removed completely after solgel synthesis. The peaks at 756, 683 and 507 cm-1 can be attributed to vibration of the Ti-O-Ti, Zr-O-Ti and Zr-O-Zr bonds respectively. The mass of Zr atom is more than the mass of Ti atom. The vibration frequency of the Zr-O bonds is less than vibration frequency of the Ti-O bonds. According the following formula:

$$\nu = \frac{1}{2\pi} \sqrt{\frac{k}{\mu}} \quad c \quad -1$$

Where: *v* is the "wave number", *k* is the "force constant" and μ is the "reduced mass" ($\mu = \frac{m1+m2}{m1m2}$ the m₁ and m₂ are the mass of the atoms of bond).

X-ray Diffraction (XRD) analysis

In Figure 3a the peaks indicate the respective Joint Committee on Powder Diffraction Standards (JCPDS) Card No. 21-1272 for TiO_2 and the vertical lines in Figure 3b according to the JCPDS Card No. 37-1484,

for ZrO_2 . The XRD patterns of the TiO_2/ZrO_2 nano-composite is shown in Figure 3c the distinct peaks corresponding to TiO_2 and ZrO_2 are observed. It is concluded that both the materials exist in perfect crystalline phases and retain their physical structure and hence confirmed to form a TiO_2/ZrO_2 nano-composite. The TiO_2/ZrO_2 nanoparticles are

seen pure. The average size of crystals Dv was also roughly calculated based upon the XRD spectra for quantitative purpose using the Debye - Scherer equation [41].

According to XRD Patterns, the crystallite size of nanoTiO₂, nano ZrO_2 and TiO₂/ ZrO_2 nano-composite are estimated to be 57, 19 and 23 nm respectively.

Figure 3. XRD patterns of (a) nano TiO₂, (b) nano ZrO₂ and (c) TiO₂/ZrO₂ nanocomposite.

FESEM Analysis

The morphology of nanoTiO₂, nano ZrO_2 and TiO_2/ZrO_2 nano-composite are shown in Figures 4a, b and c respectively. The nano-materials are almost unique. According to Figure 4a the nano TiO₂ samples possess nearby spherical shape and

the particles size can be observed between 60-80 nm. In Figure 4b the nano ZrO_2 is shown porous particles and their size are between 28-38 nm. The morphology of TiO_2/ZrO_2 nano-composite is illustrated in Figure 4c. The particles size is between 35-40 nm.

Figure 4. FESEM photographs of a) nanoTiO₂, b) nano ZrO₂ and c) TiO₂/ ZrO₂ nanocomposite.

nano-composite under UV light irradiation is shown in Figure 5. The blank experiment without any catalyst was rarely decomposited

Figure 5. Plot of photo degradation of CR versus reaction time by nanoTiO₂, nano ZrO₂ and TiO₂/ ZrO₂ nanocomposite.

Photo-degradation mechanisms

As shown in Fig6, the TiO_2/ZrO_2 nano-composite can be excited by photons with energy lower than the band gap energy (*Eg*), a great number of electrons are promoted from valence band (VB) to the conduction band (CB) of TiO_2 and ZrO_2 , leading to the generation of electron/hole (e⁻/h⁺) pairs. The electrons transfer from the CB of TiO2 to the CB of ZrO_2 , and conversely,

the holes transfer from the VB of ZrO_2 to the largely e VB of TiO₂ give rise to decrease the pairs' of degra recombination rate. Obviously, the energy thus, the level for electron injection is decreased after the sensiti composing nano ZrO_2 and nano TiO₂, which reaction, increases the driving force for electron injection CR are so and hence reduce recompling tigNa₂ $OrdS_2 = (45+1/2)O_2$.

electrons and holes. On the other hand, TiO_2 can increase concentration of free electrons in the CB of ZrO_2 , this result is reduced the charge recombination in the process of electron transport .All above of results increase the availability of the pairs on the surface of the photo-catalyst and consequently an improvement of the occurrence of red-ox processes can be expected. Therefore, it has

largely enhance the photo-catalytic efficiency of degradation the organic compounds, and thus, the determination time is shortened and the sensitivity is increased. As shown the below reaction, the products of photo-degradation of CR are sa_{faty} for any ironment. TiO₂/ZrO₂

