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Abstract

This paper uses the weighted L1−norm to propose an algorithm for finding a well-dispersed subset
of non-dominated solutions of multiple objective mixed integer linear programming problem. When
all variables are integer it finds the whole set of efficient solutions. In each iteration of the proposed
method only a mixed integer linear programming problem is solved and its optimal solutions generates
the elements of the well-dispersed subset non-dominated solutions (WDSNDSs) of MOMILP. Accord-
ing to the distance of non-dominated solutions from the ideal point the elements of the WDSNDSs
are ranked, hence it does not need the filtering procedures. Using suitable values for the parameter of
the proposed model an appropriate WDSNDSs by less computational efforts can be generated. Two
numerical examples present to illustrate the applicability of the proposed method and compare it with
earlier work.

Keywords : Multi-Objective Mixed Integer Linear Programming; Efficient solutions; Well-dispersed
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1 Introduction

M
ultiple Objective Mixed Integer Linear Pro-
gramming (MOMILP) problems occur fre-

quently in many applications. Many engineering,
operations, and scientific applications include a
mixture of discrete and continues decision vari-
ables and linear relationship involving the deci-
sion variables that have a pronounced effect on
the set of feasible and optimal solutions in Multi
Criteria Decision Making (MCDM).

In recent decades, Numerous algorithm also
interactive procedures have been designed to
solve Multiple Objective Linear Programming
(MOLP) [2, 3, 4, 9]. MOMILP and Multiple Ob-
jective Integer Linear Programming (MOILP) are

∗Corresponding author. sh−razavyan@azad.ac.ir
†Department of Mathematics, South Tehran Branch,

Islamic Azad University, Tehran, Iran.

important research areas as many practical situ-
ations discrete representations have to deal with
several objectives [1, 8]. Surveys considering most
of methods for generating non-dominated vectors
are also available [12, 14].

Mavrotas and Diakoulaki [7] present a branch
and bound algorithm to generate non-dominated
solution of MOMILP problems. Jahanshahloo et
al. [5] propose a method to find all efficient so-
lutions of zero-one MOLP problem. In each iter-
ation of the proposed algorithm at least one effi-
cient solution is found. Klein and Hannan [6] de-
velop an algorithm for the MOILP problem which
uses some additional constraints to eliminate the
known dominated solution based on the sequen-
tial solutions of the single objective models. Sylva
and Crema [10] present an algorithm for enumer-
ating all non-dominated vectors of MOILP prob-
lems by incorporating objective functions in a
weighted function. Nevertheless, its performance
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may not be satisfactory for problems with a large
number of objective function. Sylva and Crema
[11] propose a method for finding a well-dispersed
subset of non-dominated solutions based on max-
imizing the infinity norm distance from a set of
known solutions. They claim that their approach
originally provides a variant of the procedure by
Sylva and Crema [10]. The major drawback of
this approach is the difficulty of solving the con-
strained problems due to increasing number of
constraints and binary variables.

This paper proposes a method to find a WD-
SNDSs by using the weighted L1−norm. When
all variables are integer it finds the whole set of
efficient solutions. In each iteration of the pro-
posed algorithm only one mixed integer linear
programming problem is solved, while Sylva and
Crema’s method [11] needs to solve two problems
in each iteration which the optimal solution of one
of them necessary not be efficient. The proposed
algorithm ranks the elements of the WDSNDSs,
hence we do not need the filtering procedures and
using suitable values for the parameter of the pro-
posed model we can obtain an appropriate WD-
SNDSs by less computational efforts. It modifies
the dispersal of the WDSNDSs according to the
decision maker opinions.

The paper is organized as follows. Section
2 presents a brief background about MOMILP
problem. Section 3 introduces some models and
an algorithm to generate a WDSNDSs of an
MOMILP problem. Illustration with two numer-
ical examples are given in Section 4. Finally, the
concluding results are presented.

