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Abstract

In the present work, by applying known Bernstein polynomials and their advantageous properties,
we establish an efficient iterative algorithm to approximate the numerical solution of fuzzy Fredholm
integral equations of the second kind. The convergence of the proposed method is given and the
numerical examples illustrate that the proposed iterative algorithm are valid.
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1 Introduction

T
he concept of fuzzy integral was initiated
by Dubois and Prade [11] and then investi-

gated by Kaleva [21], Goetschel and Voxman [20],
Nanda [23] and others. In [33], the Henstock inte-
gral of fuzzy-valued functions is defined, while the
fuzzy Riemann integral and its numerical integra-
tion was investigated byWu in [34]. In [7], the au-
thors introduced some quadrature rules for the in-
tegral of fuzzy-number-valued mappings. Kaleva
[21] proposed the existence and uniqueness of the
solution of fuzzy differential equations using the
Banach fixed point principle. Mordeson and New-
man (see [22]) started the study of the subject
of fuzzy integral equations. The Banach fixed
point principle is the powerful tool to investigate
of the existence and uniqueness of the solution

∗Corresponding author. ezati@ kiau.ac.ir, Tel:
+989123618518.

†Department of Mathematics, Karaj Branch, Islamic
Azad University, Karaj, Iran.

‡Department of Mathematics, Karaj Branch, Islamic
Azad University, Karaj, Iran.

§Department of Mathematics, Karaj Branch, Islamic
Azad University, Karaj, Iran.

of fuzzy integral equations. The existence and
uniqueness of the solution of fuzzy integral equa-
tions can be found in [5, 6, 16, 27, 28, 29]. In
[19, 24], sufficient conditions are given, which un-
der those conditions, solutions of fuzzy integral
equations are bounded. In [14], the authors gave
one of the applications of fuzzy integral for solv-
ing fuzzy Fredholm integral equation of the sec-
ond kind. The iterative techniques are applied to
fuzzy Fredholm integral equation of the second
kind in [7, 15, 26]. Friedman et al. [16] presented
a numerical algorithm to solve fuzzy Fredholm in-
tegral equations of the second kind based on suc-
cessive approximations method. Also, Friedman
et al. [17] investigated numerical procedures for
solving fuzzy Fredholm integral equation of the
second kind using the embedding method. Babo-
lian et al. [4] used the Adomian decomposition
method (ADM) to solve fuzzy Fredholm integral
equation of the second kind. Abbssbandy et al.
[1] obtained the solution of fuzzy Fredholm in-
tegral equations of the second kind by using the
Nystrom method. In [8], the successive approxi-
mations method is used for nonlinear fuzzy Fred-
holm integral equations. Recently, Bica et al.
[9] developed an iterative numerical method to
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solve nonlinear fuzzy Hammerstein–Volterra in-
tegral equations with constant delay. In [10], the
same method has been applied to the solutions
that take values in the set of right-sided fuzzy
numbers for a fuzzy Volterra integral equation
with constant delay arising in epidemiology.
Recently, the authors used Bernstein polynomi-
als (see [12]), Lagrange interpolation (see [13]),
divided and finite differences (see [25]), Legendre
wavelets (see [31]) and predictor-corrector proce-
dures (see [32]) for fuzzy integral equations.
Here, we propose a numerical approach for solv-
ing linear fuzzy Fredholm integral equations of
the second kind and obtain the error estimate in
the approximation of the solution of such fuzzy
integral equations. The rest of this paper is or-
ganized as follows: In Section 2 , we review some
elementary concepts of the fuzzy set theory and
modulus of continuity. In Section 3, we drive the
proposed method to obtain numerical solution of
linear fuzzy Fredholm integral equations based on
an iterative procedure. The error estimation of
the proposed method is obtained in Section 4 in
terms of uniform and partial modulus of continu-
ity, proving the convergence of the method. Sec-
tion 5 includes two numerical examples for the
proposed method. Finally, Section 6 gives our
concluding remarks.

2 Preliminaries

Definition 2.1 [2]. A fuzzy number is a func-
tion u : R → [0, 1] having the properties:

(1) u is normal , that is ∃ x0 ∈ R such that
u(x0) = 1,

(2) u is fuzzy convex set i.e. u(λx+ (1− λ)y) ≥
min {u(x), u(y)} ∀x, y ∈ R, λ ∈ [0, 1]),

(3) u is upper semi-continuous on R,

(4) the { x ∈ R : u(x) > 0} is compact set.

The set of all fuzzy numbers is denoted by R𝟋.
An alternative definition which yields the same
R𝟋 is given by [21].

Definition 2.2 [17]. An arbitrary fuzzy number
is represented, in parametric form, by an ordered

pair of functions (u(r), u(r)), 0 ≤ r ≤ 1, which
satisfy the following requirements:

(1) u(r) is a bounded left continuous non-
decreasing function over [0,1],

(2) u(r) is a bounded left continuous non-
increasing function over [0,1],

(3) u(r) ≤ u(r) , 0 ≤ r ≤ 1.

