
Available online at http://ijim.srbiau.ac.ir/

Int. J. Industrial Mathematics (ISSN 2008-5621)

Vol. 6, No. 4, 2014 Article ID IJIM-00472, 10 pages

Research Article

Enhancement of Noise Performance in Digital Receivers by Over

Sampling the Received Signal

A. Y. Hassan ∗†, S. M. Shaaban ‡

————————————————————————————————–

Abstract

In wireless channel the noise has a zero mean. This channel property can be used in the enhancement
of the noise performance in the digital receivers by oversampling the received signal and calculating
the decision variable based on the time average of more than one sample of the received signal. The
averaging process will reduce the effect of the noise in the decision variable that will approach to the
desired signal value. The averaging process works like a filter that reduces the noise power at its
output according to its averaging interval. Although the power spectrum of the noise does not change
according to the averaging process, the noise variance at the decision variable will be smaller than
the channel noise variance. This paper studies this idea and show how the performance of digital
receivers can be enhanced by oversampling the received signal. This paper shows another treatment
method to the noise problem in digital modulation systems.
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1 Introduction

N
oise is the main corrupting element in any
communication system. It is unavoidable in-

terference source in all communication channels
and the main source of errors and performance
degradations. A lot of researches have been done
to minimize the effect of the noise or to try to can-
cel it. Some of these researches depend on mini-
mizing the mean square error value between the
channel noise and another noise like signal which
generated from a noisy source and an adaptive
filter [1, 2, 6].Other approaches use the recursive
least square (RLS) algorithm to minimize the er-
ror square between the estimated signal with re-
duced noise and the noisy measured signal [3].

∗Corresponding author. Ashraf.fahmy@bhit.bu.edu.eg
†Faculty of Engineering, Benha university, Benha,

Egypt.
‡Faculty of Engineering, Menofia University, Shebin

Elkom, Egypt.

The noise reduction receivers based on RLS algo-
rithm are faster than those based on LMS algo-
rithm however the LMS algorithm can reduce the
noise power more than the RLS algorithm. An-
other research shows that the noise and signal fea-
ture detection problem can be converted to statis-
tical hypotheses tests based on the sample corre-
lation in different orientations [4].This algorithm
provide ways of measuring the degree of noise
with respect to the degree of signal feature, and
its adaptive noise reduction filtering framework
provides good performance with respect to the
adaptive algorithms when the underlying noises
are from Gaussian or non-Gaussian distributions.
In addition to adaptive algorithms, channel cod-
ing may be used to enhance the noise reduction
process as shown in [5]. The previous trials are
depending on a complex signal processing unit
that complicates the receiver structure however
the performance enhancement is not great espe-
cially with the white noise case. On the other
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hand, we did not find any research based on the
fact that the noise in wireless channel has a zero
mean. This is an important statistical property
of the noise that may be used to trim down the
effect of the noise on the transmitted data. Our
work in this paper is based on the wireless chan-
nel noise characteristics and the estimation the-
ory that are shown in [8, 9, 10]. It is arranged as
follows. Section 2 shows the effect of the oversam-
pling process of the received signal on the noise
mean of the decision variable. Section 3 applies
the proposed idea on the BPSK system which is
an example of a wireless system however Section 4
shows the oversampling gain effect on the BPSK
probability of error formula. Simulation results
are shown in section 5. Finally the conclusions
are represented in Section 6.

2 The effect of oversampling on
the noise signal and the deci-
sion variable

In wireless communication channel, the noise sig-
nal that corrupts the desired transmitted signal
is a sample function of a zero mean random pro-
cess with a certain variance . The noise mean can
be estimated by calculating the time average of
the discrete samples of the noise sample function
n(t) which will approach to the statistical average
of the noise process when the averaging period is
large as shown in the following equation.

lim
N→∞

1

N

N∑
i=1

ni = E[n(t)] (2.1)

The last statement is true if the noise pro-
cess is Ergodic which is the case for all physical
wireless communication channels [8],therefore the
time average will be used instead of the statistical
average to estimate the noise mean and variance
as shown in sections (2.1) and (2.2). The noise in
all communication channels is additive. Thus, the
decision variable in any detector consists mainly
from two components. One is due to the desired
signal and the other is the noise signal compo-
nent.

d = s+ n (2.2)

d d is the decision variable or the sufficient
statistic, s is the desired signal component which
has a constant value during the symbol interval,

and n is the noise signal component which is a
random variable. The statistical mean and vari-
ance of the decision variable are represented by
equations (??) and (??) respectively.

