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Abstract

In this paper, we give a new approach based on Taylor wavelets to solve fractional binary systems
of integro-differential equations (FIDEs). To do this, first, we present the function approximation
by using Taylor wavelets as well as the operational matrix of fractional integration of these wavelets.
Then, by approximating the fractional derivatives of the solutions of the main problem in terms of
the Taylor wavelets and using the operational matrix of fractional integration, we approximate the
solutions of the main problem. By substituting these approximations in the FIDEs, we obtain a
system of nonlinear algebraic equations. Finally, by the help of the proposed method, we solve some
numerical examples and show the accuracy and applicability of the method.
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braic equations.

1 Introduction

Ractional calculus which includes integro-
F differential of any arbitrary order can be con-
sidered an old but very important topic in math-
ematics for its noticeable role in other scientific
disciplines.

Many phenomena in fields of physics, chemistry,
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economics, engineering and other sciences can
be explained in form of mathematical models by
fractional calculus. In recent years, the frequent
appearance of flow mechanism, viscoelastic, biol-
ogy, electrochemical and other engineering tech-
nical issues, have led researchers to do a lot of
tasks in this field. Today, many methods have
been devised to solve such problems. Scientists
have applied these methods to find the exact solu-
tion or an approximate one that has the least pos-
sible absolute error [1, 2, 3, 4]. One of these proce-
dures is the wavelet method. The wavelets opin-
ion is a relatively new topic which for many math-
ematicians and researchers is a powerful tool in
their researches. The wavelets method is widely
used in many engineering and scientific disci-
plines such as signal processing, time frequency,
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analysis and quick algorithms for simple imple-
mentation. Wavelets is a particular type of os-
cillatory functions that can be used to approx-
imate unknown functions [5, 6, 7]. The most
important wavelets ever have been applied to
approximate unknown functions are Haar, Leg-
endre, Chebyshev, Bernoulli and CAS wavelets
[8, 9, 10, 11, 12]. Each series of wavelets are
made based on its polynomials. Orthogonal poly-
nomials are used to solve many fractional order
differential equations. It helps us reduce these
equations to a system of algebraic equations by
using the operational derivative or integral ma-
trix. Althoug Taylor polynomials are not orthog-
onal, the operational matrix can be calculated for
them [13, 14].

Since there has been less task on binary systems
of FIDESs, it has encouraged us to solve them nu-
merically. In this way, we have chosen Taylor
wavelets method because it has the least abso-
lute error, accuracy and simplicity. Even under
certain conditions, approximate solutions of ex-
amples will be the exact solution. The general
form of these examples is a coupled systems of
FIDEs as follows [13]

DF(x) = fi(x, F(z), G(z))
+f090 fg(t,F(t),G(t))dt,
(1.1)
DPG(z) = gi(w, F(x),G(z))
+ [y 92t F(t), G(t))dt,

where z,t € [0,1],,8 € (0,1], and D, D” dis-
play the Caputo derivative operator.

2 Basic concepts of fractional calculus

We devoted this section to important basic con-
cepts that are needed [15].

Definition 2.1 The Riemann-Liouville frac-
tional integral for order m > 0 is a function that

s defined as
fo — )" E(t)dt,

m > 0,

where

Definition 2.2 The Caputo fractional derivative
for m > 0 has the following definition

D’”f(y) =
F fO _ t n—m-— 1f(n)(t)dt
m>0,n—1<m<n,
(2.3)
d™) f(y) S
dyn b b

where y > 0, andn =1,2,3,....

The operator Riemann-Liouville integral and
Caputo derivative for y > 0 has the following

relationships
D™I™ f(y) = f(y),

k-1 (7) +

Jj=0

3  Function approximation and
error analysis

3.1 Taylor wavelets
Taylor wavelets are defined on [0, 1] as [16]
207 1T (20 Ly — i + 1),

i—1 < 7
Wij(y) = 201 SYS a1 (3.5)
0, otherwise,
where i = 1,2,---,2°71 j =0,1,2,---,8 -1

(a, 8 € N) and Tj(y) = v/27 + 1Tj(y). The coef-
ficient /25 + 1 is for normality and Tj(y) are the
well-known Taylor polynomials of order j that are
written as Tj(y) = t/ and they form a perfect ba-
sis on [0, 1] [14].

