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Abstract

In this paper a new form of the homptopy perturbation method is used for solving oscillator differential
equation, which yields the Maclaurin series of the exact solution. Nonlinear vibration problems and
differential equation oscillations have crucial importance in all areas of science and engineering. These
equations equip a significant mathematical model for dynamical systems. The accuracy of the Solution
equation is very important because the analysis component of the system like vibration amplitude
control, synchronization dynamics are dependent to the exact solution of oscillation equation.
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1 Introduction

I
n recent years, many engineers and scientists
in various sciences like Mathematics, Physics,

Biology and particularly in branches of engineer-
ing like Fluid mechanics, Numerical calculations
in Aerospace and Electronics are faced with non-
linear phenomena and many nonlinear problems.
Since solving nonlinear problems plays a crucial
role in various fields of engineering and science,
Scientists are interested in obtaining techniques
for solving nonlinear problems and have per-
formed extensive researchers to achieve nonlinear
problem solving techniques. As solving nonlin-
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ear problems are generally difficult and achiev-
ing their exact solutions are hard, various ap-
proximate methods have been developed to solve
them. Our objectives in this work are, first to
present the basic idea of the homotopy pertur-
bation method HPM for solving nonlinear prob-
lems; second to demonstrate the basic idea of the
new form of homotopy perturbation transform
method (NHPTM) for solving differential equa-
tions; and then to apply this method to solve
oscillator differential equation. The homotopy
perturbation method was first proposed by J.
Huan He in 1998 and was further improved by
him [13, 8, 14]. This method is based on sup-
position that a small parameter must exist. The
applications of the HPM in nonlinear problems
have been demonstrated by many researchers, cf.
[1, 4, 5, 6, 16]. Perturbation methods are exten-
sively used in engineering and Science to solve
nonlinear problems. This method has also been
applied to boundary value problems [12], nonlin-
ear wave equations [9], nonlinear oscillators [15],
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heat radiation equations [5], nonlinear heat con-
duction , convection equations [21] and to the
other fields [11, 10]. Recently, some modifica-
tions of this Method are presented in order to
decrease the volume of calculations [19, 3, 20]
and increase the rapid convergence and accuracy
of calculation series solution. In this study, we
have applied a new form of homotopy perturba-
tion transform method for solving nonlinear dif-
ferential equations oscillation. This paper is or-
ganized as follows. In Section 2, The Structure
of the homotopy perturbation method HPM is
given. A new form of homotopy perturbation
transform method (NHPTM)is described in Sec-
tion 3. Then in section 4, we applied the applica-
tion of (NHPTM) for solving the oscillation equa-
tion. In section 5, to show the efficiency of the
method, we considered two examples and solved
them by (NHPTM). Finally, some conclusions are
given in Section 6.

2 Structure of HPM for solving
nonlinear differential equa-
tions

In this section, To illustrate the principal ideas
of the homotopy perturbation method we con-
sider the following nonlinear differential equa-
tions

A(v(t)) = g(r(t)), r(t) ∈ Ω (2.1)

with boundary conditions

B(
∂v(t)

∂(n)
= 0), r(t) ∈ Γ (2.2)

where A is a general differential operator, B is
boundary operator, g(r(t)) analytic function, is
the boundary of the domainΩ. The operator A
can be rewritten as a sum of R and N , where
R is a linear operator and N is a nonlinear one.
Therefore, Eq. (2.1) may be expressed as

R(v(t)) +N(v(t)) = g(r(t)). (2.3)

By the homotopy technique, we construct a ho-
motopy v(r(t), p) : Ω× [0, 1] −→ R

H(V (t), p) = (1− p)[R(V (t)− v0(t)]

+p[A(U(t))− g(r(t))] = 0,

p ∈ [0, 1], r(t) ∈ Ω (2.4)

p is an embedding parameter, v0 is an initial ap-
proximation of Eq. (2.1). Obivously, from Eq.
(2.4) We have

H(V (t), 0) = R(v(t))− v0(t)

= 0, (2.5)

H(V (t), 1) = A(v(t))− g(r(t))

= 0, (2.6)

From the embedding parameter p changes from
zero to unity, H(v(t), p) change from R(v(t)) −
v0(t) to A(v(t)) − g(r(t)). Conforming to He’s
homotopy perturbation method, we can first use
the embedding parameter p as a small parameter
and assume that the solution of (2.6) can be given
as a power series in p, i.e,