2 MOMILP problem

The MOMILP with s-objective functions can be
defined as follows:

max {C1W, . . . , CsW}
s.t. AiW ≤ bi, i = 1, . . . ,m

W ≥ 0, wj ∈ Z+, j ∈ J
(2.1)

where Cr = (c1r, . . . , cnr) (r = 1, . . . , s), Ai =
(ai1, . . . , ain) (i = 1, 2, . . . ,m), J ⊆ {1, . . . , n},
Z+ = {0, 1, 2, . . .} and W = (w1, . . . , wn)

T .
The set of feasible solutions of problem (2.1)
is defined by X = {W | AiW ≤ bi, i =
1, . . . ,m,W ≥ 0, wj ∈ Z+, j ∈ J} and is as-
sumed to be a non-empty set.The objective vec-
tor Z = (z1, . . . , zs)

T = (C1W, . . . , CsW )T for

W ∈ X is said to be non-dominated vector if
and only if there is no Zo = (zo1, . . . , z

o
s)

T =
(C1W

o, . . . , CsW
o)T for W o ∈ X such that

zr ≥ zor for all r ∈ {1, . . . , s} and zr > zor for
at least one r. The set of F = {Z | Z =
(C1W, . . . , CsW )T ,W ∈ X} is called the values
space of objective functions in problem (2.1). Let
gr = CrW

∗
r (r = 1, . . . , s), where W ∗

r is the op-
timal solution of the following single objective
mixed integer programming problem:

gr = max CrW
s.t. W ∈ X.

(2.2)

Let us consider X be bounded and g =
(g1, . . . , gs)

T = (C1W
∗
1 , . . . , CsW

∗
s )

T is referred to
as the ideal vector of model (2.1) [5]. As can be
seen, for each W ∈ X as a feasible solution of
problem (2.1), the vector g dominates the vector
Z = (C1W, . . . , CsW )T ̸= g.

3 Well-dispersed subsets of effi-
cient solutions

Suppose our aim is to find a subset of efficient so-
lutions with a desired dispersal and λ ∈ Λ = {λ =
(λ1, . . . , λs)

T |λr > 0, r = 1, . . . , s} is known,
where λ is decision maker preferences about ob-
jective functions. To obtain a member of the WD-
SNDSs for problem (2.1), say CW , we specify
W ∈ X such that g − Z = (g1 − C1W, . . . , gs −
CsW )T is minimized. To this purpose, the fol-
lowing MOMILP problem can be solved:

min {g1 − C1W, . . . , gs − CsW}
s.t. W ∈ X.

(3.3)

To find the efficient solutions of model (3.3) by
using the weighted L1-norm, i.e., dλ(g, CW ), and
according to gr ≥ CrW (r = 1, . . . , s,W ∈ X) we
have:

min
W∈X

dλ(g, CW ) = min
W∈X

s∑
r=1

λr|gr − CrW |

= min
W∈X

s∑
r=1

λr(gr − CrW )

=

s∑
r=1

λrgr + min
W∈X

s∑
r=1

λr(−CrW )

=

s∑
r=1

λrgr − max
W∈X

n∑
j=1

s∑
r=1

λrcrjwj .
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Using the above relations, model (3.3) is con-
verted to the following mixed integer linear pro-
gramming problem.

max

s∑
r=1

λrCrW

s.t. W ∈ X.

(3.4)

Let problem (3.4) is feasible and W ∗ be its op-
timal solution.

Theorem 3.1 The optimal solutions of problem
(3.4) are efficient solutions of model (2.1).

Proof. The proof is similar to that of Theorem
2.3 in [5] and is not repeated here. 2

Model (3.4) is for finding some efficient solu-
tions of the MOMILP problem, another member
of the WDSNDSs for problem (2.1), say CW , is
determined such that

1. the distance of the g and CW , i.e.
dλ(g, CW ), is minimized and

2. there exists r ∈ {1, . . . , s} such that |CW −
CW ∗|≥ ε.

To ward this end, some constraints and vari-
ables are added to problem (3.4) and the obtained
model is solved. This process is continued and a
sequence of mixed integer programming problem
is attained. Let W ∗

h−1 be the optimal solution of

the model of the (h−1)th iteration, i.e. the model
Mh−1. Then, by adding the following constraints
to the model Mh−1, the model of the hth iteration
(Mh) is determined.

