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Abstract

This paper presents an application of partial differential equations(PDEs) for the segmentation of
abdominal and thoracic aortic in CTA datasets. An important challenge in reliably detecting aortic
is the need to overcome problems associated with intensity inhomogeneities. Level sets are part of an
important class of methods that utilize partial differential equations (PDEs) and have been extensively
applied in image segmentation. A kernel function in the level set formulation aids the suppression of
noise in the extracted regions of interest and then guides the motion of the evolving contour for the
detection of weak boundaries. The speed of curve evolution has been significantly improved with a
resulting decrease in segmentation time compared with traditional implementations of level sets, and
are shown to be more effective than other approaches in coping with intensity inhomogeneities. We
have applied the Courant Friedrichs Levy (CFL) condition as stability criterion for our algorithm.
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1 Introduction

P
DE are equations that contain some variable
functions and their partial derivatives. PDEs

are used to formulate problems engaging func-
tions of several variables to explain a large vari-
ety of phenomena, like heat, sound, electrostatics,
fluid flow , electrodynamics, and elasticity. PDEs
are equations that engage rates of change to con-
tinuous variables that have many applications but
when applied to discrete and noisy data they can
be unstable, which may require a numerical rem-
edy. Image analysis provides a rich field for the
development of algorithms based on PDE formu-
lation, leading to applications analysis,

with special emphasis virtual reality and
robotics to biomedical imaging problems. In ad-
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dition, image analysis covers the development
and implementation of algorithms and strategies
based on geometrical, statistical, physical and
functional modelling to solve problems such as
the representation of pictorial data, visualization,
feature extraction, segmentation, texture, shape
and motion measurements. This chapter investi-
gates the connection between continuous and dis-
crete variables of PDEs applied to noisy digital
images, and in particular the problem of stabil-
ity.

Image segmentation commonly utilises one of
two main approaches to classify pixels belong-
ing to a particular object or region, either edge-
based or region-based. Edge-based segmentation
looks for discontinuities in image intensity [2]-
[11], whilst region-based methods look for unifor-
mity within an image sub-region, based on some
consistent property such as intensity, colour or
texture [2, 3, 9, 12]. Active contours methods,
also referred to as deformable models, evolve an
image contour from an initial guess using image

345

http://ijim.srbiau.ac.ir/


346 B. Bagheri et al, /IJIM Vol. 6, No. 4 (2014) 345-350

forces derived from region properties to drive the
search to locate the boundaries of the desired ob-
jects. Level sets provide an implementation of
an active contour method based on regions or
edges. A local energy functional has been defined
in terms of a contour and two fitting functions
that locally pproximate the image intensities on
either side of the contour. An important char-
acteristic of active contour methods is to iden-
tify the appropriate stopping condition for the
curve evolution. Mathematically the level set of
a real modelled function ( f ) of n variables is a
set where the function takes as a constant value
that can describe a boundary or interface. A level
set is surrounded implicitly as a constant set in
a function defined in a upper dimensional space.
This model has significant advantages: first, the
topological changes of the contours can be simply
handled; second, the numerical implementation
and conception can be simply adapted to solve
any dimensional problem; third, the areas outside
and inside an active contour can be simply deter-
mined. In this paper we have used the Courant
Friedrichs Levy (CFL) condition to establish the
necessary conditions for numerical convergence of
the level set PDE’s, which also satisfies a crite-
rion for algorithmic stability. The method is ap-
plied to the detection of aneurysms in the car-
diovascular system imaged by computed tomog-
raphy angiography (CTA), which uses a contrast
dye to enhance detection of the vasculature. The
aorta is the major artery which carries blood from
the heart and distributes it via many branches to
all the organs of the body. The aorta is divided
into four sections: the ascending aorta, the aor-
tic arch, the thoracic (descending) aorta and the
abdominal aorta. Blockage or weakness in the
artery walls can lead to aneurysm, a distension
of the vessel wall that is prone to rupture and
subsequent haemorrhage in severe cases. Reli-
able detection of aortic aneurysm must overcome
problems of intensity inhomogeneities and image
noise. Level sets are part of an important class of
methods that utilize partial differential equations
(PDEs) and have been extensively applied in im-
age segmentation. The approach uses a kernel
function to aid noise suppression and then guides
the search motion of the evolving contour, partic-
ularly for the detection of weak boundaries. Seg-
mentation time can be significantly reduced by
improving the onvergence criteria, for which we

have applied the CFL condition. The rest of the
paper is organized as follows. Section 2 reviews
the level set method, edge based and region-based
active contours and introduces the proposed com-
putational methods. Section 3 describes the nu-
merical implementation and experimental results
and conclusions are presented in Section 4.