E[d] = E[s+ n] = E[s] + E[n] = s (2.3)

var[d] = var[s+ n] = var[n] (2.4)

If the decision variable in the last equations
is formed based on a single sample of the desired
signal and the noise functions, the variance of the
decision variable will be the same as the variance
of the channel noise function . But if the deci-
sion variable is formed based on the average of
more than one observation sample, the variance
of the decision variable will be decreased by a fac-
tor proportional to the number of samples in the
average process. Sections (2.1) and (2.2) give the
mathematical proof of this observed result for the
white and color noise cases respectively.

2.1 White noise case

In white noise case, the noise samples are inde-
pendent. The estimation theory said that if N
statistically independent samples are taken from
a sample function of the noise process to estimate
the noise mean, the estimated mean will be

µ̂n =
1

N

N∑
i=1

ni (2.5)

ni is the ith sample of the white noise function
n(t) during one bit interval. This average is also
a random variable. Its mean is equal to the actual
noise mean and its variance is depending on the
used number of samples.

E[d] = E[µ̂n] =
1

N

N∑
i=1

E[ni] = 0 (2.6)

var[d] = var[µ̂n] = var[
1

N

N∑
i=1

ni]

=
1

N

N∑
i=1

var[ni] =
σ2n
N

(2.7)

The last two equations (2.6), (2.7) of the mean
and variance of the estimated noise averages how
that if the number of noise samples is increased,
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the estimated noise mean will approach to zero
with a variance that is inversely proportion to the
number of samples used in the estimation process.
This observation will be used in Section (3) to en-
hance the performance of BPSK system which is
an example of a wireless communication system.

2.2 Color noise case

The previous idea of reducing the variance of the
decision variable by averaging it over N samples
needs the zero mean noise samples to be uncor-
related (white). This case is achieved in all com-
munication channels where the channel noise is
white and Gaussian. But for the case of colored
noise samples, equations (2.6), (2.7) don’t hold
because the noise samples are correlated. The
correlated noise samples are produced when the
white noise samples pass through a system filter.
The variance of the produced samples will be re-
duced according to the system filter normalized
bandwidth Bn.

σ2nc =
σ2nB

Fs
= σ2nBn (2.8)

Fs is the sampling frequency and B is the
bandwidth of the system filter. From equation
(2.8), the color noise variance will be smaller
than the white noise variance. The variance of
the estimated mean in the case of correlated
noise samples is

var(µ̂nc) =

1

N2

N∑
i=1

N∑
j=1

E[(nci − µnci)(ncj − µncj)] (2.9)

After some mathematical manipulations, the
variance will be

var(µ̂nc) =
σ2nc
N

+
1

N2

N∑
i=1

N∑
j ̸=i

ρijσ
2
nc

∵ ρij = E[ninj ] = ρi−j

∵ var(µ̂nc) =
σ2nc
N

+
σ2nc
N

N−1∑
i=1

ρi (2.10)

ρj is the correlation coefficient between two noise
samples vectors with j sample shift between them.
From equation (2.10), it is clear that the averag-
ing process of the color noise samples reduces the
variance of the color noise by a factor depends on

the number of samples in the averaging process
and the correlation coefficient between the noise
samples. The variance of the estimated average of
color noise samples has an upper bound equals to
the color noise variance and a lower bound equals
to the white noise variance divided by N.

σ2n
N

< var(µ̂n) < σ2nc (2.11)

As long as the variance of the correlated noise
samples depends on the sampling frequency, so
oversampling the uncorrelated noise samples will
reduce the variance of the correlated noise sam-
ples produced at the output of the system fil-
ter. A whitening filter may be used to convert
the noise samples to uncorrelated noise samples.
But this will complicate the receiver structure
and its enhancement on the performance - due
to the conversion of the color noise to white noise
- can be achieved by the oversampling process.
Simulation results agree with the proposed idea.
The correlated noise samples variance will be de-
creased by a factor greater than N and depend on
the noise bandwidth.

