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Abstract

The determination of an unknown boundary condition, in a nonlinaer inverse diffusion problem is
considered. For solving these ill-posed inverse problems, Galerkin method based on Sinc basis func-
tions for space and time will be used. To solve the system of linear equation, a noise is imposed and
Tikhonove regularization is applied. By using a sensor located at a point in the domain of x, say
x = a′, and determining u(a′, t) a stable solution will be achived. An illustrative example is provided
to show the ability and the efficiency of this numerical approach.
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boundary condition.
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1 Introduction

T
he parameter determination in a parabolic
partial differential equation from the over-

specified data plays an important role in applied
mathematics, physics and engineering. These
problems are widely encountered in the modelling
of physical phenomena [5, 2, 3, 4]. In this pa-
per we shall consider an inverse problem of find-
ing an unknown boundary condition, u(0, t), in
a parabolic partial differential equation. The
main problem is finding the temperature distri-
bution, u(x, t), as well as the boundary condition,
u(0, t), simultaneously. Let’s consider the follow-
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ing parabolic PDE

pu ≡ ut(x, t)− κ(t)uxx(x, t) = 0,

0 < x < 1, 0 < t < ∞, (1.1)

with the following initial and boundary condi-
tions

u(x, 0) = g(x), 0 ≤ x ≤ 1, (1.2)

u(0, t) = γ(t), 0 ≤ t ≤ ∞, (1.3)

u(1, t) = δ(t), 0 ≤ t ≤ ∞, (1.4)

subject to an overspecified condition

u(a′, t) = s(t), 0 ≤ t ≤ ∞, (1.5)

where g, δ, and s are known continuous or piece-
wise continuous functions in their domains and pu
stants for an equation for determining u. These
functions also satisfy the conditions g(a′) = s(0)
and g(1) = δ(0). While the functions u(x, t) and
u(0, t) are unknown. By employing condition 1.5,
a numerical algorithm is presented for solving this
inverse problem, based on the fully Sinc-Galerkin
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method. The Sinc-Galerkin method was first pre-
sented by Stenger in [15]. This method has been
applied to a variety of partial differential equa-
tions [15, 16, 12, 11, 1, 9, 14]. References [16]
and [12] provide excellent overviews of existing
methods based on Sinc functions. In a Fully Sinc-
Galerkin technique a Sinc function basis is used,
in both space and time. This method has an ex-
ponential order of convergence [16, 12].

For the sake of simplicity by the following
transformation the problem (1.1) will be change
to the homogeneous overspecified and boundary
conditions,

u(x, t) = v(x, t) + φ(x, t),

where

φ(x, t) = s(t)[
x− 1

a′ − 1
] + δ(t)[

a′ − x

a′ − 1
]

+ θ(t)g(a′)[
x− 1

a′ − 1
]

− θ(t)g(1)[
a′ − x

a′ − 1
] + θ(t)g(x),

(1.6)

where the differentiable function θ(t) satisfies
θ(0) = 1, and θ′(0) = 1.

In particular,

θ(t) =
t+ 1

t2 + 1
.

This transformation leads to the following equa-
tion with homogeneous overspecified and bound-
ary conditions.

pv ≡ vt(x, t)− κ(t)vxx(x, t) = f∗,

0 < x < 1, 0 < t < ∞, (1.7)

v(x, 0) = 0, 0 ≤ x ≤ 1, (1.8)

v(1, t) = 0, v(a′, t) = 0, 0 ≤ t ≤ ∞, (1.9)

where

f∗ = −[(φt(x, t))− κ(t)(φxx(x, t))]. (1.10)

This paper is orgonized as follows; In Section
2, an inverse problem will be considered. Some
properties of Sinc function and Sinc quadrature
rule will be introduced and Sinc-Galerkin method
will be implemented for solving introduced in-
verse problem. To show the efficiency of the pro-
posed method a numerical illustrative example is
provided in Section 3. Section 4 is droted to a
brief conclusion.

2 Inverse Problem

The Sinc-Galerkin method is applied to solve an
inverse problem. For applying this method, one
should be familiar with the Sinc function, Sinc
quadrature rules and their properties.

The Sinc function is defined on R by

Sinc(x) ≡

{
sin(πx)

πx , x ̸= 0,

1, x = 0.

