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Abstract

One of the most applied methods in drug industry for development of new drugs is 3D-QSAR 

methodology. As p38-mitogen-activated protein kinase (p38-MAPK) plays a crucial role 

in regulating the production of such proinflammatory cytokines as tumor necrosis factor-α 

(TNF-α) and interleukin-1, emerging as an attractive target for new anti-inflammatory agents, 

we used a 3D-QSAR based method of Comparative Molecular Field Analysis (CoMFA) on a 

series of 52  potent  p38-MAP  kinase inhibitors with  IC50 ranging from 3.2 to 10,000 nM. An 

alignment rule for the compounds was defined using Distill in SYBYL 7.3. The best model 

was validated using a data set obtained by dividing the data set into a training set and test set 

using hierarchical clustering, based on the CoMFA fields and biological activities (pIC50). 

The best predictions were obtained with a CoMFA region-focusing model (R2
ncv = 0.952, q2 

= 0.678, R2
Pred = 0.627). The statistical parameters from the model indicate that the data are 

well fitted and has high predictive ability. Moreover, the resulting 3D CoMFA contour maps 

provide useful guidance for designing highly active inhibitors.
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Introduction

The mitogen-activated protein kinases 

(MAPKs) are essential regulators for signal 

transduction pathways and play crucial roles 

in cellular processes such as transcription, 

apoptosis, and differentiation [1]. The p38-

MAP kinase is highly expressed in severe 

invasive breast cancers and is involved in the 

regulation of cytokine biosynthesis (TNFα), 

which is associated with chronic inflammatory 

diseases such as rheumatoid arthritis, Crohn’s 

disease, and inflammatory bowel syndrome [2-



G.B. Ghasemi et al., J. Appl. Chem. Res., 7, 1, 64-74 (2013) 65

4]. The correlation of elevated levels of TNF-α 

with the pathophysiology of a number of 

inflammatory diseases has been studied for over 

two decades [5-6]. An alternative therapeutic 

approach would be suppressing the production 

of TNF-α with small molecule inhibitors 

designed to block the p38-MAP kinase signal 

transduction cascade. Although in vivo models 

indicate p38 is a viable therapeutic target to 

reduce symptoms of RA, no small molecule 

therapy has successfully reached the market [2, 

7]. Therefore, there is already an urgent need 

to search for identification and development of 

novel inhibitors particularly those selective for 

all isoforms of P38-MAP kinase.

Quantitative structure–activity relationship 

(QSAR) methods have now become an 

essential part of modern drug design, since they 

represent an inexpensive and fast choice to the 

medium throughput in vitro assays. One would 

say that today no drug is developed without 

previous QSAR analyses [8]. The QSAR 

methodology is based on the concept that the 

differences observed in the biological activity, 

including affinity (e.g., Ki), efficacy (e.g., 

activation or stimulation of receptors, Vmax of 

enzymes), pharmacokinetics (ADME), drug–

drug interactions, or any biological properties 

of a set of compounds can be quantitatively 

correlated with differences in their structural or 

physicochemical properties [9]. 

Typically, a 3D-QSAR analysis allows 

the identification of the pharmacophoric 

arrangement of molecular features in space 

and provides guidelines for the design of 

next-generation compounds with enhanced 

bioactivity or selectivity. The first applicable 

3D-QSAR method was proposed by Cramer 

et al. in 1988. His program, CoMFA, was a 

major breakthrough in the field of 3D-QSAR 

[10].

Herein, we present a 3D-QSAR study to 

investigate the correlation of a series of 

quinolizin-2-one and pyridopyridazin-6-one 

derivatives with the inhibition of p38-MAP 

kinase by employing comparative molecular 

field analysis (CoMFA).

Experimental

Data set

All P38-MAP Kinase inhibitors and their 

biological activities (IC50 values) were taken 

from Tynebor et al. [7]. They were divided 

into a training set of 35 compounds and a test 

set of 11 compounds from original data set 

by using hierarchical clustering based on the 

CoMFA fields and biological activities (pIC50). 