The addition and scaler multiplication of fuzzy
numbers in R𝟋 are defined as follows:

(1) (u⊕ v)(r) = (u(r) + v(r), u(r) + v(r)),

(2) (λ⊙ u)(r) =


(λu(r), λu(r)) λ ≥ 0,

(λu(r), λu(r)) λ < 0.

Definition 2.3 [3]. For arbitrary fuzzy numbers
u = (u(r), u(r)) , v = (v(r), v(r)) the quantity
D(u, v) = sup

r∈[0,1]
max{|u(r)− v(r)| , |u(r)− v(r)| }

is the distance between u and v.
The following properties are hold [7]:

(1) (R𝟋, D) is a complete metric space,

(2) D(u⊕ w, v ⊕ w) = D(u, v) ∀ u, v, w ∈ R𝟋,

(3) D(k ⊙ u, k ⊙ v) = |k|D(u, v) ∀ u, v ∈
R𝟋 ∀ k ∈ R,

(4) D(u ⊕ v, w ⊕ e) ≤ D(u,w) +
D(v, e) ∀ u, v, w, e ∈ R𝟋.

Theorem 2.1 [2, 8].

(1) The pair (R𝟋,⊕) is a commutative semi-
group with 0̃ = χ0 zero element.

(2) For fuzzy numbers which are not crisp, there
is no opposite element ( that is, (R𝟋,⊕) can-
not be a group).

(3) For any a, b ∈ R with a, b ≥ 0 or a, b ≤ 0
and for any u ∈ R𝟋, we have
(a+ b)⊙ u = a⊙ u⊕ b⊙ u.
For arbitrary a, b ∈ R, this property is not
fulfilled.

(4) For any λ, µ ∈ R and u ∈ R𝟋, we have
λ⊙ (u⊕ v) = λ⊙ u⊕ λ⊙ u.

(5) For any λ ∈ R and u, v ∈ R𝟋, we have
λ⊙ (µ⊙ u) = (λ.µ)⊙ u.
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(6) The function of ∥.∥𝟋: R𝟋 → R by ∥u∥𝟋=
D(u, 0̃) has the usual properties of the norm,
that is, ∥u∥𝟋= 0 if and only if
u = õ, ∥λ ⊙ u∥𝟋= |λ|∥u∥𝟋 and ∥u ⊕ v∥𝟋≤
∥u∥𝟋+∥v∥𝟋.

(7) |∥u∥𝟋−∥v∥𝟋|≤ D(u, v) and D(u, v) ≤
|u∥𝟋+∥v∥𝟋 for any u, v ∈ R𝟋.

Definition 2.4 [3]. Let f : [a, b] → R𝟋
be a fuzzy real valued function, then function
ω [a,b] (f, .) : R+ ∪ {0} → R+ defined by

ω [a,b](f, δ) = sup{D(f(x), f(y))| x, y
∈ [a, b], |x− y| ≤ δ}, (2.1)

where R+ is the set of positive real numbers, is
called the modulus of continuity of f on [a, b].

Some properties of the modulus of continuity are
given in below.

Theorem 2.2 [7]. The following properties
hold:

(1) D(f(x), f(y)) ≤ ω [a,b] (f, |x− y|) for any
x, y ∈ [a, b] ,

(2) ω [a,b] (f, δ) is increasing function of δ,

(3) ω [a,b] (f, 0) = 0,

(4) ω [a,b] (f, δ1 + δ2) ≤ ω [a,b] (f, δ1) +
ω [a,b] (f, δ2) for any δ1, δ2 ≥ 0,

(5) ω [a,b] (f, nδ) ≤ nω [a, b] (f, δ) for any δ ≥ 0
n ∈ N,

(6) ω [a,b] (f, λδ) ≤ (λ + 1)ω [a,b] (f, δ) for any
δ, λ ≥ 0,

(7) If [c, d] ⊆ [a, b] then ω [c,d] (f, δ) ≤
ω [a,b] (f, δ) .

Definition 2.5 [21]. A fuzzy real number valued
function f : [a, b] → R𝟋 is said to be continuous
in x0 ∈ [a, b], if for each ε > 0 there exist δ >
0 such that D(f(x), f(x0)) < ε, whenever x ∈
[a, b] and |x− x0| < δ. We say that f is fuzzy
continuous on [a, b] if f is continuous at each x0 ∈
[a, b], and denote the space of all such functions
by C𝟋[a, b].

Definition 2.6 [3]. Let f : [a, b] → R𝟋. f is
fuzzy-Riemann integrable to I(f) ∈ R𝟋 if for any
ε > 0, there exists δ > 0 such that for any division
P = {[u, v] ; ξ} of [a, b] with the norms ∆(p) < δ,
we have,

D

(∑
P

∗(v − u)⊙ f(ξ), I(f)

)
< ε, (2.2)

where
∑∗ denotes the fuzzy summation. In this

case, it is denoted by

I(f) = (FR)

∫ b

a
f(t)dt.