3.2 Function approximation by using
Taylor wavelets

For any function defined on L?[0, 1] we can have

=3 aytily) = ATU(y),  (3.6)
i=1 j=0
where
Qij = (f(y), wzg( )) = AT\IJ(y)
1
— [ et
(3.7)
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In (3.7), (,) displays the linner product with
weight function w(y).

The infinite series in Eq. (3.6) can be written as
the finite series

201 B—1

Fly) =D D aiily) = ATU(y),

i=1 j=0

(3.8)

where A and U(y) are 27! x 1 matrices given
by

A = a0, a11, -+, ay(g—1), 20, a21, * * *, A(3—1)>
T
Tty Aga-1p, Aga—17, " " 70’20‘—1(571)]

U(y) =[v10(y), Y11(y)s -+ Y1s-1) (), Y20(),

7/121(9)7 T a¢2(ﬂ—1) (y)7 T 711}2"‘_10(y)a
1/)204—11(@/), R wQO‘_l(ﬁ—l)(y)]T‘

For simplicity we write Eq. (3.8) as follows
k ~
Fe(y) =D antbn(y) = ALUk(y) = fi(y), (3.9)
n=1

where a,, = aij,an = i, k= 20-13 n = B(i —
1)+ 7+ 1 and fx(y) is the best approximation of
f(y)-

2n —1
We choose collocation points as y,, =

that

the Taylor wavelet matrix can be written as

Bre = [W(o) W) W) - w(T )]

(3.10)

3.3 Error analysis

Now we find the error bound of the approximate
f(y) by using Taylor wavelets.

Theorem 3.1 Suppose f(y) € C"[c,d] and
gn(y) be interpolating polynomial of degree n that
agrees with f(y) at the Chebyshev nodes on [c,d].
Then we have [17]

2 d—c

1£ () = gn()ll= S (==)" max | £ (6)].

4 d€[e,d]
(3.11)

Theorem 3.2 Let f(y) € C"[0,1] and

20471 B_l

F) = Y agti(y) = AT(y).

i=1 j=0
Then, the error bound obtain as

1F () - AT ()|
2 x| )]

< 3.12
= planan(e—1) sefon] (3.12)

Proof. We divide the interval [0, 1]
1

to 2971 subintervals I, [;a—il,#] ,

i=1,2,---,207L

Since ATWU(y) is the best approximation

then by using Theorem(3.1) we have

1/ (y) = AT‘I’(y)H%:/O [f(y) = AT (y)) dy

20&—1
=> | [y -ATv) dy

i=1 Y

ge—1
S [f(y) - gn(y)]zdy

i=1 V1o

ge—1

2 /1/2071\n T

<2 ) max |f (6)1] dy
< 2i1/ {3(1/20‘—1)7; A |f(n)(5)|}2dy
i n! 4 5€[0,1]

_ 2 (n)5 2
= [z e 0]

< [y s F0 )],

n!4ngn(a—1) 5ren[o,1]

where g¢,(y) is a polynomial that interpolates
f(y) at the Chebyshev nodes on I, ;.

4 Operational matrix of frac-
tional order integration

4.1 Block pulse functions

Block pulse functions (BPFs) are defined as [18]

(i-1)
k

<y<

)

| .

(4.13)

0, otherwise
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where i = 1,2,---,k and k = 2713,
The BPFs have the following two characteristics

bl(y)a 1= j:
bi(y)b;(y) = (4.14)
0, i # 7,
1
y %7 t=17
/0 bi(y)by (y)dy = (4.15)
0, i .