V (t) = V0(t) + pV1(t) + p2V2(t) + · · · (2.7)

Setting p = 1 results in the approximate solution
of Eq. (2.1).

v(t) = lim
p−→1

V (t)

= V0(t) + V1(t) + V2(t) + · · ·
(2.8)

Finally, we approximate the solution V (t) by

v(t) =

∞∑
n=0

pnVn(t) (2.9)

3 Fundamental idea of NHPTM

In this section we illuminate the theory of the
new homotopy perturbation transform method
by the using solution procedure of the (NHPTM).
We consider the following nonlinear differential
equation as

D(V (t)) +N(V (t)) = g(t) (3.10)

Where D is the second order linear differential
operator, N is the general nonlinear differential
operator and g(t) is a known analytic function.
with boundary condition

v(o) = h(t), vt(0) = f(t), (3.11)

Taking the Laplace transform (denoted through-
out this paper by L)

L[D(V (t))] + L[N(V (t))] = L[g(t)] (3.12)
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By using the differentiation property of Laplace
transform, we have

s2L[V (t)]− sv(0)− vt(0) + L[N(V (t)]]

= L[g(t)] (3.13)

Next, we obtain

s2L[V (t)] = sh(t) + f(t) + L[g(t)]− L[N(V (t)]]
(3.14)

we get

L[V (t)] =
h(t)

s
+

f(t)

s2
+

1

s2
L[g(t)]

− 1

s2
L[N(V (t))] (3.15)

Applying Laplace inverse on both sides of
Eq.(3.15)

V (t) = L−1[
h(t)

s
+

f(t)

s2
+

1

s2
L[g(t)]]

−L−1[
1

s2
L[N(V (t))], (3.16)

Put G(t) = L−1[h(t)s + f(t)
s2

+ 1
s2
L[g(t)]] and con-

sider the equivalence convex homotopy (2.4) as

H(V (t), p) = V (t)− v0(t) + pv0(t)

+p[N(V (t))−G(t)] = 0,

(3.17)

which is equivalent to

V (t) = v0(t) + p[G(t)− v0(t)−N(V (t))], (3.18)

Now, we apply the new form of homotopy pertur-
bation transform method (NHPT) , consider the
convex homotopy defined in Eq. (3.16). then we

V (t) = v0(t) + p[G(t)− v0(t)

−L−1[
1

s2
L[N(V (t))])],

(3.19)

We can assume that the solution of Eq. (3.10)can
be written as a power series in p as following

V (t) =

∞∑
n=0

pnVn(t) (3.20)

In order to demonstrate the (NHPTM) suppose
that the initial approximation of Eq. (2.1) has
from

v0(t) =

∞∑
n=0

bnKn(t) (3.21)

Where b0, b1, b2, · · · are unknown coefficients and
k0(t), k1(t), k2(t), · · · determined function de-
pending on the problem. By substituting Eqs.
(3.18) and (3.19) into Eq. (3.17) We get

∞∑
n=0

pnVn(t) =
∞∑
n=0

bnKn(t) + p[G(t)

−
∞∑
n=0

bnKn(t)

−L−1[
1

s2
L[N(

∞∑
n=0

pnVn(t))])]

(3.22)

Comparing the coefficient of like power of p, the
following approximations we have

p0 : V0(t) =
∞∑
n=0

bnKn(t),

p1 : V1(t) = G(t)−
∞∑
n=0

bnKn(t)

−L−1[
1

s2
L[N(V0(t))]), (3.23)

p2 : V2(t) = −L−1[
1

s2
L[N(V0(t), V1(t))]),

...

Now, we solve these equation so that V1(t) = 0
then the Eq. (3.15) result V2(t) = V3(t) = . . . = 0
and finally, the exact solution may be obtained as
follows

v(t) = V0(t) =

∞∑
n=0

bnKn(t) (3.24)

4 Application of NHPTM for
Oscillation equation

In this section we apply NHPTM for solving
oscillation’s equation, to this end, first consider a
general form of oscillation’s equation as follows

Dv(x, t) +Rv(x, t) = g(x, t) (4.25)

With boundary condition

v(x, 0) = u(x), vt(x, 0) = w(x), (4.26)

Where u(x), w(x) ∈ C(R), D is the second
order linear differential operator, R is the linear
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differential operator and N is the general non-
linear differential operator and g(x, t) is a known
analytical function. After taking the Laplace
transform)on Eq. (4.25) we have