CrW ≥ CrW
∗
h−1 + α−Mtrh, r = 1, . . . , s

s∑
r=1

trh ≤ s− 1

α ≥ ε
trh ∈ {0, 1}, r = 1, . . . , s

(3.5)
where M is a sufficiently large positive value
and M = max

1≤r≤s
|gr| can be used as its lower

bound. When trh = 1, the constraint CrWh ≥
CrW

∗
h−1 + α − Mtrh is redundant and the con-

straint
∑s

r=1 trh ≤ s − 1 imply that there exists
l ∈ {1, . . . , s} such that tlh = 0.

Using to the above discussion the following
model is considered:

Mh+1 : max

s∑
r=1

λrCrW

s.t. W ∈ X
CrW ≥ CrW

∗
p + α−Mtrp,

r = 1, . . . , s, p = 1, . . . , h
s∑

r=1

trp ≤ s− 1,

p = 1, . . . , h
α ≥ ε
trp ∈ {0, 1}, r = 1, . . . , s,
p = 1, . . . , h.

(3.6)

Suppose that model (3.6) is feasible and
(W ∗, t∗, α∗) is its optimal solution, where t∗ =
(t∗11, . . . , t

∗
sh). For tlp = 0 the constraints ClW ≥

ClW
∗
p + α−Mtlp and α ≥ ε imply that ClW

∗ −
ClW

∗
p ≥ α∗ ≥ ε > 0. This leads to a suitable

dispersal of the elements of WDSNDSs. Fig-
ure 1 illustrates the proposed method for an
MOMILP with two objective functions (z1, z2) =
(C1W,C2W ). The points on the segments DB
and BI are the non-dominated solutions, and g
is the ideal point. OG+OF (= max

W∈X
λTCW )

is the optimal value of model (3.4) for λ =
(λ1, λ2) = (1, 1). Hence, the point B=CW ∗ =
(C1W

∗, C2W
∗) is identified as a non-dominated

vector by model (3.4). Let ε=GH=EF. Then,
model (3.6) compares OH+ON and OK+OE and

identifies R=CŴ or S=CW as the second mem-
ber of the WDSNDSs. If

1. max{OH+ON, OK+OE}=OH+ON, then

t∗1 = 0, t∗2 = 1, α∗=GH, R=CŴ ∈ WD-
SNDSs, as the second element, and

2. max{OH+ON,OK+OE}=OK+OE, then
t∗1 = 1, t∗2 = 0, α∗ =EF and S=CW ∈
WDSNDSs, as the second element.

When OH+ON=OK+OE, the solutionsW and
Ŵ are the alternative optimal solutions of model
(3.6) and CW,CŴ ∈ WDSNDSs. According to
the following theorem, to find the elements of
WDSNDSs of model (2.1) it is enough to solve
model (3.6) in each iteration of the proposed al-
gorithm.
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Figure 1. Illustration of the proposed method in the
objective functions space

Theorem 3.2 The optimal solutions of problem
(3.6) are efficient solutions of model (2.1).

Proof. Let (W ∗
h , t

∗, α∗) be an optimal solution
of model (3.6) and assume that W ∗

h is an ineffi-
cient solution of model (2.1). Therefore, there is
a feasible solution of model (2.1), say W ′, such
that

CrW
′ ≥ CrW

∗
h , r = 1, . . . , s,

∃ l ∈ {1, . . . , s}, ClW
′ > ClW

∗
h .

(3.7)

But, W ′ ∈ X and CrW
′ ≥ CrW

∗
h ≥

CrW
∗
h + α∗ − Mt∗rh, r = 1, . . . , s, h = 1, . . . , p.

Therefore, (W ′, t∗, α∗) is a feasible solution of
model (3.6). Since λ ∈ Λ is strictly positive,∑s

r=1 λrCrW
′ >

∑s
r=1 λrCrW

∗
h , which is a

contradiction. 2

In model (3.6) we assume ε is a small positive
number. But, by solving the following model the
upper bound of ε can be found.