Definition 4.1 Let P = [p1,p2,"',pk]T and

Q = [q17q27 e 7Qk]T'
We define P ® Q = [P1C]1,P2Q2,"'7plch]T and
P2 - [p%7p%7 e 7pz]T'

Lemma 4.1 Suppose that functions f(y) and
g(y) on L*[0,1] are defined, so that f(y) =~
FTBi(y) and g(y) ~ GTBi(y) where FT =

[flvf?v" : 7fk]; GT = [917927"'7916] anng(y) =
[blab27”'7bk]T'
Then

fW)9(y) = FTBy(y)G* By(y) = (FT0G")By(y),
(4.16)

F)? = (FTBy(y))* = (FT)’By(y).  (4.17)
Proof. By using the properties of BPFs, the
proof is distinct.

4.2 Taylor wavelets operational ma-
trix of fractional order integration

The integration of Taylor wavelets ¥(y) can be
obtained as [19]

1) = [ (o) ~ Poataly), - (415

where P« is named the integral operational ma-
trix of Taylor wavelets and k displays dimension,
also P, is named the fractional order integra-
tion operational matrix of Taylor wavelets and
achieved from

I (y) =~ Py Ve (y)- (4.19)

The following relation can be deduced by using
Taylor wavelets matrix ¢rxx in (3.10) and the
definition of BPFs.

U (y) = drxrBr(y). (4.20)

The fractional order integration operational ma-
trix of BPFs can be expressed as [20]
I"™ By (y) = F" By(y), (4.21)

we get from (4.19)-(4.21)

Pl Ve(y) = 1MV (y)
~ 1" GrxkBr(y) = drxid ™ Bi(y)
~ Opxk " Br(y)

~ ¢k:><ka¢1;ik;\Ijk(y) (4.22)
Finally, we obtain from (4.22)
Pl = Ok b (4.23)

It is necessary to mention that general form ma-
trix F™ and ¢p explained as follow [21]

1 o1 o9 Ok—1 |

0 1 o1 -+ 09

m (l)m 1 0 O 1 Ok—3
“ %k’ D(m+2) |0 0 Ok—a|’
00 0 - 1|

and o; = (i + 1)™+1 — 2pi™+t 4 (4 — 1)™FL =

1,2,...,k —m. Also the matrix ¢pxj is as
[T 0 0 0]
0 7T 0 0
¢TXT =10 0 r -0 )
o 0 0 - T

where T' is matrix 8 X § as
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1
wm(ﬁ)

wn(i)

1

wlo(%)

(5%

1/)10(£)

1#11(3

2k)

3 5
_1/’2a*1(ﬁ71)(%) ¢2“*1(671)(ﬁ) w20¢*1([371)(ﬂ)

Yro(—%7—)

P11 (

2n —1
2k

2n—1

2n —1
wzafl(,aq)(T)

2k)
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Now we compute marices F'", ¢pxj and P, for o = 2 implies i = 1,2, 8 = 4 implies 8 = 0,1,2,3

and m = 0.5, (k = 2971p),

0

FO.5 _

0

0

[1.4142
0.3062
0.0494

0.0073
Pgxs =

0

0

0

0

0

0

0.2660

0

0

0

0

0

1.4142  1.4142

0.9186 1.5309

0.4447 1.2353

0.1973 0.9135

[ 0.1115 0.7959

0.0127 0.1442

0.0052  —0.0257

—0.0121  0.0943

0
—0.5405

0.4030

0.2523

—0.2814

0

0

0

0

0.2660 0.2203 0.1434

0.2203

0.2660

0

1.4142

2.1433

2.4211

2.5066

0
0.1994

—0.0911

0.1686

0.5558

0

0

0

0

[0.2660 0.2203 0.1434 0.1160 0.1001 0.0894

0.1160

0.1434

0.2203

0.2660

0

0

0

1.4142

0.3062

0.0494

0.0073
0.6861

0.7206

0.6814

0.6363

0.1115

0.0127

0.0052

—0.0121

0.0816 0.07557

0.1001 0.0894 0.0816

0.1160 0.1001 0.0894

0.1434 0.1160 0.1001

0.2203 0.1434 0.1160

0.2660 0.2203 0.1434

0 0.2660 0.2203

0

0

0

0

0

0

0

0.2660

0

0

0

0

1.4142 1.4142 1.4142

0.9186 1.5309 2.1433

0.4447 1.2353 2.4211

0.1973 0.9135 2.5066

—0.5673

—0.7244

—0.7522

—0.7408

0.7959

0.1442

—0.0257

0.0943

0.5029  —0.1923]