2 Level Set Method and Local
Fitting Binary

The level set method developed by Osher and
Sethian [2] has been used in the formulation of
several region or boundary based approaches
for image segmentation and offers highly robust
and accurate techniques for tracking interfaces
moving under complex motions [4]. Level set
segmentation involves solving the energy-based
active contour minimization problems by the
computation of geodesics or minimal distance
curves [2] - [13]. The main idea of the level set
method is to represent a closed curve on the
plane as a zero level set of a higher dimension
function. The motion of the curve is then embed-
ded within the motion of the higher dimension
surface. Basically, this means that the closed
curves in a two dimensional surface are regarded
as a continuous surface of a three- dimensional
space [7]. The definition of a smoothing function
ϕ(x, y, t)represents the surface while the set of
definitions ϕ(x, y, t) = 0define curves. Thus the
evolution of a curve can be transformed into
the evolution of a three- dimensional level set
function. Given a level set function whose zero
level set corresponds to a curve, with the curve as
the boundary; the whole surface can be divided
into an internal region and an external region of
the curve. The common movement formula of
the partial differential equations is:

ϕt(x, y, t) + V |∇ϕ(x, y.t)| = 0,
ϕ(x, y, t = 0) = ϕ0(x, y),

where V denotes a constant speed term to move
forwards or inwards the contour. A special case
is the motion by mean curvature [11] where

V = div(
∇ϕ(x, y, t)

|∇ϕ(x, y, t)|
)

is the curvature of the level-curve ofϕ passing
through (x, y).
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Figure 1: Implicit representation of closed
curve.

The purpose of the Heaviside function is to
smooth and calculate the length of the interface
(initial curve) and the area inside and outside the
object. The Heaviside or unit step function, usu-
ally denoted by H, is one for positive and zero for
negative arguments. The function is used in sig-
nal processing to represent a signal that switches
on at a specified time and stay switched on indef-
initely. The Dirac delta function, or δ function, is
zero everywhere except at zero. The Dirac delta
function, is the derivative of the Heaviside func-

tion, i.e. δ(x) = ∇H(ϕ(x)).
→
N where

→
N is the

normal direction. By defining a domain Ω that is
divided into two regions, where Ω+ refers to the
outside portion, Ω−to the inside portion and ∂Ω
is the interface (boundary) as shown in figure 1.

We consider

∂Ω = {(x, y) ∈ Ω : ϕ(x, y) = 0}

and define the Heaviside function [90] on ϕ ,

H(ϕ) =

{
1 ϕ ≥ 0
0 ϕ < 0

, the characteristic func-

tion χ− and χ+ are defined as

χ+(x) = H(ϕ(x))

and
χ−(x) = 1−H(ϕ(x))

which shows the exterior and interior regions re-
spectively. The length of interface (initial curve)
is calculated by the Heaviside function as follows:

Length(∂Ω) = |∂Ω| =
∫
Ω |∇H(ϕ)| dxdy

=
∫
Ω δ(ϕ) |∇ϕ| dxdy

In addition, the area inside the interface is

Area(inside(∂Ω)) =

∫
Ω
H(ϕ)dxdy

The following regularity of the Heaviside function
(H) was introduced by Abramowits and Stegun:

Hε =
1

2
[1 +

2

π
arctan(

x

ε
)]

The derivative of Hε is

δε(x) = H ′
ε(x) =

1

π

ε

ε2 + x2

where δε(x)is the Dirac delta function [6]. As
epsilon (ε) tends to zero, both approximations
converge to H andδ.
The level set method based on the local fitting
binary (LBF) is given by the equation [2]:

E(ϕ, f1, f2) =
∑2

i=1

λi

∫
(
∫
Kσ (x− y) |I(y)− fi(x)|2Mi(ϕ(y))dy)dx
+

ν
∫
|∇H(ϕ(x))| dx+ µ

∫
1
2(|∇ϕ(x)| − 1)2dx

where kσis a kernel function (Gaussian kernel)
that decreases and approaches zero as |x-y|
increases. Also f1(x), f2(x) approximate the
image intensities inside and outside the contour.
M1 = H(ϕ) and M2 = 1−H(ϕ). For minimizing
the LBF model, first the functional form of
model is conformed with level set method, next
in order to solve the level set equation, the
implicit finite difference scheme is applied and
gradient descent will employed to minimize the
energy functional with respect to the level set
function ϕ(x, y, t) which shown as follows:

∂ϕ
∂t = −δε(ϕ)(λ1e1 − λ2e2) + νδε(ϕ)div(

∇ϕ
|∇ϕ|)

+ µ(∇2ϕ− div( ∇ϕ
|∇ϕ|)) (1)

Where, δε is the smooth Dirac deltas function
and e1, e2are the functions as follows:

ei(x) =

∫
Kσ (y − x) |I(x)− fi(y)|2 dy

i = 1, 2.

The term −δε(ϕ)(λ1e1 − λ2e2) drives the
active contour toward the object‘s boundary and
the second term has a length shortening (arc
length) term [5]-[13]. The third term is called a
level set regularization term [3], which maintains
the regularity of the level set function.
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3 Implement and Experimental
Results

We have developed a code based on the LBF
model to segment the object boundary in med-
ical images. The active contour works well to
detect the boundary images inhomogeneity inten-
sity. And also we have applied CFL condition as
stability criterion on our algorithm. CFL number
is:

Figure 2: Segmentation result for a CT slice
of AAA, (a) initial curve (red rectangle) and
the original image, (b) segmentation result
after 40 iterations with ∆t = 4.0 and µ =
0.259/∆t that it is unstable,(c) segmentation
result after 40 iteration with ∆t = 4.0 and
µ = 0.249/∆t where the evolving curve is
stable.

Figure 3: Result of segmentation for the
descending thoracic aorta with the final con-
tour that are shown.

c = (
v∆t

∆x
)

Where v is the velocity, ∆t is the time step, ∆x is
the length interval. CFL condition is a necessary
condition for convergence while solving certain
partial differential equations numerically. Conse-
quently, we have segmented the ascending aorta
and the descending thoracic aorta in CTA data.

A time step (∆t) can be selected that is larger
than the time step used in the region-based tech-
niques of Chan - Vese and Li et.al [3]-[12] as us-
ing a larger time step can speed up the evolution

Figure 4: Segmentation result for a CT slice
of AAA, (a) Initial contour (red rectangle)
and the original image,(b)segmentation re-
sult with λ1 = 3.2 and λ2 = 1.2 ,(c) segmen-
tation result with λ1 = 1.2 and λ2 = 3.2.

but may cause errors in the border place. The
time step ∆t and coefficient m must satisfy the
condition (∆t.µ < 0.25) in order to maintain the
stability of the level set evolution [3]. A range of
time steps usually less than ten has been used for
most images.

The coefficient of length term (ν) from equation
(1) is a constant that controls the curvature term
in the evolving function. Chan - Vese investi-
gated a range of values for the coefficient (ν) as
it depends on image size and object size, so the
length term functions like a scale parameter: if ν
is large, then larger objects(for example group-
ing objects); if νis small, then smaller objects
(such as points due to noise) will be detected [12].
The results used values between 3 and 7 for aorta
thrombus segmentation.