The chemical structures and biological activity 

values of all of the compounds are presented 

in Table 1. The IC50 values in units of molarity 

(M) were transformed in pIC50 (–log IC50) in 

order to provide numerically larger data values. 

The –log IC50 values of the training set span 

more than 3 orders of magnitude (5.00 – 8.49). 

The activity (IC50) values of six molecules 

were qualitatively (i.e. they have not exact 
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Table 1. Structures of training and test set compounds a

Comp. X pIC50

1b — 8.15
4 S 6.49
5 O 6.72
6b CH2 7.03
7 NHCH2 6.06
8 C2H2 6.05
9 C2H4 6.31

Comp. X pIC50 Comp. X pIC50

17 8.49 23b > 5

quantities for activities) higher than 10,000 

nM, these molecules were removed from the 

data set. Molecules in the test set and those six 

molecules (which were removed at first) were 

used to evaluate the predictive quality of the 

QSAR model developed from the training set. 
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18b 6.14 24b 5.89

19 8.33 25b 6.14

20b >5 26 8.46

21b 5.89 27 7.70

22b 6.80 28 6.19

29b 6.32 31 8.12

30b 5.84
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Comp. a B C d e pIC50

32 F — — H H 7.92
33b Cl — — H H 7.36
34 Me — — H H 7.04
35 OMe — — H H 7.09
36 CF3 — — H H 5.62
37 — F — H H 6.38
38 — Cl — H H 6.62
39 — Me — H H 7.15
40b — OMe — H H >5
41b — CF3 — H H >5
42 — — F H H 7.32
43 — — Cl H H 7.1
44 — — Me H H 6.59
45b — — OMe H H >5
46b — — CF3 H H >5
47 F F — — — 7.49
48b Cl Cl — — — 7.49
49 F — Cl — — 7.96
50 Cl — F — — 7.85
51 Cl Cl — — — 7.52
52 F — — F — 6.89
53 Cl — — Cl — 6.55
54 F — — — F 7.02
55 Cl — — — Cl 7.05
56 F — F — F 6.70
57 Cl — F — Cl 7.17
58 F F F F F 5.37
59 — F F — — 6.57
60 — Cl F — — 6.85
61 — Cl Cl — — 6.59
a The structures of molecules are taken from Tynebor et al. [1]
b Prediction set
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Computer hardware and software

All computation work was done on Ubuntu 

Linux 10.04 and windows 7 operating 

system. The molecular modeling software 

used were SYBYL 7.3 molecular modeling 

package (Tripose Inc., St. Louis, USA), and 

(ViewerLite 5.0, Accelrys, Inc., 2002).

Molecular modeling and alignment

All the 3D structures of the compounds were 

sketched and processed using the CONCORD 

module [11, 12] of SYBYL 7.3. CONCORD 

quickly generates approximate structures for 

any compound that consists of H, C, N, O, F, Si, 

P, S, Cl, Br, I, Mg, B, and Se (Tripos Bookshelf 

7.2, TRIPOS, Inc. St. Louis, Missouri). 

Information contained in a molecule’s atomic 

connection table was converted into atomic 

coordinates. The structures were then subjected 

to energy minimization using tripos force 

field with a distance-dependent dielectric 

and the Powell conjugate gradient algorithm 

convergence criterion of 0.01 kcal/mol Å [13] 

and partial atomic charges were calculated 

by Gasteiger Hückel method. Compound 17 

was used as a template (reference molecule) 

because of the highest activity and all other 

compounds were aligned on the basis of the 

common structure. Rigid body alignment of 

molecules in a Mol2 database was performed 

using maximum common substructures defined 

by Distill (without including bond types in 

rings). The common substructure between 

all compounds and aligned compounds on 

reference compound, 17, are displayed in 

Figures 1A and 1B.

Figure 1. Common substructure between all compounds (A), Alignment of training and test set compounds on 
compound 17 (B).