ε∗ = max ε
s.t. W ∈ X

CrW ≥ CrW
∗
p + α−Mtrp,

r = 1, . . . , s, p = 1, . . . , h
s∑

r=1

trp ≤ s− 1, p = 1, . . . , h

α ≥ ε ≥ 0
trp ∈ {0, 1}, r = 1, . . . , s,
p = 1, . . . , h

(3.8)
It is evident when ε > ε∗, model (3.6) is infeasi-
ble and the interval [0, ε∗] is the assurance inter-
val of ε. In some situations decision maker needs
a WDSNDSs with q elements. To specify such
well-dispersed subset from the non-dominated so-
lutions a common ε is needed. To this end, we

can assume ε is a small positive number or we
can use the ε∗ of the first iteration, the optimal
value of the following model, to approximate the
upper bound of ε as ε ≤ ε∗

k , (k > q).

ε∗ = max ε
s.t. W ∈ X

CrW ≥ CrW
∗
1 + α−Mtr1,

r = 1, . . . , s
s∑

r=1

tr1 ≤ s− 1,

p = 1, . . . , h
α ≥ ε
tr1 ∈ {0, 1}, r = 1, . . . , s.

(3.9)

Indeed, approximately model (3.6) with ε ≤ ε∗

k
as common ε after q iterations finds a suitable
WDSNDSs with q elements.

Using a termination condition such as (i) Infea-
sibility of models (3.4) or (3.6) (ii) a given bound
on the number of the founded efficient solutions
(iii) a given bound on the running time and re-
garding to the above discussions the stepwise de-
scription to generate a WDSNDSs is stated as
follows.

3.1 The proposed Algorithm

Initialization
Choose λ ∈ Λ and solve model (3.4). Set h = 0
and specify WD0 = {W ∗

0 } as the set of optimal
solution of model (3.4). If WD0 = ϕ, stop and
the set of WDSNDSs is empty, otherwise choose
M, ε, a stop condition and go to step 1.
Generalization
Step 1: Solve model (3.6), and specify
WD = {W ∗

h} as the set of optimal solution of
model (3.6).
Step 2: If WD = ϕ stop, and put the set
of {CW ∗

0 , CW ∗
1 , . . . , CW ∗

h}, as the WDSNDSs,
otherwise set WDh+1 = WDh ∪ WD and go to
step 1.

Note that when all of the variables of model
(2.1) are integer, the proposed algorithm gener-
ates the whole set of efficient solutions. In this
case, we have to set ε = 0 and hence model (3.6)
is converted the following model:
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max
s∑

r=1

λrCrW

s.t. W ∈ X
CrW > CrW

∗
p −Mtrp, r = 1, . . . , s,

p = 1, . . . , h
s∑

r=1

trp ≤ s− 1, p = 1, . . . , h

trp ∈ {0, 1}, r = 1, . . . , s, p = 1, . . . , h.
(3.10)

Indeed, in this case the proposed algorithm in
this paper is the general case of the proposed al-
gorithm in [5].

Theorem 3.3 By using model (3.10) instead of
model (3.6) the proposed algorithm generates the
whole set of efficient solution of MOILP problem.

Proof. The proof is similar to that of Theorem
2.5 in [5]. 2

4 Numerical Examples

This section examines two numerical examples to
verify the validity and the effectiveness of the pro-
posed algorithm in comparison with Sylva and
Crema’s method [11].

Example 4.1 Consider the following MOMILP
problem [11]:

max w1

max w2

s.t. w1 + 2w2 + 2w3 ≤ 4
2w1 + w2 − 2w3 ≤ 2
w1, w2 ≥ 0, w3 ∈ {0, 1}.

Suppose that we need a WDSNDSs with 7 ele-
ments. In this case, we can estimate an upper
bound for ε.

Initialization
Let λ = (1, 1). To start the algorithm the
following model is solved:

max w1 + w2

s.t. w1 + 2w2 + 2w3 ≤ 4
2w1 + w2 − 2w3 ≤ 2
w1, w2 ≥ 0, w3 ∈ {0, 1}.