0.6819  —0.2664

0.7275  —0.2871

0.7273  —0.2887

—0.5405

0.1994

0.4030 —0.0911

0.2523

—0.2814

0.1686

0.5558 |
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5 Numerical examples

To demonstrate the accuracy and the efficiency
of the proposed method based on the Taylor
wavelets we solve the following two examples cho-
sen the [13] and show their graphs for different
values of y.

Example 5.1 [13]
Diu(t) = —%u2(t) — (1)

1
- fg v(T)u(T)dr + 5 0<i<1,

(5.24)
Div(t) = v2(t) —u?(t) — [§ v(r)dr,
0<j<1,
where the initial conditions are uw(0) = 1 and

v(0) = 0. The ezact solutions by u(t) = cost and
v(t) = sint are achieved only for i = j = 1 and
fori,j € (0,1) are unknown.

Let .
Diu(t) ~ AL W (1),
(5.25)
Div(t) = CFW(t),
where AZ = lai,az2,as3,---,ax] and CkT =
[c1,c2,¢3,--+,cx]. By using Egs.(2.4), (4.19),

(4.20) and (5.25), we have

u(t) = I'D'u(t) +u(0) ~ ALpS . . Ui(t)
+1~ Al'pl  dexuBi(t) + 1,

v(t) = FDIv(t) +v(0) ~ CFpl  Wi(t)
~ Ol Dy Prxr Bi(t),

(5.26)
from Eqs.(4.16)-(4.18) and (5.26), we have

u?(t) = (AL DhocrPrxn)’ Be(t)

+ 247 Dl i Br(t) + 1, (5.27)
03 (t) = C o Ohxk)* Bir(1),
t + )
[ vt~ [ et gmiiar
0 0
~ Cl pyih Ok Bi(t). (5.28)

v(t)u(t) ~ (CLplxbrxk
Bi()) (AL Dhoxr,Prxk Br(t) + 1)
= (CF' D} Dhxck © AL Dl Boxc)
Bi(t) + Cf PhciSnxk Bi(t).

t t
/U(T)u(T)de/ (CTpl . drxr ® AT D bir) Bi(7)dr
0 0
t .
+/ Cgpixk¢kxk3k(7)d7
0
- (c;?pixmxk@Afpzxmxk)/ Bu(r)dr
(0]
X t
+(CEp;Xk¢kxk)/ Bi(r)dr,
[0}
T 3 T 1 t 1
~ (CkpikaXze@AkP}cxk%xk)/ d)I:xk‘I/k(T)dT
0

) t
+ Cgpixk¢ka/ ¢1§ik‘1’k(7)d7
0

~ (CF Pl xPhxi © AR Dl kPrixk ) Pross Pl k Prx i Br (t)
+ Ck i Lhbrxk Br(1).

(5.29)
By replacing Eqgs. (4.20), and (5.25)-(5.29) into
Eq. (5.24), and by the properties of BPFs, we
obtain

Agd’kxk =

1 . .
—i(AgPZxkqjkxk)z — AL Dl P
_CkTp{gxkébkxk ‘
~(C Phock Pk © Ap Pl Pk
+CTpL  Prxk) Bk Phxk Phexces (5.30)
C;?Q%gk =
(CEp) 1 Pxk)® + (A;fp};xkqﬁkxk)Q
+2AT Pt Drsk — C;?piiiﬁbkxk
+[1,1,...