L[Dv(x, t)] + L[Rv(x, t)] + L[Nv(x, t)]

= L[g(x, t)], (4.27)

Now we use the differentiation properties of
Laplace transform for Eq. (4.27) then we have

L[v(x, t)] =
u(x)

s
+

w(x)

s2
+

1

s2
L[g(x, t)]

− 1

s2
L[Rv(x, t) +Nv(x, t)],

(4.28)

Next we applying the Laplace inverse operators
on both sides of Eq. (4.28)

v(x, t) = g(x, t)− L−1[
1

s2
L[Rv(x, t)

+Nv(x, t)]], (4.29)

Now, we apply the homotopy perturbation
method, consider the convex homotopy defined
in Eq. 3.18). then we have

v(x, t) = v0(x, t)− pv0(x, t) + p(g(x, t)

−L−1[
1

s2
L[Rv(x, t) +Nv(x, t)]])

(4.30)

By substituting v(x, t) =
∑∞

n=0 p
nvn(x, t) and

vo(x, t) =
∑∞

n=0Kn(t)bn where Kn(t) = tn

and the nonlinear term can be decomposed
by Adomian’s polynomials so that Nv(x, t) =∑∞

n=0 p
nAn(v) (see [7, 22]) and the Adomian’s

polynomials An is given below

An(v0, · · · , vn) =
1

n!

∂n

∂pn
[N(

∞∑
n=0

pnvn(x))],

n = 0, 1, 2, 3, . . . (4.31)

Then we have
∞∑
n=0

pnvn(x, t) =
∞∑
n=0

tnbn(x)− p(
∞∑
n=0

tnbn(x))

+p[g(x, t)

−L−1[
1

s2
L[R

∞∑
n=0

pnvn(x, t)

+

∞∑
n=0

pnAn(v)]]] (4.32)

Comparing coefficients of terms with identical
powers of p leads to

p0 : v0(x, t) =

∞∑
n=0

tnbn,

p1 : v1(x, t) = v0(x, t) =

∞∑
n=0

tnbn + g(x, t)

−L−1[
1

s2
L[Rvo(x, t) +A0(v)]],

(4.33)

p2 : v2(x, t) = −L−1[
1

s2
L[Rv1(x, t) +A1(v)]]),

p3 : v3(x, t) = −L−1[
1

s2
L[Rv2(x, t) +A2(v)]]),

...

Now, we solve these equations in such a way that
v1(x, t) = 0 then Eq. (4.25) result in

v2(x, t) = v3(x, t) = · · · = 0 (4.34)

Therefore, the exact solution may be obtained as
following

v0(x, t) =

∞∑
n=0

tnbn (4.35)

5 Numerical Examples

In this section To illustrate the efficiency of the
method, we consider two test problems.

Example 5.1 Consider the Van der Pols oscil-
lator problem [18, 2, 17]

d2v

dt2
+

dv

dt
+ v+ v2

dv

dt
= 2 cos(t)− cos(t)3, (5.36)

With the initial condition v(0) = 0 and v
′
(0) = 1

and the exact solution v(t) = sin(t). By applying
the Laplace transform and initial condition, we
have

v(s) =
1

s2 + s
+

1

s2 + s
L[2 cos(t)− cos(t)3

−v − v2v
′
] (5.37)

Apply the inverse Laplace transform on both side
Eq. (5.37) we obtain

v(t) = 1− exp(−t) + L−1[
1

s2 + s
L[2 cos(t)

− cos(t)3 − v − v2v
′
]] (5.38)
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Consider the convex homotopy (3.18) as

v(t) = v0(t)− pv0(t)− p(exp(−t)− 1)

+pL−1[
1

s2 + s
L[2 cos(t)− cos(t)3

−v − v2v
′
]]] = 0 (5.39)

Considering the Maclaurin series of the exponen-
tial term and trigonometric expressions in Eq.
(5.39)

(1− exp(−t)) = t− t2

2
+

t3

6
− t4

24
+

t5

120
+ · · · ,

(5.40)

2 cos(t)− cos(t)3 = 1 +
t

2
− 19t4

24
+ · · · , (5.41)

Substituting them to v(t) =
∑∞

n=0 p
nvn(t), Eq.