An optimal solution to above problem is W ∗
0 =

(2, 0, 1). Therefore, WD0 = {W ∗
o = (2, 0, 1)} ̸= ϕ

and Zo = (z1, z2) = (2, 0). Let M = 100.
To estimate an ε corresponding to a WDSNDSs

with 7 elements the following model is solved:

max ε
s.t. w1 + 2w2 + 2w3 ≤ 4

2w1 + w2 − 2w3 ≤ 2
w1 + 100t11 − α ≥ 2
w2 + 100t21 − α ≥ 0
t11 + t21 ≤ 1
α ≥ ε
ε ≥ 0, w1, w2 ≥ 0, t11, t21, w3 ∈ {0, 1}.

Using the optimal value of the above model,
ε∗ = 2, to find assurance interval of ε, we have
0 < ε ≤ ε∗

k = 2
k , (k > 7). By choosing k = 10 we

obtain ε = 0.2 as a common ε for model (3.6).
Generalization

Iteration 1
To specify WD the following model is solved:

max w1 + w2

s.t. w1 + 2w2 + 2w3 ≤ 4
2w1 + w2 − 2w3 ≤ 2
w1 + 100t11 − α ≥ 2
w2 + 100t21 − α ≥ 0
t11 + t21 ≤ 1
α ≥ 0.2
w1, w2 ≥ 0, t11, t21, w3 ∈ {0, 1}.

This problem is feasible and W ∗
1 = (0, 2, 0) is

its optimal solution. Hence, Z1 = (z1, z2) = (0, 2)
and WD1 = WD0 ∪WD = {(0, 2, 0), (2, 0, 1)}.
Iteration 2
By adding the new constraints, the following
model is obtained:

max w1 + w2

s.t. w1 + 2w2 + 2w3 ≤ 4
2w1 + w2 − 2w3 ≤ 2
w1 + 100t11 − α ≥ 2
w2 + 100t21 − α ≥ 0
w1 + 100t12 − α ≥ 0
w2 + 100t22 − α ≥ 2
t1h + t2h ≤ 1, h = 1, 2
w1, w2 ≥ 0, α ≥ 0.2
t1h, t2h, w3 ∈ {0, 1}, h = 1, 2.

An optimal solution is W ∗
2 = (1.6, 0.2, 1)

and its corresponding non-dominated solution is
Z2 = (1.6, 0.2). So, WD2 = WD1 ∪ WD =
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{(0, 2, 0), (2, 0, 1), (1.6, 0.2, 1)}.
Iteration 3
The corresponding problem for WD2 is as

max w1 + w2

s.t. w1 + 2w2 + 2w3 ≤ 4
2w1 + w2 − 2w3 ≤ 2
w1 + 100t11 − α ≥ 2
w2 + 100t21 − α ≥ 0
w1 + 100t12 − α ≥ 0
w2 + 100t22 − α ≥ 2
w1 + 100t13 − α ≥ 1.6
w2 + 100t23 − α ≥ 0.2
t1h + t2h ≤ 1, h = 1, 2, 3
w1, w2 ≥ 0, α ≥ 0.2
t1h, t2h, w3 ∈ {0, 1}, h = 1, 2, 3.

An optimal solution to the above problem is
W ∗

3 = (0.2, 1.6, 0) with a non-dominated vector
equal to (0.2, 1.6). Consequently,

WD3 = WD2 ∪ WD =
{(0, 2, 0), (2, 0, 1), (1.6, 0.2, 1), (0.2, 1.6, 0)}.
Iteration 4
In order to find another member of WDSNDSs
the following problem must be solved.

max w1 + w2

s.t. w1 + 2w2 + 2w3 ≤ 4
2w1 + w2 − 2w3 ≤ 2
w1 + 100t11 − α ≥ 2
w2 + 100t21 − α ≥ 0
w1 + 100t12 − α ≥ 0
w2 + 100t22 − α ≥ 2
w1 + 100t13 − α ≥ 1.6
w2 + 100t23 − α ≥ 0.2
w1 + 100t14 − α ≥ 0.2
w2 + 100t24 − α ≥ 1.6
t1h + t2h ≤ 1, h = 1, 2, 3, 4
w1, w2 ≥ 0, α ≥ 0.2
t1h, t2h, w3 ∈ {0, 1}, h = 1, 2, 3, 4.