3 Theoretical analysis of the
proposed idea on BPSK sys-
tem

BPSK is a classical digital modulation system
that uses two different phase angles to transmit
binary data. Equation (3.12) shows the discrete
form of the transmitter BPSK signal sk for the
kth symbol.

sk(N) = bk
√
2cos(2πfnn),

KN < n ≤ (k + 1)N, 0 < k < K (3.12)

K is the number of transmitted binary symbols,
bk is the kth binary symbol, bk takes a value of
1 or -1 according to the binary transmitted sym-
bols 1 or 0 respectively. fn is the normalized fre-
quency which equals to the ratio between the car-
rier frequency and the sampling frequency. Inte-
gral number of carrier cycles is assumed through
the bit interval. N is the number of samples per
bit

N =
Tb
Ts

(3.13)



278 A. Y. Hassan, et al /IJIM Vol. 6, No. 4 (2014) 275-284

The used discrete orthonormal basic function ψn

is a sinusoidal function.

ψn =
√
2cos(2πfnn) (3.14)

The transmitted symbol sk The transmitted sym-
bol Et. Assuming that the transmitted symbols
pass through a linear white Gaussian channel, the
received discrete signal will be

r(n) = sk(n) + w(n) (3.15)

w(n) is a discrete sample function of a white
Gaussian noise process c(t) with a zero mean and
σ2w variance. The receiver correlates the received
signal with the complex conjugate of the used or-
thonormal basic function ψ(n) to form the deci-
sion variable yk. Equation (3.16) represents the
output of the discrete correlator in the receiver.

yk =

N∑
n=1

bk2cos(2πfnn)cos(2πfnn)

+

N∑
n=1

W (n)
√
2cos(2πfnn) (3.16)

In vector notation, the discrete correlator output
is:

yk = sTk φ+ wTφ = bkφ
Tφ+ wTφ

= bk + zk (3.17)

bk has a constant value during the symbol time
interval Tb but zk is a Gaussian random variable,
so yk is a Gaussian random variable. Deep look-
ing in equation (3.17) shows that yk is the scaled
estimated average of the received samples during
the symbol interval Tb and zk is the scaled es-
timated average of the noise samples during the
same interval. zk represents also the time average
of the noise samples during the normalized sym-
bol interval N. This time average or the estimated
average of the noise samples is a random variable
in natural and its mean and its variance are re-
lated to the mean and variance of the noise sam-
ples that have been used in the calculation of this
time average. Equations (3.18) and (3.19) show
the statistics of the time average of the scaled
noise samples.

E[zk] = E

[
1

N

N∑
n=1

w(n)
√
2cos(2πfnn)

]

=
1

N

N∑
n=1

E[w(n)]
√
2cos(2πfnn)=0 (3.18)

var[zk] = var

[ N∑
n=1

w(n)
√
2cos(2πfnn)

]

=
1

N2

N∑
n=1

E[w2(n)]2cos2(2πfnn)=
σ2w
N

(3.19)

The expected value of yk equals to bkbecause the
expected value of zk equals zero.The variance of
the decision variable yk equals to the variance of
the time average zk.

E[yk]=E[bk + zk]=bk+E[zk]=bk (3.20)

var(yk)=var(bk+zk)=var(zk)=
σ2w
N

(3.21)

This result in the discrete domain differs from
that in the continuous domain where the variance
of the decision variable in the continuous domain
equals to the variance of the channel noise [9].
The continuous domain case is a special case of
the discrete domain result if the number of sam-
ples per symbol is one, or a single value of noise
sample is assumed to be constant in all the inter-
val of the symbol. But this is not true because
the noise varies during the symbol interval. In
continuous signal detection, the decision variable
yk is formed by the integration of the received
signal rk(t) multiplied by the orthonormal basic
function ψ(t).

yk =
1

Tb

∫ Tb

0
rk(t)ψ

∗(t)dt (3.22)

The integration is done over the bit period, so the
decision variable takes the average of the desired
and the noise signals over that period. If more
than one sample of the received signal is used in
the average calculation, the signal to noise ratio
at the output of the correlator will be smaller
than the signal to noise ratio at the input of the
correlator. To use more than one sample of the re-
ceived signal, it should be oversampled by a sam-
ple frequency equals to

Fs = NRb (3.23)

N is the number of samples per bit and Rb is
the data bit rate. By over sampling the received
signal and taking the average of these samples,
the decision variable will get closer to the desired
signal value and the noise samples average will
get closer to the statistical noise mean which is
zero.
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Figure (1) shows the power spectrum density
of the base band channel noise signal and the
power spectrum density of the average noise sam-
ples that affects on the decision variable. The
channel noise samples have a constant power at
the input of the correlator detector.