To validate and assess the robustness of the
level set segmentation algorithm, we have ap-
plied the algorithm to 2D image slices of a
dataset of twelve CTA scans supplied by Prof S.
Qanaldi (Lausanne University). The scan data
have dimensions of between 512*512*201 and
512*512*897 voxels and the voxel size ranged
from 0.53*0.53*0.63 to 0.94*0.94*2.50 mm. The
acquisition protocol used an x- ray tube voltage
that ranged from 120 - 140 KV and a mean tube
current from 241 - 350ma. Eight scans contain
thrombus, with an average of 79 slices (including
an aortal thrombus) and four scans without
thrombus.
The main steps of the algorithm can be expressed
as follow: Initialize the level set function to be
binary function as follows:
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ϕ(x, y, t = 0) =


−c
0
c

x ∈ Ω0 − ∂Ω0

x ∈ ∂Ω0

x ∈ Ω− Ω0

Where c>0 is a constant, Ω0is a subset of the
image domain Ωand ∂Ω0 is the boundary ofΩ0.
Evolve the level set function according to (1).

3. Check with iteration number whether the evo-
lution is stationary or no.

All partial derivatives can be discretized as cen-
tral finite differences and also the temporal
derivative is discretized as a forward difference.
Therefore there are in total six convolutions, two
convolutions kσ ∗ I and kσ ∗ 1 can be computed
only once before the iterations and four convolu-
tions must be computed in each iteration. To
validate and assess the robustness of the pro-
posed method, we used computed tomography
angiography (CTA) images to detect aorta and
thoracic abdominal (AA and TA). The CTA im-
ages were collected at Lausanne University. This
model is very encouraged. So, for the next work,
we would like to validate this model in 3-D. The
methodology has been tested with several data
with good result for images by intensity inhomo-
geneity, rather noisy and part of boundary is weak
that are shown in figures 3.

The PC model [1]-[12] generally fails to segment
images with intensity inhomogeneity. Therefore
some part of the background/foreground is incor-
rectly identified as the foreground/ background,
can be seen the difficulties in segmenting images
with intensity inhomogeneity.

The benefits of using a binary function over a
SDF as the initial level set are with the use of pos-
itive values outside and negative values inside the
boundary. To compute the convolutions in f1(x)
and f2(x) more efficiently, the smoothing kernel
is a w * w mask, where w is the smallest odd num-
ber not less than 4 σ [9]. In this study, the result
of segmentation is gained for the smallest scale
parameter i.e. σ = 4 as a larger scale is more
strong to the initial curve location and can be as
insensitive to the initialization. Setting σ = 12
would make the process further robust to initial-
ization, nevertheless the result of segmentation
may not be as correct as using a small scale when
there are intensity inhomogeneities in the image
[9]. The coefficients λ1 and λ2 are the weights of
the two integrals in (1) over the regions outside
and inside the initial curve, respectively. In most

cases λ1=λ2, which leads to a fair opposition be-
tween the areas outside and inside the zero level
curve throughout the evolution. But in throm-
bus segmentation, when λ2 is larger than λ1 the
evolving curve can be stable since the outside of
the initial curve has different tissue with the same
intensity, as shown in figure 2. The final range of
values used were 0.8 <λ1< 1.8 and 2.2 <λ2< 4.2
to prevent the emergence of new curves far away
from the initial curve. Figure 4 shows the seg-
mentation result using the same initial contour
and different values of λ1and λ2; 2b shows that
curve evolution is unstable when λ1 is larger than
λ2 and 2c shows curve evolution is stable when λ2

is larger than λ1.

4 Conclusion

We have presented an active contour model based
on local binary fitting and which is better adapted
to the problem of intensity inhomogeneities in
the image. The method was demonstrated to
segment the ascending and descending thoracic
aorta and the abdominal aorta with desirable
performance in the presence of intensity inhomo-
geneties and weak object boundaries. The time
required for segmentation was significantly de-
creased through more effective convergence cri-
teria. These methodologies are the key elements
of solutions to more systems-oriented problems,
which include disease diagnosis, image guided
intervention/surgery, atlas-based description of
anatomical regions, deformation analysis, and vi-
sualization of anatomical and physiological pro-
cesses Finally, the effectiveness of the algorithm
has been validated on a CTA dataset to assess its
performance in terms of efficiency and accuracy.
Further work will be to extend the level set algo-
rithm to 3D which can then be applied to CTA
voxel data.
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