An optimal solution is W ∗
4 = (1.2, 0.4, 1) and

its corresponding non-dominated solution is Z4 =
(1.2, 0.4). Therefore,

WD4 = WD3 ∪WD = {(0, 2, 0), (2, 0, 1),
(1.6, 0.2, 1), (0.2, 1.6, 0), (1.2, 0.4, 1)}.
Iterations 5 and 6
For the purpose briefness, we neglect the for-
mulation of problems, in the rest of iter-
ations. The optimal solutions of the 5th
and 6th iterations are W ∗

5 = (0.4, 1.2, 0) and
W ∗

6 = (0.8, 0.6, 1), respectively, and hence Z5 =
(0.4, 1.2), Z6 = (0.4, 1.2) and WD6 = WD4 ∪

{W ∗
5 } ∪ {W ∗

6 }={(0, 2, 0), (2, 0, 1), (1.6, 0.2, 1),
(0.2,1.6,0), (1.2, 0.4, 1), (0.4, 1.2, 0),
(0.8, 0.6, 1)}.

Therefore, using ε = 0.2 the set
{Z0, Z1, . . . , Z6} is the WDSNDSs. The ele-
ments of WDSNDSs have been ranked by their
distance from ideal point such that the rank
of CWj is better than the rank of CWj+1 for
j = 0, . . . , 5.

If we choose ε < 0.2, then another WDSNDSs
with lower dispersal of elements are generated.
For instance, if we choose ε = 0.1, a WDSNDSs
with further elements is generated. Column 2 of
Table 1 shows the elements of the generated WD-
SNDSs with ε = 0.1.

j W ∗
j = (w∗

1j , w
∗
2j , w

∗
3j) Z∗

j = (z∗1j , z
∗
2j)

1 (2,0,1) (2,0)
2 (0,2,0) (0,2)
3 (1.8,0.1,1) (1.8,0.1)
4 (0.1,1.8,0) (0.1,1.8)
5 (1.6,0.2,1) (1.6,0.2)
6 (0.2,1.6,0) (0.2,1.6)
7 (1.4,0.3,1) (1.4,0.3)
8 (0.3,1.4,0) (0.3,1.4)
9 (1.2,0.4,1) (1.2,0.4)
10 (0.4,1.2,0) (0.4,1.2)
11 (1,0.5,1) (1,0.5)
12 (0.5,1,0) (0.5,1)
13 (0.8,0.6,1) (0.8,0.6)

Table 1. The generated WDSNDSs with ε = 0.1

Example 4.2 As the second example to il-
lustrate the proposed algorithm the following
MOMILP problem is considered [11]:

max w1 − 2w2

max −w1 + 3w2

s.t. w1 − 2w2 ≤ 0
w1, w2 ∈ {0, 1, 2}.

Initialization
Let λ = (4, 3). To start the algorithm, the
following model is considered:

max w1 + w2

s.t. w1 − 2w2 ≤ 0
w1, w2 ∈ {0, 1, 2}.

The vector W ∗
o = (2, 2) is an optimal solution

of the above problem. Therefore, WD0 = {W ∗
o =

(2, 2)} ̸= ϕ and Zo = (z1, z2) = (−2, 4). Let
M = 100, ε = 0 and consider the infeasibility of
model (3.10) as stop condition.
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Generalization
Iteration 1
Using (3.10), to specify WD1 the following model
is solved:

max w1 + w2

s.t. w1 − 2w2 ≤ 0
w1 − 2w2 + 100t11 > −2
−w1 + 3w2 + 100t21 > 4
t11 + t21 ≤ 1
w1, w2 ∈ {0, 1, 2}, t11, t21 ∈ {0, 1}.