In Figure (1(a)), the channel noise bandwidth
equals fs. For the case of single sample detection,
the sampling frequency equals to the bit rate Rb.
The channel noise power is equal to the decision
variable noise power.

Pdn = Pcn =

∫ Rb/2

−Rb/2
Ncn(f)df

= NoRb, fs = Rb (3.24)

No Nois the channel noise power spectrum den-
sity value. On the other hand, if N samples are
used in the detection process, the sampling fre-
quency will equal to NRb as shown in equation
(3.23). Although the channel noise power is con-
stant, the noise power spectrum density will be
decreased when the noise bandwidth is increased
due to the averaging process of N noise sam-
ples in the correlator to form the decision vari-
able, therefore the decision variable noise power
in the signal bandwidth Rb will be smaller than
the channel noise power.

Pdn =

∫ Rb/2

−Rb/2
Ncn(f)df = NoRb (3.25)

N
′
o =

No

N
(3.26)

The performance of binary signaling systems in
white noise channel is controlled by the signal to
noise ratio of the decision variable. This ratio
differs from the channel signal to noise ratio at
the input of the detector. The channel signal to
noise ratio is defined as

SNRC=
Signal power

Channel noise power
=
Ps

Pcn
(3.27)

The signal power is related to the bit energy as

Ps = EbRb, Eb =

∫ Tb

0
|p(t)|2dt (3.28)

p(t) is the bit pulse shape. The channel signal
to noise ratio is related to the decision variable
signal to noise ratio by the following equation.

SNRc=
EbRb

NoRb/N
=N

Eb

No
=N SNRc (3.29)

In all classical communication literatures, the
channel signal to noise ratio is used as the de-
cision variable signal to noise ratio assuming that
the receiver front end before the detector is noise
free. This is true if the detector forms the decision
variable by observing only one sample during the
bit interval. But this is not the case of the corre-
lator detector which forms the decision variable
by integrating the multiplication between the re-
ceived signal with a suitable basics orthonormal
function over the symbol interval.

4 Adding the oversampling gain
effect on the expression of the
BPSK system probability of
error

We areready nowto add a correction factor in the
equation of the probability of error in BPSK sys-
tem when the channel SNR is used. This cor-
rection factor represents the oversampling gain
that is achieved by oversampling the received sig-
nal and averaging the noise samples during the
symbol period. The classical probability of error
equation of BPSK system is:

Pe =
1

2
erfc

(√
Eb

No

)
(4.30)

This equation relates the system probability of er-
ror with the channel SNR where No is the power
spectrum density of the channel noise and Eb is
the transmitted signal energy per bit. However
according to the previous discussion this is only
true if single sample of the received signal is used
in the calculation of the decision variable. On the
other hand, if N samples of the received signal are
used, the decision variable SNR will be increased
by a factor of N. This factor is the oversampling
gain which represents the number of the samples
of the received signal per symbol period. Con-
sequently, the proposed probability of error for
BPSK will depend on the decision variable SNR
instead of the channel SNR as shown in the fol-
lowing equation:

Pe =
1

2
erfc

(√
Eb

Nd

)
(4.31)

Eb/Nd is the decision variable SNR. This equa-
tion relates the probability of error to the deci-
sion variable signal instead of the channel signal.



280 A. Y. Hassan, et al /IJIM Vol. 6, No. 4 (2014) 275-284

Equation (4.31 can be written as a function of the
channel SNR but after adding the oversampling
gain which is the number of samples per symbol
period.

Pe =
1

2
erfc

(√
N
Eb

No

)
(4.32)

Before the equation (4.32), there were two meth-
ods to decrease the probability of error in the re-
ceived bit stream. The first method is increasing
the energy per bit which means more power must
be transmitted or lower bit rate should be used.
The second method is decreasing the noise power
spectrum density which depends on the physical
nature of the channel and in many cases it is very
difficult to do this.

Now and according to the equation (4.32),
there is a third method to increase the signal to
noise ratio and decreasing the probability of er-
ror. This method is by over sampling the received
vector and using more than one sample in the
calculation of the decision variable. This method
will complicate the calculations in the detection
process but it will save the transmitted power and
the used bit rate.