Hierarchical cluster analysis

Crucial requisite in the development of a 

QSAR model is the division of the whole 

data set in training and test sets in order to 

maximize the diversity of the test set and to 

examine the predictive accuracy of the model 
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when extrapolating outside the training set 

[14, 15]. The chemometric technique of 

hierarchical cluster analysis (HCA) [16] was 

the approach used to remove outliers and 

then select the training and test sets based 

on structural similarities, CoMFA steric and 

electrostatic fields and biological activity data 

(expressed as pIC50). As the name suggests, 

HCA attempts to find groupings within a set of 

data. This method was applied as implemented 

in SYBYL 7.3 (Tripos). 

CoMFA study

The aligned sets of molecules were positioned 

inside a grid box with grid spacing value of 2.0 

Å (default distance) in all Cartesian directions 

and CoMFA fields were calculated using the 

QSAR module of SYBYL. The interaction 

energies for each molecule were calculated 

at each grid point using a probe atom: an sp3 

hybridized carbon atom with a +1.0 charge. 

The steric (vdW interaction) and electrostatic 

(Coulombic values with a 1/r distance-

dependent dielectric function) fields were 

calculated at each intersection on the regularly 

spaced grid.  Since CoMFA models are greatly 

sensitive to the different space orientations of 

the molecular collective with respect to the 

lattice, all-orientation search was also carried 

out on initial orientations of aligned structures 

by the rotation procedure written in SYBYL 

programming language [17].

In order to reduce noise and improve 

efficiency, several values for column filtering 

(minimum sigma) were examined from 1.0 

to 2.0 kcal/mol, excluding from the analysis 

those columns (lattice points) whose energy 

variance was less than these values. Cutoff for 

both steric and electrostatic fields was set to 

20 kcal/mol. 

CoMFA standard scaling applies the same 

weight to data from each lattice point in any 

given field. Region focusing is an iterative 

procedure which refines a model by increasing 

the weights for those lattice points which are 

most pertinent to the model. This enhances 

the resolution and predictive power (q2; cross 

validated R2) of a subsequent PLS analysis. 

Technically, this corresponds to rotating the 

model components through a high-order space 

[18]. PLS region focusing is intellectually 

analogous to the GOLPE approach and q2-

GRS [19, 20].

The leave-one-out cross-validation method 

using the SAMPLS method was employed. 

The optimal number of components for the 

final 3D-QSAR equation was defined as the 

number of components leading to the highest 

cross-validated R2 (q2) and the lowest standard 

error of prediction. The cross-validated 

coefficient q2 (or r2
CV ) was evaluated as:

= 1 ( )
( )

where YPredicted, YObserved, Ymean are the predicted, 

observed, and mean values of the pIC50, 
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respectively.

Results and discussion

The best model of all orientation search 

procedure was picked up, and then the effect 

of changing column filtering, cutoff value 

was investigated. The best results obtained at 

a column filtering of 1.8 kcal/mol and cutoff 

value 20 kcal/mol. Use of region focusing 

on the model yielded values R2 = 0.952, F = 

75.644, a standard error of estimation (SEE) 

of 0.191, q2
LOO = 0.678 with 6 components, 

a standard error of prediction (SEP) of 0.541 

and R2
Pred = 0.627. The correlation between 

the predicted activities and the experimental 

activities are depicted in Figure 2. The 

experimental and predicted activities for 

training and test set compounds with CoMFA-

RF are shown in Table 2. Interestingly the 

activities of 6 molecules which have not exact 

quantities were predicted properly by reported 

model (see Table 2 and Figure 2). As it can 

be seen, the model exhibited good predictive 

power confirmed by suitable values of cross 

validated correlation coefficient (q2
LOO) and 

R2
Pred .

Figure 2. Experimental versus predicted activities for the training and test set compounds based on the 
CoMFA-RF model.

Table 2. The experimental pIC50 values, predicted pIC50 values (Pred.) of the training and test set compounds.