 $2 H_2 SO_4 + 6 HNO_3 + 32 CO_2 + 5 H_2 O - 2 H_2 SO_4 + 6 HNO_3 + 32 CO_2 + 5 H_2 O - 2 H_2 O$

Figure 6. Schematic band gap and electron-hole pair separation of TiO_2/ZrO_2 nano-composite can

Particles size and band gap are the effective factors on photo-catalytic activity of nano-catalyst. The photo-catalytic activities of the nano particles are increased when the particle diameter is decreased, where the band gap is more important, because the crystal and particle size of nano TiO_2 are greater than nano ZrO_2 and the nano ZrO_2 has porous structure, but the photo-catalyst property of nano TiO_2 is more than the nano ZrO_2 . The band gap of nano TiO_2 is smaller than ZrO_2 (3.2 and 5.6 eV respectively). The composition of nano-semiconductors is one of the ways to improve the photo-catalytic property. As it is well accepted that the photocatalytic degradation of CR solution accords with a pseudo first- order kinetic [42, 43] the relationship between $-Ln(C/C_0)$ and reaction time were plotted and shown in Figure 7. The rate constant of TiO_2/ZrO_2 nano-composite is three times more than nano TiO_2 and nano ZrO_2

Figure 7. Relationship between $-Ln(C/C_0)$ and reaction time for photodegradation of CR by nanoTiO₂, nano ZrO₂ and TiO₂/ZrO₂ nanocomposite.

Conclusion

In this work nanoTiO₂, nano ZrO₂ and TiO₂/ ZrO₂ nano-composite have been synthesized by a facile sol–gel method using ultrasonic irradiation. Comparison of the FT-IR spectra of TiO₂/ZrO₂ nano-composite with the pure TiO₂ and pure ZrO₂ NPs has been showed formation of ZrO₂/ TiO₂ nanocomposite. Crystal phase and particle size of NPs can be detected by XRD and FESEM. The highest photo-catalytic activity was illustrated by TiO₂/ZrO₂ nano-composite. The plot of photo-degradation versus reaction time was revealed apparently improvement of the degradation value for the nano-composite. The photo-catalytic property of TiO_2/ZrO_2 nano-composite was enhanced, because the decreasing of diameter of nano particles and band gap energy of nanocomposite.

Acknowledgments

The authors are thankful to Research Council and technology Islamic Azad University, East Tehran branch for supporting this work.

References

M. Khatamian, S. Hashemian, S. Sabaee, *Materials Science in Semiconductor Processing*, 13,156 (2010)

[2] Z. Zhang, Y. Yuan, Y. Fang, L. Liang, H.