To have the Sinc transform functions, for both
space and time nodes, let’s consider hx > 0, ht >
0, and define

S(j, hx)(x) ≡ Sinc(
x− jhx

hx
),

j = 0,±1,±2, . . . .

S(j, ht)(t) ≡ Sinc(
t− jht

ht
),

j = 0,±1,±2, . . . .

To construct approximations by using the Sinc
function on the intervals (a′, 1) and (0,∞), we
consider the conformal mappings

Φ(x) = ln(
x− a′

1− x
),

and

Υ(t) = ln(t).

Thus the appropriate Sinc functions over (a′, 1)
and (0,∞) are given by

Si(x) = S(i, hx) ◦ Φ(x) ≡ sinc(
Φ(x)− ihx

hx
),

(2.11)
and

S′
j(t) = S′(j, h) ◦Υ(t) ≡ sinc(

Υ(t)− jht
ht

).

(2.12)
respectivly.

For solving Eq.(1.7) with conditions (1.8) and
(1.9), the Sinc basis functions (2.11), and (2.12)
are used. Let’s consider an approximate solution
as the following

v(x, t) =

Nt∑
j=−Mt

Nx∑
i=−Mx

cijSi(x)S
′
j(t), (2.13)

where Mx, Mt, Nx, and Nt are positive integers,
andmx = Mx+Nx+1,mt = Mt+Nt+1. cij are
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unknown constant that will be determined from
residual and Galerkin approach,

< Pu, SkS
′
l >= 0,

for −Mx ≤ k ≤ Nx, −Mt ≤ l ≤ Nt, may be
written

< Pv − f∗, SkS
′
l >= 0, (2.14)

where f∗ is given by (1.10) and the inner product
is defined by

< η, ζ >=∫ ∞

0

∫ 1

a
η(x, t)ζ(x, t)ν(x)ω(t)dxdt,

(2.15)

ν(x)ω(t) is a weight function. The Sinc-Galerkin
method actually requires the evaluated deriva-
tives of sinc basis functions, S(i, h) ◦ Φ(x), at
the sinc nodes, x = xk. The rth derivative of
S(i, h)◦Φ(x), with respect to Φ, evaluated at the
nodal point xk is denoted by

1

hn
δ
(n)
ik ≡ dn

dΦn
[S(i, h) ◦ Φ(x)] |x=xk

. (2.16)

Theorem 2.1 Let Φ be a conformal one-to-one
map of the simply connected domain DE onto Ds

then

δ
(0)
ik = [S(i, h) ◦ Φ(x)] |x=xk

=

{
1, k = i,

0, k ̸= i,
(2.17)

δ
(1)
ik = h

d

dΦ
[S(i, h) ◦ Φ(x)] |x=xk

=

{
0, k = i,
(−1)(k−i)

(k−i) , k ̸= i,
(2.18)

and

δ
(2)
ik = h2

d2

dΦ2
[S(i, h) ◦ Φ(x)] |x=xk

=

{
−π2

3 , k = i,
−2(−1)(k−i)

(k−i)2
, k ̸= i.

(2.19)

proof. See [12].

Now, suppose that the weight function in the
inner product (2.15) be as

ω(t)ν(x) =

√
Υ′

Φ′ .

A complete discussion on the choice of the weight
function can be find in [12]. Applying the Sinc
quadrature rule for double integrals is addressed,
by Koonprasert and Bowers, in [9]. Substitu-
tion of (2.13) in to the (2.14), applying Sinc
quadrature rule for double integrals, and replac-
ing v(xi, tj) by vij leads to the following discrete
system

(−
Nt∑

q=−Mt

viq[
1

ht
δ
(1)
jq ][

ω(tq)ν(xi)

Φ′(xi)Υ′(tq)
])

−(

Nx∑
p=−Mx

vpj
κ(tj)ω(tj)

Φ′(xp)Υ′(tj)
[(Φ′2ν)(xp)

(
1

h2x
δ
(2)
ip ) + [Φ′′ν + 2Φ′ν ′](xp)(

1

hx
δ
(1)
ip )])

−vij
κ(tj)ω(tj)ν

′′(xi)