5 1]1><I<:-

Now Eq. (5.24) has been converted to Eq.(5.30)
and this is a system of nonlinear algebraic equa-
tions that has 2k unknown coefficients, A and
C}, which by calculating nknown coefficients dis-
solves.

The numerical conclusion of Example (5.1) are
displayed in the Tables 1-3. These tables includ-
ing the approximate and the exact solutions and
for distinct values ¢, k, ¢ and j absolute errors also
has been shown.

If you pay attention, will find out that by increas-
ing a and § valuse of u and v converge to exact
solutions, particularly when 7,7 — 1.

Also convergence functions v and v in figures 1-5
is apparent.
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Table 1: Numerical results for Example 5.1 for different valuse of i and j when a =4 and B =5, (k =218 =
40 and n = 2,6, 10, -- -, 34, 38).

i=0.75, j=0.75 _ i=0.80, j=0.80 _ i=0.85, j=0.85  i=1,j—1 Exact solution

f = 2”2; Low@® o) w) o) u@® o) al) o) ult) o)
to = 0.0375 0.9943 0.0921 0.9962 0.0772 0.9974 0.0646  0.9992 0.0375  0.9993 0.0375
te = 0.1375 0.9620 0.2415 0.9709 0.2165 0.9778 0.1941 0.9905 0.1370 0.9906 0.1371
t10 = 0.2375  0.9151 0.3554 0.9311 0.3297 0.9444 0.3046  0.9719 0.2352  0.9719 0.2353
t14 = 0.3375  0.8590 0.4480 0.8809 0.4259 0.9002 0.4025 0.9435 0.3311  0.9436 0.3311
t1g = 0.4375 0.7970 0.5230 0.8231 0.5076 0.8472 0.4891  0.9058 0.4236  0.9058 0.4237
too = 0.5375  0.7316 0.5818 0.7597 0.5755 0.7870 0.5645  0.8590 0.5119  0.8590 0.5120
tog = 0.6375  0.6649 0.6248 0.6926 0.6297 0.7213 0.6283  0.8036 0.5950 0.8036 0.5952
t3o = 0.7375 0.5990 0.6521 0.6238 0.6700 0.6517 0.6802 0.7402 0.6723 0.7402 0.6724
t3q4 = 0.8375  0.5357 0.6635 0.5549 0.6959 0.5795 0.7195  0.6694 0.7428  0.6693 0.7430
t3g = 0.9375  0.4768 0.6590 0.4877 0.7069 0.5065 0.7455  0.5919 0.8059  0.5918 0.8061

Table 2: Numerical results for Example 5.1 for different valuse of i and j when a =4 and 8 =6, (k = 27138 =
48 and n =4,8,12,---,36,40).

i—0.85, j—0.85 i-0.88, j—0.88  i=005, j—0.95  i=1, j—1 Exact solution

t = 2”2; Lowu@® o) we) o) u@® o) ul) o) u(t) ()
ty = 0.0729 0.9924 0.1138 0.9938 0.1042 0.9962 0.0847  0.9973 0.0728  0.9973 0.0729
tg = 0.1563 0.9725 0.2159 0.9765 0.2026 0.9839 0.1740 0.9878 0.1556  0.9878 0.1556
t12 = 0.2396 0.9436 0.3068 0.9506 0.2921 0.9640 0.2592 0.9714 0.2373 0.9714 0.2373
t16 = 0.3229  0.9073 0.3890 0.9171 0.3745 0.9368 0.3408  0.9483 0.3173  0.9483 0.3173
tog = 0.4063  0.8646 0.4633 0.8771 0.4503 0.9029 0.4184 0.9186 0.3951 0.9186 0.3952
tog = 0.4896  0.8167 0.5298 0.8314 0.5194 0.8628 0.4918  0.8825 0.4702  0.8825 0.4703
tog = 0.5729  0.7643 0.5885 0.7807 0.5816 0.8168 0.5604  0.8403 0.5420 0.8403 0.5421
t32 = 0.6563  0.7085 0.6390 0.7259 0.6366 0.7655 0.6239  0.7923 0.6100 0.7923 0.6102
t3g = 0.7396 0.6501 0.6812 0.6677 0.6840 0.7095 0.6818  0.7388 0.6739 0.7387 0.6740
tao = 0.8229  0.5901 0.7146 0.6070 0.7235 0.6491 0.7337  0.6801 0.7330  0.6801 0.7331