The optimal solution of the above model is
W ∗

1 = (1, 2) and hence Z1 = (z1, z2) = (−3, 5),
and WD1 = WD0 ∪ {W ∗

1 } = {(2, 2), (1, 2)}.
Iteration 2
By considering the new constraints the following
model is obtained:

max w1 + w2

s.t. w1 − 2w2 ≤ 0
w1 − 2w2 + 100t11 > −2
−w1 + 3w2 + 100t21 > 4
w1 − 2w2 + 100t12 > −3
−w1 + 3w2 + 100t22 > 5
t1p + t2p ≤ 1, p = 1, 2
w1, w2 ∈ {0, 1, 2}, t1p, t2p ∈ {0, 1},
p = 1, 2.

An optimal solution is W ∗
2 = (2, 1) and hence

Z2 = (0, 1), and WD2 = WD1 ∪ {W ∗
2 } =

{(2, 2), (1, 2), (2, 1)}.
Iteration 3
In order to find another member of WDSNDSs,
the following problem must be solved.

max w1 + w2

s.t. w1 − 2w2 ≤ 0
w1 − 2w2 + 100t11 > −2
−w1 + 3w2 + 100t21 > 4
w1 − 2w2 + 100t12 > −3
−w1 + 3w2 + 100t21 > 5
w1 − 2w2 + 100t13 > 0
−w1 + 3w2 + 100t23 > 1
t1p + t2p ≤ 1, p = 1, 2, 3
w1, w2 ∈ {0, 1, 2},
t1p, t2p ∈ {0, 1}, p = 1, 2, 3.

An optimal solution to the above problem is
W ∗

3 = (0, 2) and hence Z3 = (−4, 6), and WD3 =
WD2 ∪ {W ∗

3 } = {(2, 2), (1, 2), (2, 1), (0, 2)}.
Iteration 4
To generate another member of WDSNDSs the
following problem is solved.

max w1 + w2

s.t. w1 − 2w2 ≤ 0
w1 − 2w2 + 100t11 > −2
−w1 + 3w2 + 100t21 > 4
w1 − 2w2 + 100t12 > −3
−w1 + 3w2 + 100t22 > 5
w1 − 2w2 + 100t13 > 0
−w1 + 3w2 + 100t23 > 1
w1 − 2w2 + 100t14 > −4
−w1 + 3w2 + 100t24 > 6
t1p + t2p ≤ 1, p = 1, 2, 3, 4
w1, w2 ∈ {0, 1, 2}, t1p, t2p ∈ {0, 1},
p = 1, 2, 3, 4.

The vector W ∗
4 = (1, 1) is an optimal

solution of the above model. Therefore,
Z4 = (−1, 2) and WD4 = WD3 ∪ {W ∗

4 } =
{(2, 2), (1, 2), (2, 1), (0, 2), (1, 1)}.
Iteration 5
The model of this iteration is infeasible and
the algorithm is terminated. Therefore, the set
WDSNDSs= {Z0, Z1, . . . , Z4} is the whole set of
non-dominated solutions. This example has been
solved in [11]. To find a Z ∈WDSNDSs Sylva and
Creme [11] solve two problems while our method
solves only one problem in each iteration.

5 Conclusion

This paper proposed an algorithm to find a WD-
SNDSs of an MOMILP problem. In each iteration
of the proposed algorithm, only one mixed inte-
ger linear programming problem is solved. Ac-
cording to the λ ∈ Λ, the opinions of decision
maker, the rank of the optimal solution of model
(3.6) in the pth iteration is better than its optimal
solution in the (p+1)th iteration. Hence, the ele-
ments of the WDSNDSs of an MOMILP problem
are ranked according to their distance form ideal
point and the generated WDSNDSs can be used
without any filtering procedures. Using suitable
value for the parameter of the proposed model
an appropriate WDSNDSs by less computational
efforts is generated.

Similar to Sylva and Crema’s method [11], cor-
responding to an MOMILP problem with s ob-
jective functions, in each iteration s + 1 con-
straints and s variables are added to the mixed
integer model which is solved. This increases the
computational efforts to generate the WDSNDSs
and can be studied in the future. The proposed



246 SH. Razavyan /IJIM Vol. 7, No. 3 (2015) 239-246

method can be modified to solve mixed integer
non-linear programming problem.
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