(3.21), Eq. (4.31), Eq. (5.40) and Eq. (5.41) into
Eq. (5.39)

∞∑
n=0

pnvn(t) =

∞∑
n=0

tnbn − p(

∞∑
n=0

tnbn)

+(t− t2

2
+

t3

6
− t4

24
+

t5

120
)

+p[L−1[
1

s2 + s
L[(1 +

t

2
− 19t4

24
)

−
∞∑
n=0

pnvn(t)−
∞∑
n=0

pnAn]]]

(5.42)

By comparing the coefficient of like powers of p,
we have

p0 : v0(t) =

∞∑
n=0

tnbn

p1 : v1(t) = −
∞∑
n=0

tnbn + (t− t2

2
+

t3

6
− t4

24
+

t5

120
)

−L−1[
1

s2 + s
L[(1 +

t

2
− 19t4

24
)

−
∞∑
n=0

tnan −A0]] (5.43)

...

Now, we solve these equations in such a way that
v1(t) = 0, then Eq. (5.46). v2(t) = v3(t) = · · · =

0. Solving the above equation for v1(t) = o leads
to the result

v1(t) = −b0t
0 + (−b1 + 1)t+ t2(

b

2
− b20b1

2
− b2)

+t3(−b3 −
1

6
) + · · · = 0 (5.44)

Eliminating v1(t) = 0 lets the coefficients an for
take the n = 0, 1, 2, · · · we obtain

b0 = 0, b1 = 1, b2 = −1

6
, b3 = 0, · · · (5.45)

This implies that

v(t) = v0(t) = t− t3

6
+

t5

120
− t7

5040
+ · · ·

= sin(t) (5.46)

Example 5.2 Consider the nonlinear oscillator
differential equation [18, 2, 17]

d2v

dt2
− v − v2 − (

dv

dt
)2 − 1 = 0 (5.47)

With the initial condition v(0) = 2 and v
′
(0) = 1

and the exact solution v(t) = 1+cos(t) the exact
solution. In a similar way, we apply the Laplace
transform and the on both sides of Eq. (5.47)
then we have

v(s) =
2

s
+

1

s3
+

1

s2
L[v − v2 − (

dv

dt
)2] (5.48)

Next by applying the Laplace inverse operators
on both sides of Eq. (5.48) then we obtain

v(t) = 2+
t2

2
+L−1[

1

s2
L[v− v2 − (

du

dt
)2]] (5.49)

Consider the convex homotopy (3.18) as

v(t) = v0(t)− pv0(t)− p[v(t)− 2− t2

2

−L−1[
1

s2
L[v − v2 − (

dv

dt
)2]]]

(5.50)

Substituting v(t) =
∑∞

n=0 p
nvn(t) and Eqs.

(3.21),(4.31) in Eq. (5.50)



420 A. R. Vahidi et al. /IJIM Vol. 8, No. 4 (2016) 415-421

∞∑
n=0

vn(t)p
n =

∞∑
n=0

bnt
n − p(

∞∑
n=0

bnt
n)

−p[
∞∑
n=0

vn(t)p
n − 2− t2

2

−L−1[
1

s2
L[

∞∑
n=0

vn(t)p
n

−
∞∑
n=0

pnA1,n −
∞∑
n=0

pnA2,n]]]

(5.51)

Comparing coefficients of terms with identical
powers of p leads to

p0 : v0(t) =

∞∑
n=0

tnbn (5.52)

p1 : v1(t) = −
∞∑
n=0

tnbn − [2− t2

2

−L−1[
1

s2
L[v0 −A1,0 −A2,0]]]

...

Now, we solve these equations in such a way that
v1(t) = 0, then Eq. (5.52) results in

v2(t) = v3(t) = · · · = 0.

v1(t) = t0(2− b0) + tb1 + t2(
1

2
− b2)

+t3(−b3) + · · · (5.53)

Eliminating v1(t) lets the coefficients an for n =
1, 2, · · · take the following values by substituting

b0 = 2, b1 = 0, b2 = −1

2
, b3 = 0, · · · (5.54)

This implies that

v(t) = vo(t) = 2− t2

2
+

t4

24
− t

720
− · · ·

= 1 + cos(t) (5.55)

6 Conclusion

In this study, we have presented the (NHPTM) to
solve non-linear oscillator differential equations.
The (NHPTM) yields the Maclaurin series of the
true solution.The obtained results indicate that
the method is very efficient and simple and leads
to the exact solution of non-linear Oscillator dif-
ferential equation.
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