364 R. Kavehsarchogha et al., /IJIM Vol. 12, No. 4 (2020) 857-370

Table 3: Absolute error for Tables 1 and 2 when i = j = 1.

tn ey €y tn €y €y

12 7.7905e — 05 8.7865e — 06 ta 5.3709e — 05 1.1862e — 05
te 7.5336e — 05 3.2182e — 05 17 5.1753e — 05 2.5389e — 05
1o 6.9722e — 05 5.5448e — 05 t12 4.8318e — 05 3.8843e — 05
t14 6.0970e — 05 7.8484e — 05 tie 4.3368¢ — 05 5.2186e — 05
t1s 4.9026e — 05 1.0121e — 04 tao 3.6880e — 05 6.5382e — 05
a2 3.3868e — 05 1.2358e — 04 toa 2.8844e — 05 7.8411e — 05
a6 1.5508e — 05 1.4562e — 04 tog 1.9259e — 05 9.1270e — 05
t30 6.0239e — 06 1.6747e — 04 132 8.1339e — 06 1.0399e — 04
t34 3.0691e — 05 1.8939e — 04 t36 4.5181e — 06 1.1663e — 04
t3g 5.8465¢e — 05 2.1755e — 04 tao 1.8681e — 05 1.2930e — 04

Table 4: Numerical for Example 5.2 for different valuse of i and j when o = 5 and 3 = 4, (k = 2713 = 64
and n =1,8,15,---,56,63).

i=0.65, j=0.65  i=0.75, j=0.75  i=0.85, j=0.85 i=1, j=1 Exact solution
tn = 2”2; L u(t)  v(t) u(t) v(t) u(t) v(t) u(t) v(t) u(t)  v(t)

t1 =0.0078  0.0449 0.0041 0.0274 0.0015 0.0167 0.0006 0.0078 0.0001 0.0078  0.0000
tg =0.1172  0.2653 0.1062  0.2144  0.0610 0.1700 0.0341 0.1172  0.0138 0.1172  0.0137
t15 = 0.2266 0.3913  0.2441  0.3445  0.1623 0.2952 0.1043 0.2266  0.0514 0.2266  0.0513
t2o = 0.3359 04858  0.3936  0.4527  0.2884 0.4085  0.2025 0.3359  0.1129 0.3359  0.1129
tag = 0.4453 05617  0.5447  0.5466  0.4310 0.5134  0.3242 0.4453  0.1983 0.4453  0.1983
tzs = 0.5547 0.6251  0.6910  0.6298  0.5842 0.6117  0.4658 0.5547  0.3077 0.5547  0.3077
t43 =0.6641 0.6799  0.8283  0.7044  0.7428 0.7042  0.6242 0.6640  0.4410 0.6641  0.4410
tsg = 0.7578  0.7223  0.9365  0.7629  0.8800 0.7796 0.7711 0.7578  0.5743 0.7578  0.5743
tse = 0.8672  0.7687  1.0503  0.8258  1.0378 0.8633  0.9262 0.8671  0.7520 0.8672  0.7520
te3 =0.9766 0.8140  1.1500 0.8844  1.1903 0.9428  1.1427 0.9765 09536 0.9766  0.9537
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Table 5: Numerical results for Example 5.2 for different valuse i and j when « = 4 and 3 =7, (k = 2*~!13 = 56
and n = 5,10, 15, --,45,50).