Φ′(xi)Υ′(tj)
− vij

ω(tj)ν(xi)

Φ′(xi)Υ′(tj)

=
f∗(xi, tj)ω(tj)ν(xi)

Φ′(xi)Υ′(tj)
,

(2.20)

for i = −Mx, ..., Nx and j = −Mt, ..., Nt.
Drivatives in (2.16) can be stored in matrices:
for x variable

I
(n)
mx×mx

= [δ
(n)
ip ],

for t variable

I
(n)
mt×mt

= [δ
(n)
jq ],

where n = 0, 1, 2.
If function g is evaluated at the sinc nodes x =

xk for −Mx ≤ i ≤ Nx then the mx ×mx square
diagonal matrix Dmx×mx(g) is written as

Dmx×mx(g) =


g(x−Mx )

.
.
.

g(x0)

.
.
.

g(xNx )

 .

By this notation, the system (2.20) turnes to
the following matrix form

D(
−ν

Φ′ ).X.[
1

ht
I(1)mt

D(
ω′

Υ′ )]
t

+ D(
−ν

Φ′ ).X.D(
ω′

Υ′ ) + [
−1

h2x
I(2)mx

D(Φ′ν)

+
−1

hx
I(1)mx

D(
Φ′′ν

Φ′ + 2ν ′)].X.D(
ωκ

Υ′ )

+ D(
−ν ′′

Φ′ ).X.D(
ωκ

Υ′ ) = D(
ν

Φ′ ).F.D(
ω

Υ′ )

(2.21)
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Table 1: The errors ∥ Es(h) ∥ for different orders, h, a′ and tf = 1s.

Mx h a′ = 0.04 a′ = 0.1 a′ = 0.2

2 3.1415 1.1724× 10−4 2.9594× 10−4 6.0153× 10−4

4 2.2214 2.4003× 10−4 6.0589× 10−4 1.2315× 10−3

8 1.5707 2.7054× 10−4 6.8290× 10−4 1.3880× 10−3

16 1.1607 2.4003× 10−4 6.0589× 10−4 1.2315× 10−4

Table 2: The absolute errors of γ(t), by 0th order Tikhonov for Mx = 4 and tf = 1s.

t a′ = 0.04 a′ = 0.1 a′ = 0.2

0.1 2.2977× 10−4 5.7670× 10−4 1.1705× 10−3

0.2 2.6560× 10−4 6.9318× 10−4 1.4202× 10−3

0.3 8.7696× 10−5 2.5192× 10−4 5.2672× 10−4

0.4 3.2437× 10−4 7.8897× 10−4 1.5884× 10−3

0.5 9.6085× 10−4 2.3992× 10−3 4.8634× 10−3

0.6 1.7857× 10−3 4.4864× 10−3 9.1085× 10−3

0.7 2.7452× 10−3 6.9138× 10−3 1.4045× 10−3

0.8 3.7792× 10−3 9.5294× 10−3 1.9364× 10−2

0.9 48329× 10−3 1.2191× 10−2 2.4783× 10−2

where X is the mxmt matrix of unknown coef-
ficients cij . The ijth-entry of Fmxmt is equal to
F (xi, tj), where −Mx ⩽ i ⩽ Nx and −Mt ⩽ i ⩽
Nt. The system (2.21) can simplify as the follow-
ing

A1XB1+A2XB2+A3XB3+A4XB4 = C (2.22)

where

A1 = A2 = D(
−ν

Φ′ ),

B1 = [
1

ht
I(1)mt

D(
ω′

Υ′ )]
t,

B2 = D(
ω′

Υ′ ),

A3 = [
−1

h2x
I(2)mx

D(Φ′ν)

+
−1

hx
I(1)mx

D(
Φ′′ν

Φ′ + 2ν ′)],

B3 = B4 = D(
ωκ

Υ′ ),

A4 = D(
−ν ′′

Φ′ ),

and

C = D(
ν

Φ′ ).F.D(
ω

Υ′ ).