Ding, L. Jin, Talanta, 73,523 (2007)	Soc., 20, 139 (2000)	
[3] S. Aghabeygi. M. Zare-Dehnavi, Int . J.	[16] F. C. M. Woudenberg, W. F. C. Sager, J.	
Nano Dimens., 6, 297 (2015)	E. Elshof, H. Verweij, J. Am. Ceram. Soc., 87,	
[4] G. Yang, Z. Yan, T. Xiao, Applied Surface	1430 (2004)	
Science, 258, 8704 (2012)	[17] B. Neppolian, Q. Wang, H. Yamashita, H.	
[5] W. O. Sung, H. P. Sang, K. S. Yang , J.	Choi, Applied Catalysis A: General, 333, 264	
Power Sources, 161, 1314 (2006)	(2007)	
[6] C. Wu, X. Zhao, Y. Ren, Y. Yue, W. Hua,	[18] C. J. Lucio-Ortiza, J. R. Rosaa, A.	
Y. Cao, Y. Tang, Z. Gao, J. Mol. Catal. A, 229,	H. Ramireza, , Colloids and Surfaces A:	
233(2005)	Physicochem. Eng. Aspects, 371, 81 (2010)	
[7] D. Chatterjee , S. Dasgupta, N. N. Rao,	[19] M. Ranjbar, M. Lahooti, M. Yousefi, A.	
Sol. Energy Mat. Sol. C, 90, 1013 (2006)	Malekzadeh, , J. Iranian Chem. Soc. , 11 ,	
[8] M. C. Heine, L. Mädler, R. Jossen, S.E.	1257 (2013)	
Pratsinis, , Combust. Flame, 144, 809(2006)	[20] L. G. Devi, S. G. Kumar, Applied Surface	
[9] E. Hemmer, I. Kumakiri, N. Lecerf, R.	Science, 57, 2779 (2011)	
Bredesen, S. Barth, J. Altmayer, N. Donia, C.	[21] C. Karunakaran, R. Dhanalakshmi, P.	
Cavelius, K. Soga, S. Mathur , Microporous	Gomathisankar, Spectrochimica Acta Part A,	
and Mesoporous Materials, 163, 229(2012)	92, 201 (2012)	
[10] R. Caruso, O.Sanctis, . A. Macías-García,	[22] W. Z. Li, H. Huang, H. J. Li, W. Zhang,	
E. Benavidez, S. R. Mintzer, J. Materials	H. Liu, Langmuir, 24, 8358 (2008)	
Processing Technology, 152, 299 (2004)	[23]A.A.MehrdadSharif,S.AbediniKhorrami,	
[11] J. M. E. Matos, F. M. A. Júnior, L. S.	N. Assi, Int. J. Nano Dimens., 3, 235 (2013)	
Cavalcante, V. Santos, S. H. Leal, L. S.	[24] C. Wang, B. Q. Xu, X. M. Wang, J. C.	
Júnior, M. R. C. Santos, E. Longo, Materials	Zhao, J. Solid. State Chem., 178, 3500 (2005).	
Chemistry and Physics, 117, 455 (2009)	[25] V. Vishwanathan, H. S. Roh, J.W. Kim,	
[12] E. D. Sherly, J. J. Vijaya, N. C. S. Selvam,	K.W. Jun, Catal. Lett., 96, 23(2004)	
L. J. Kennedyz, Ceramics International, 40,	[26] K. V. R. Chary, G. V. Sagar, D. Naresh, K.	
5681 (2014)	K. Seela, B. Sridhar , J. Phys. Chem. B, 109,	
[13] B. Shen , X. Zhang , H. Ma, Y. Yao, T.	9437(2005)	
Liu, J. Environ. Sciences, 25, 791 (2013)	[27] X. Fu, L. A. Clark, Q. Yang, M. A.	
[14] Y. Q. Song, D. H. He, B. Q. Xu, Applied	Anderson, Environ. Sci. Technol., 30,	
Catalysis A: General, 337, 19 (2008)	647(1996)	
[15] G. D. Agli, G. Mascolo, J. Eur. Ceram.	[28] C. Wu, X. Zhao, Y. Ren, Y. Yue, W. Hua,	

132

- Y. Cao, Y. Tang, Z. Gao, J. Mol. Catal. A, Res., 40, 1119 (2006).
- 229, 233(2005)
- [29] J. A. Navio, M. C. Hidalgo, G. Colon, S. Z. Zhu, X. Liu, P. Wu, Surf. Coat. Technol.,
- G. Botta, M. I. Litter, *Langmuir*, 17, 202(2001)
- [30] S. G. Botta, J. A. Navio, M. C. Hidalgo,
- G. M. Restrepo, M. I. Litter, J. Photochem. Photobiol. A, 129, 89(1999)
- [31] X. Wang, J. C. Yu, Y. Chen, L. Wu, X. Fu, Environ. Sci. Technol., 40, 2369(2006)
- [32] J. C. Wu, C. S. Chung, C. L. Ay, I. Wang,
- J. Catal., 87, 98(1984)
- [33] K. Sayama, H. Arakawa, J. Phys. Chem., 97, 531(1993)
- [34] D. Mahajan, C. L. Marshall, N. Castagnola, J. C.Hanson, Applied Catalysis A: General, 258, 83(2004)
- [35] Y. Kojima, M. Kanai, N. Nishimiya, Ultrasonics Sonochemistry, 19, 325 (2012)
- [36] N. Ghows, M. H. Entezari, Ultrasonics Sonochemistry, 19, 1070 (2012)
- [37] A. Talebian, M. H. Entezari, N. Ghows, Chemical Engineering Journal, 229,.304 (2013)
- [38] T, R. Bastami, M. H. Entezari, Chemical *Engineering Journal*, 164, 261 (2010)
- [39] T. R. Bastami, M. H. Entezari, Materials *Research Bulletin*, 48, .3149 (2013)
- [40] T. Soltani, M. H. Entezari, Chemical Engineering Journal, 223, 145 (2013)
- [41] B. D. Cullity, S. R.Stock, Elements of X-ray Diffraction, Prentice Hall, Englewood Cliffs, 2001
- [42] Y. J. Li, X. D. Li, J. W. Li, J. Yin, Water

- [43] J. Tian, L. Chen, Y.Yin, X. Wang, J. Dai,
- 204, 205 (2009).