i=0.79, j=0.79 i=0.85, j=0.85 i=0.92, j—0.92 =1, j=1 Exact solution
- 2"2; Low@) o) w@ o) w@) o) @) o) ult) o)
ts = 0.0804 0.1459  0.0268 0.1236 0.0180 0.1013 0.0113 0.0804 0.0065 0.0804 0.0065
t10 = 0.1695 0.2605 0.0867 0.2319 0.0639 0.2011 0.0443 0.1696 0.0289 0.1696 0.0288
t15 = 0.2589  0.3591 0.1680 0.3297 0.1306 0.2958 0.0963 0.2589 0.0671 0.2589 0.0670
too = 0.3482  0.4476  0.2657 0.4206 0.2150 0.3871 0.1657 0.3482 0.1213 0.3482 0.1213
tos = 0.4375 0.5284 0.3764 0.5061 0.3148 0.4756  0.2515 0.4375 0.1915 0.4375 0.1914
tso = 0.5268  0.6029 0.4973 0.5872 0.4280 0.5619 0.3527 0.5268 0.2776 0.5268 0.2775
tss = 0.6696 0.6721  0.6260 0.6643 0.5528 0.6460 0.4685 0.6160 0.3796 0.6161 0.3795
tgo = 0.7054  0.7367 0.7603 0.7379 0.6878 0.7282 0.5980 0.7053 0.4976 0.7054 0.4975
tg5 = 0.7946  0.7973 0.8981 0.8082 0.8311 0.8086 0.7403 0.7946 0.6315 0.7946 0.6315
tso = 0.8839  0.8544 1.0374 0.8757 0.9813 0.8873 0.8946 0.8839 0.7813 0.8839 0.7813

Table 6: Absolute error for Tables 4 and 5 when i = j = 1.

tn €u €y tn €y €y
i 3.1972c— 07 6.0948¢ — 05 t5  4.3955¢ 06  7.8119¢ — 05
ts  4.9669¢ — 06  5.897de — 05 to  9.5450e — 06  7.5057¢ — 05
tis 99215 — 06 5.5396¢ — 05 s 1.494le—05  7.054le — 05
t»  15136e—05  5.007le — 05 to 20552 —05  6.4466¢ — 05
tsg  2.0567c—05  4.2846e — 05 ts  2.6348¢— 05  5.672le — 05
tss  2.6179¢—05  3.3552¢ — 05 to  3.2303¢—05  4.7188¢ — 05
tis  3.1040e— 05  2.2010e — 05 tss  3.8394e—05  3.5738¢ — 05
tig  3.6072¢—05  1.0178¢ — 05 i 4.4599c — 05  2.2238¢ — 05
tss 42030 — 05  6.0733¢ — 06 tis  5.72Tle—05  6.5424¢ — 06
tes  4.8959¢ — 05  2.5177e — 05 tsy  6.3700e—05  1.1503¢ — 05
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Figure 1: Numerical results for different values

of i and j, when a =3, =5 and k = 20. Figure 3: [Related to Table (1)]. Numerical re-
sults for different values of 7 and j, when o = 4,
_ B =5 and k = 40.

where AZ = la1,a9,as3,...,a;] and CkT =
[c1, ¢, €3, Cp).
By using Eqs.(2.4), (4.19), (4.20) and (5.32) we
have
u(t) = I'D'u(t) + u(0) ~ AL Pixrn(t)
~ AL Dloxck Brxk Bi (1),
(5.33)
v(t) = PDIv(t) + v(0) =~ Cgpikak(t)
~ C5 @ s Droxi Bi ().

From Eqs.(4.16)-(4.18) and (5.33), we obtain

: : v(t)u(t) ~ (CFpl o Srsck Br () (AL Dl Prxcns Br(t))

Figure 2: Numerical results for different values = (CkTpixkqbkxk © Af Dl Prx) Bi(t). (5.34)
of i and j, when o =4, 8 =4 and k = 32.