By using Kronecker sum notation and the con-
catenation on matrices, the system (2.22) can be
written as followes, [12],

ϖco(X) = co(C), (2.23)

where ϖ is a matrix, involving Kronecker prod-
ucts, with the dimontion (mxmt)× (mxmt) that
can be denoted as the following

ϖ = BT
1 ⊗A1 +BT

2 ⊗A2 +BT
3 ⊗A3 +BT

4 ⊗A4,

and co(X) and co(C) are vectors with (mxmt) en-
tries. Having these simplifications and notations
done sinc coefficients cij . So, it will be determined
from the system (2.23)

ϖW = Y. (2.24)

where

W = co(X), and Y = co(C).

The system (2.24), as an ill-conditioned one, is
solved by Tikhonov regularization a specific pack-
age which is in matlab. ([6], [7] and [19]).

3 Numerical Result

For using this approach to solve a test problem
with an unknown boundary condition in the in-
verse problem (1.1), some notations and relations
need.

For choosing an appropriate sinc grid in space
and time, we suppose that a exact solution satis-
fies the condition

|u(x, t)|≤ Cxαs+
1
2 (1− x)βs+

1
2 tσs+

1
2 e−ςt, (3.25)
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for(x, t) ∈ (a, 1) × (0, 1), the following selections
should be considered

Nx = [|αs

βs
Mx + 1|], Mt = [|αs

σs
Mx + 1|],

Nt = [|αs

ςs
Mx + 1|], (3.26)

where [|.|] denotes the greatest integer operation,
h ≡ hx = ht and

h = (
πd

αsMx
)
1
2 . (3.27)

In addition, ∥ Es(h) ∥ is defined, for reporting
error on the Sinc grid points (xi, tj) , as the fol-
lowing

∥ Es(h) ∥= maxi,j{|u(xi, tj)

−umx,mt(xi, tj)|: xi =
a′ + eih

1 + eih
,

tj = ejh}.

Example 3.1 Let’s consider the following prob-
lem, which is a known equation and has been con-
sidered in some refrences for different proposes,
for example in refrences [5, 3] inverse problem is
considered for κ(t) as an unknown function. here,
we solve it for unknown boundary condition.

pu ≡ ut(x, t)− κ(t)uxx(x, t) = 0,

0 < x < 1, 0 < t < ∞,

where

κ(x, t) =
2[6t2 + (1 + t3)2cos( t2)]

(1 + t3)[1 + 2t3 + (1 + t3)sin( t2)]
,

with the following initial and boundary condition

u(x, 0) = e(
x
2
), 0 ≤ x ≤ 1,

u(1, t) =

√
e(1 + 2t3)

(1 + t3)
+

√
esin(

t

2
),

0 ≤ t ≤ tf ,

with the exact solution

u(x, t) =
e(

x
2
)(1 + 2t3)

1 + t3
+ e(

x
2
)sin(

t

2
).

The errors are presented at u(0, t) for αs = βs =
σs = 1

2 , ς = 1, d = π
2 and noisy data, (noisy

data=input data+(0.001) rand (1)), for different

orders, Mx, and different step lenghts,h, and dif-
ferent sensor locations, a′ are presented in Tables
1. In Table 2 the same errores are appeared at dif-
ferent points and the same sensor locations, but
fix, Mx = 4 and tf = 1s, and exact solution and
the results of Table 2 for a′ = 0.04, a′ = 0.1,
a′ = 0.2 are plotted in Figure 1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

t

lo
g(

u(
0,

t))

 

 

exact solution
approximate solution
for a’ = 0.04
approximate solution
 for a’ = 0.1
approximate solution
 for a’ = 0.2

Figure 1: The comparison between the exact so-
lutions and approximation solutions in sensor’s dif-
ferent location.

4 Conclusion

Inverse problem has been used for parabolic par-
tial differential equation, with unknown bound-
ary conditions, succesfully. In this study, due to
unknown boundary condition a sensor is imposed
as an extra condition. The results achived in this
study confirms exprimental fact i.e. when the lo-
cation of the sensor is not closed to boundary
position, as is in the reality, the errores still small
enough to count on the method as a powerfull
devise for solving inverse problems. Regarding
the fact that ” the closer sensor location to the
boundary the more accurate results ” we have
considered locations 0.04, 0.1, and 0.2, for the
sensor even at a′ = 0.2, which is not closed to the
boundary, the error are still small which confirms
the efficiency and stability of the method.
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