Comp. no Exp. Pred. Comp. no Exp. Pred.
1* 8.15 6.12 36 5.62 5.61
4 6.49 6.48 37 6.38 6.45
5 6.72 6.71 38 6.62 6.65
6* 7.03 7.35 39 7.15 6.62
7 6.06 6.08 40* >5 6.57
8 6.05 6.14 41* >5 6.56
9 6.31 6.24 42 7.32 7.21
17 8.49 8.38 43 7.1 7.08
18* 6.14 7.39 44 6.59 6.84
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19 8.33 8.28 45* >5 6.69
20* >5 7.75 46* >5 6.52
21* 5.89 7.38 47 7.49 7.54
22* 6.8 7.06 48* 7.49 7.16
23* >5 7.46 49 7.96 7.52
24* 5.89 7.65 50 7.85 7.72
25* 6.14 7.89 51 7.52 7.63
26 8.397 8.46 52 6.89 6.79
27 7.719 7.7 53 6.55 6.53
28 6.034 6.19 54 7.02 6.86
29* 6.32 8.00 55 7.05 7.06
30* 5.84 8.02 56 6.7 6.94
31 8.12 8.1 57 7.17 7.22
32 7.92 8.1 58 5.37 5.36
33* 7.36 7.42 59 6.57 6.65
34 7.04 7.26 60 6.85 7.17
35 7.09 7.2 61 6.59 6.78
*Prediction set

The CoMFA-RF’s steric and electrostatic field 

obtained from the best non-cross-validated 

analysis is shown as 3D colored contour maps 

in Figure 3. The field energies at each lattice 

point were calculated as the scalar results 

of the coefficient and the standard deviation 

associated with a particular column of the 

data table (SD*coeff), as always plotted as 

the percentages of the contribution of CoMFA 

equation. These maps show regions where 

differences in molecular fields are associated 

with differences in biological activity. The 

steric interactions are represented by green and 

yellow colored contours, while electrostatic 

interactions are represented by red and blue 

colored contours. 

The contour maps of CoMFA show contribution 

for favorable and unfavorable interactions 

with the receptor in terms of steric (80% green, 

20% yellow) and electrostatic (80% blue and 

20% red). Greater values of bio-activity are 

correlated with more bulk near green, less 

bulk near yellow more positive charge near 

blue and more negative charge near red. The 

most potent compound 17 is overlaid on the 

map to help better visualization (Figure 3A). 

P38α crystal structure shows the active site is 

comprised of two hydrophobic pockets. The 

previous researches on quinolizin-2-one and 

pyridopyridazin-6-one derivatives as potent 

inhibitors pointed to that C ring and A ring 

(Figure 4) should be to occupy the hydrophobic 

pocket I and II respectively [2, 7]. 
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Figure 3. Steric and electrostatic contour maps of CoMFA-RF model in combination with compound 17 (the 
most active compound in data set) (A), and one of the inactive compounds 41 (B).

A large green contour near C ring indicates a 

sterically bulky group is favored in this region, 

which contributes to the ligand stabilization at 

the binding site to fill hydrophobic pocket II. 

In compounds 20 and 33, the most inactive 

compounds, oriented away from the green 

contour and do not occupy hydrophobic 

pocket II. A ring is a part of the scaffold, so this 

interaction would be present in all molecules 

and it does not appear in the CoMFA contours. 

The yellow contours are inversely related to the 

biological activities. Unfavorable effect might be 

correlated to bulky group, thus, introduction of 

bulky substituents in these regions are predicted 

to decrease activity. Overlay of all compounds 

on the CoMFA map shows that meta or para 

substituent of C ring  in 40, 41, 45, and 46 is 

oriented toward the yellow regions where the 

bulky groups are unfavored, leading to decrease 

the activity (see Figure 3B). On the other hand, 

substituents of 41 and other compounds are 

located relatively away from this region.

Figure 4. Three structure parts of the compounds in data set depicted on 17.
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Conclusion

In this study, by using the alignment scheme 

generated from Distill, a predictive CoMFA 

region focusing model was developed and 

was used to predict the pIC50 activity of a set 

of MAP-kinase inhibitors. The QSAR model 

gave good statistical results in terms of q2 and 

R2 values, and has been validated using a test 

set, obtained from the hierarchical clustering. 

From this study, it is possible to predict the 

ligand activities of newly designed MAP-

kinase inhibitors, and design better inhibitors.
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