The gain in the SNR that is achieved by over-
sampling the received signal is similar to the pro-
cess gain that is achieved in DSSS-BPSK system.
In DSSS receiver, the decision variable is formed
by integrating the received data multiplied by the
spreading code. Here the received signal is sam-
pled by the code rate which equals to the spread-
ing rate. The channel noise will be sampled by
the same rate, so more than one sample of the
noise will be taken during the bit interval if a sin-
gle noise sample is taken during the chip period.
The correlator in the detector will average N sam-
ples of the received signals and this will lead to an
enhancement of the system performance. The en-
hancement in performance is due to the averaging
of the channel noise samples where the variance
of the average is smaller than the variance of the
channel noise samples by the process gain.

5 Simulations

The simulation results of the previous researches
[1, 2, 3, 4, 5, 6, 7] are not shown here because of
two reasons. The first is that most of these re-
searches apply their ideas on the voice and video
signals and when we apply them on a noisy BPSK

system they gave a little and in some cases no
enhancement. The second reason is that these
algorithms fall to work if the noise power is high
and the SNR is below a certain threshold. On
the other hand, our algorithm works for any SNR
value and it has a linear SNR gain as show in Sec-
tion (5.3).

The simulation results of the proposed ideas
that are discussed in this paper are represented
in three subsections. The first subsection dis-
cusses the relation between the variance of the
white noise and the color noise and how the noise
bandwidth affects the value of the noise power
and power spectrum density. The second subsec-
tion shows the difference between the probabil-
ity density functions of the channel noise and the
decision variable noise. The last section presents
the application of the proposed ideas on the well
known system which is the binary shift keying
system.

Figure 1: (a) The PSD of the channel noise
samples (b) The PSD of the decision variable
samples

5.1 Variance of the white noise and the
color noise

AAny white noise has a fixed power spectrum
density but the power of the white noise is in-
finity because its bandwidth is infinity. On the
other hand, if the channel noise is sampled with
a sampling frequency of Fs, the noise bandwidth
Bcw will be bounded by Fi/2 as shown in equa-
tion (5.33).

0 ≤ Bcw ≤ Fs

2
(5.33)



A. Y. Hassan, et al /IJIM Vol. 6, No. 4 (2014) 275-284 281

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Frequency

Figure 2: The power spectrum density of
the samples of white noise signal

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Frequency

Figure 3: The power spectrum density of
the samples of white noise signal

The noise samples of the white noise signal will
in this case have a fixed power. The variance
of these samples which represents the power of
the white noise samples will equal to the power
spectrum density of the noise multiplied by the
sampling frequency.

σ2w = 2Bcw
No

2
= NoFs

(5.34)

∵ No =
σ2w
Fs

(5.35)

This is the relation between the white noise power
and the power spectrum density which is depend-
ing on the sampling frequency. Figure (2) shows
the power spectrum density of a vector of 106

white noise samples with 10dB variance which
is generated using MATLAB.
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Figure 4: The PDF of the decision variable
noise for the case of white Gaussian noise
channel

0 0.5 1
w

 

0 0.2 0.4 0.6 0.8 1
−100

−80

−60

−40

−20

0

20

40

Frequency

P
o

w
e

r
 S

p
e

c
tr

u
m

 M
a

g
n

it
u

d
e

 (
d

B
)

N=1
N=10
N=50
N=100

Figure 5: (a) The PDF of the decision vari-
able noise for the case of color Gaussian noise
channel (b) The PSD of the used color noise

The noise power spectrum density is a fixed
parameter of any communication channel. It is
always a constant value according to the noise
activities in the channel. On the other hand, the
noise samples that are processed by the receiver
will have a fixed power which equals to the noise
power spectrum density multiplied by the sam-
pling frequency at the input of the receiver as
shown by be equation (5.34).

If a color noise with the same power is gener-
ated by passing the previous white noise vector
through any linear filter, the resultant color noise
power spectrum density should be increased as
shown in Figure (3) because the noise power is
fixed. Here the normalized color noise bandwidth
is 0.2.