200\~ (AT i 2
Example 5.2 [13] wi(t) ~ (Al;p]‘”kgbkmlzk(t))
= (Akpﬁcxkgbkxk) Bk(t)’ (5'35)
Diu(t) = év(t)u(t) — o) +1 - [Ho(r)
—2u(7)|dr, 0<i<1, ’ ¢
(5-31) / u(7)dr %/ AT p T)dT
Div(e) = Zo(t)ult) + su(0) + 2u(t) [{To(r) o T [ Al (7)
+u(r))dr, 0<j<1, T /t
= A p; T)dT
| N kpkxkol/)k()
which the initial conditions are u(0) = 0 and ~ AT pb e (t)
v(0) = 0. The exact solutions by u(t) = t and - ;p’;%pmk b
v(t) = 2 are obtained only for i = j =1 and for ~ Akpk;tzk¢k><k3k(t)- (5.36)
i,7 € (0,1) are unknown.
Let ' . .
D'u(t) = Aj W(t), 5 /0 v(r)dr %/o Cl P toi(r)dr
5.32

~ T 1+
Div(t) =~ CTW(t), ~ C Pk Phxk Bi(t)- (5.37)
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Figure 4:
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[Related to Table (2)]. Numerical re-

sults for different values of ¢ and j, when o = 4,
B =6 and k = 48.
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Figure 6: Numerical results for different values
of i and j, when o =3, =7 and k = 28.
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Figure 5: Numerical results for different values
of i and j, when o =5, 8 =6 and k = 96.

By replacing the Egs.(4.20), (5.32), and
(5.34)-(5.37) into Eq.(5.51), we get
AT ¢y B (t) =
%(kaixklbkxk © ALDL . 1 Prxk)Br(t)
= pkxkd’kkak( )+ [1,1,..., 1]1xrBr(t)
7Cqu><k¢k:><k:Bk( )
+2ALp T b Br(t),
(5.38)

?g¢kxk =
g(CkTpfcxkqﬁkxk O ATPL 1 ki) Br(t)
1
(ATpkxk¢ka) Bk(t)

+2Ak pkxk¢kxk3k(t)

—CF p 2 Srxr Bi(t) — AT pr T drxi Br(2).

L
o 07 0B 08

1

0

1 T L
ol 0z a3 o4 0z as o7

1 t

-
02 ap

Figure 7: Numerical results for different values
of i and j, when « =4, 8 =6 and k = 48.

By using the properties of BPF's, we obtain

AT ppoxre =
g(C{pﬁ;kaxk © ATpL 1 Pxk)
—CFpi e brxi + (L1, ik
—CFpp 2 brxk + 2ATpE T drces
(5.39)
AT ¢pxr, =

g(cgpixkdlkxk © ALPL 1 Pxk)
1 )
+§(A£p7i€><k¢k><k) +2A7 pkxk¢’$><’$

70Tpk><k¢k><k Akpkxk¢k><k~

Now Eq.(5.31) has been converted to Eq.(5.39)
and this is a system of nonlinear algebraic equa-
tions that has 2k unknown coefficients, Aj and
C}, which by calculating nknown coefficients dis-
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Figure 8: [Related to Table (4)]. Numerical re- Figure 9: [Related to Table (5)]. Numerical re-
sults for different values of ¢ and j, when o = 5, sults for different values of 7 and j, when o = 4,
B8 =4 and k = 64. B =7 and k = 56.
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solves.

The numerical conclusion of Example (5.2) are
displayed in the Tables 4-6. In these tables in-
cluding the approximate and the exact solutions
and also absolute errors for different values of
t,k,i and j.

If you look at the tables you will notice that by
increasing « and 3 valuse of v and v converge to
exact solutions, particularly when i,7 — 1.
Convergence functions v and v in figures 6-10 is
apparent.

o P R S S R T R T R S R R
0 ol 02 03 o4 os 06 07 08 08 0 ol 0z @3 o4 ob og 0T 08 08 |

Figure 10: Numerical results for different values
6 Conclusion of 7 and j, when o =5, f =5 and k = 80.
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