From the previous figures, due to the fact that
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Figure 6: (a) The BER of BPSK detector
in WGN channel (b) The BER of BPSK de-
tector in CGN channel
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Figure 7: (a) The BER of BPSK detector
versus the number of samples in WGN chan-
nel (b) The BER of BPSK detector versus
the number of samples in CGN channel

the received noise signal has a fixed power spec-
trum density, the power of the noise will be
changed by changing the sampling frequency of
the white noise signal or the noise bandwidth of
the color noise.

5.2 Probability density functions of
the channel noise and the decision
variable noise

In this subsection the differences among the PDFs
of the noise samples in the decision variable which
is formed by averaging of N noise samples are
shown for different sampling frequencies. Figure
(4) shows the PDFs of the decision variable for
the white Gaussian noise channel case with N=
1,10,50, and 100 samples per symbol period. The
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Figure 8: (a) The DVSNR versus the CSNR
in WGN channel (b) The DVSNR versus the
CSNR in CGN channel

variance of the noise in the decision variable will
be decreased when the number of samples in the
symbol period is increased. This result is also
achieved with color Gaussian noise channel al-
though the noise samples are correlated. Figure
(5(a)) shows the PDFs of the decision variable
for color noise channel with N= 1, 10, 50 and 100
samples per symbol period. Figure (5(b)) shows
the PSD of this channel noise.

5.3 Probability of error in the BPSK
using the new idea

Here the simulation results of the detection of a
BPSK signal which is corrupted by a white and
color Gaussian noise are represented. In white
noise case, the channel signal to noise power ra-
tio (CSNR) is varied from -20 dB to 10 dB but
in color noise, the CSNR is varied from -13dB to
9dB. The bit error rate in a vector of 107received
binary symbols is calculated each time. Figures
(6(a)) and (6(b)) show the bit error rate in the re-
ceived data vector versus the CSNR for the white
and the color noise channel cases respectively.
The decision variable of the correlator detector is
formed based on the averaging of different num-
bers of samples per symbol period. The cases of
a single received sample, 10 received samples, 50
received samples, and 100 received samples per
symbol period are shown in these figures. It is
clear that the noise performance is enhanced as
the number of samples per symbol period is in-
creased. The rate of performance enhancement in
the white noise channel is better than the rate of



A. Y. Hassan, et al /IJIM Vol. 6, No. 4 (2014) 275-284 283

enhancement in the color noise channel because
the color noise samples are correlated.

Figures (7(a)) and (7(b)) show the plot of the
bit error rate in the received data versus the num-
ber of samples per symbol period at certain chan-
nel signal to noise ratio values. These figures
show that the performance enhancement is not
linear with the number of samples per symbol
period. The bit error rate will asymptotically
approach to zero as the number of samples per
symbol period approaches to infinity which agrees
with the theoretical study. Figures (8(a)) and
(8(b)) show also the relation between the chan-
nel signal to noise ratio (CSNR) and the deci-
sion variable signal to noise ratio (DVSNR). In-
creasing the number of samples in the averaging
process to form the decision variable each symbol
period will increase the decision variable SNR be-
cause the average process will decrease the vari-
ance of the noise samples and hence it will de-
crease the noise power spectrum density.

The increasing in the decision variable SNR in
white noise case is greater than the increasing in
the decision variable SNR in color noise case for
the same reason of the correlation between the
noise samples in the color noise case. Also the
figure shows that the enhancement in the DVSNR
is nonlinear with the increasing of the number of
samples in per symbol interval.

6 Conclusion

The noise performance in digital receivers can be
enhanced by oversampling the received signal and
calculating the time average of the correlator out-
put based on more than one sample in the deci-
sion variable. This enhancement can be consid-
ered as the oversampling gain effect in the de-
cision variable. The time average will approach
to the desired signal value where the noise aver-
age will approach to zero. The noise power in
the signal bandwidth will be decreased by a fac-
tor equals to the number of the samples on the
symbol period that will be used in the averaging
process. The decrement of the noise power in the
decision variable will increase the decision vari-
able signal to noise ratio and this will enhance the
system probability of error. This enhancement in
the probability of error needs neither more trans-
mitted power nor increasing in the signal band-
width but only it needs an increase in the pro-

cessing operations on the receiver. The noise per-
formance enhancement that was discussed in this
paper is valid for both white noise and color noise
cases where the performance enhancement in the
white noise case is greater than the performance
enhancement in the color noise case.
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