In [20], the authors proved that if f ∈ C𝟋[a, b],
its definite integral exists, and also,

(FR)
∫ b
a f(t; r)dt =

∫ b
a f(t, r)dt,

(FR)
∫ b
a f(t; r)dt =

∫ b
a f(t, r)dt.

Lemma 2.1 [18]. If f, g : [a, b] ⊆ R → R𝟋 are
fuzzy continuous functions, then the function F :
[a, b] → R+ by F (t) = D(f(t), g(t)) is continuous
on A = [a, b], and

D

(
(FR)

∫ b

a
f(t)dt, (FR)

∫ b

a
g(t)dt

)
≤
∫ b

a
D(f(t), g(t))dt. (2.3)

Definition 2.7 (see [3], [18]) For f ∈ C𝟋[0, 1],
the Bernstein-type fuzzy polynomials for all x ∈
[0, 1] is as follows

B(F )
n (f)(x) =

n∑
k=0

∗ f

(
k

n

)
⊙ pn,k(x) , n ∈ N

where Pn,k(x) =

(
n
k

)
xk(1 − x)n−x and

∑ ∗

means addition with respect to ⊕ ∈ R𝟋 .
It is obvious that Pn,k(x) ≥ 0, ∀ x ∈ [0, 1] and
Pn,0(x), Pn,1(x), ..., Pn,n(x) are linearly indepen-
dent algebraic polynomials of degree ≤n and

n∑
k=0

Pn,k(x) = 1

Theorem 2.3 (see [3], [18]). If f ∈ C𝟋[0, 1],
then(

B(F )
n (f)(x), f(x)

)
≤ 3

2
ω [0,1](f,

1√
n
),

n ∈ N, x ∈ [0, 1]; (2.4)
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i.e.,

lim
n→∞

D
(
B(F )

n (f)(x), f(x)
)
= 0,

uniformly with respect to x ∈ [0, 1].

3 Fuzzy integral equations

The linear fuzzy Fredholm integral equations of
the second kind is as follows:

F (t) = f(t)⊕λ⊙(FR)

∫ b

a
k(s, t)⊙F (s)ds, (3.5)

where k(s, t) is an arbitrary crisp kernel function
over the square a ≤ s, t ≤ b, λ ≥ 0, and F (t) is
a fuzzy real valued function.
In [13], the authors presented sufficient conditions
for the existence and unique solution of (2.4) as
follows:

Theorem 3.1 [17]. Let k(s, t) be continuous for
a ≤ s, t ≤ b, λ > 0, and f(t) a fuzzy continuous
of t, a ≤ t ≤ b. If

λ <
1

M(b− a)
,

where
M = max

a≤s,t≤b
|k(s, t)|,

then the iterative procedure

F0(t) = f(t),

Fm(t) = f(t)⊕ λ⊙ (FR)

∫ b

a
k(s, t)

⊙ Fm−1(s)ds, m ≥ 1, (3.6)

converges to the unique solution of (2.4).
Specifically,

D∗(F, Fm) ≤ Lm

1− L
D∗(F0, F1), (3.7)

where L = λM(b − a), and D∗(f, g) =
sup
a≤t≤b

D(f(t), g(t)) denotes the uniform distance

between fuzzy-number-valued functions.

Throughout this paper, we consider fuzzy Fred-
holm integral equation (4.11) with a = 0, b = 1.
Here, we consider the linear fuzzy Fredholm inte-
gral equation (2.4) and uniform partition of the
interval [0, 1] :

∆ : 0 = t0 < t1 < . . . < tn−1 < tn = 1, (3.8)

with ti = ih where h = 1
n , then the following it-

erative procedure gives the approximate solution
of (2.4) in point t

y0(t) = f(t),

ym(t) = f(t)⊕ λ⊙
n∑

i=0

∗k(ti, t)

⊙ ym−1(ti)

∫ 1

0
pn,i(s)ds, m ≥ 1, (3.9)

where

pn,i(t) =

(
n

i

)
ti(1− t)n−i.

Remark 3.1 Since∫ 1

0
tn(1− t)mdx =

m!n!

(m+ n+ 1)!

we get ∫ 1

0
pn,k(s)ds =

1

n+ 1
.

4 Error estimation

Now, we obtain error estimate for given linear
fuzzy Fredholm integral equations of the second
kind (2.4).

Theorem 4.1 Consider the linear fuzzy Fred-
holm integral equation (2.4) with continuous ker-
nel k(s, t) having constant sign on [0, 1] × [0, 1],
f continuous on [0, 1] and also, if L = λM ≤ 1
where M = max

s,t∈[0,1]
|k(s, t)|, then iterative pro-

cedure (3.8) converges to the unique solution of
(2.4), F , and its error estimate is as follows:

D∗(F, ym) ≤ 3L

2(1− L)
ω [0,1](f,

1√
n
) +

[
Lm+1

1− L

+
L

2M(1− L)2

(
3ωs(k, h)+2Lωt(k,

1√
n
)
)]

∥ f∥𝟋,

where
∥ f∥𝟋= sup

a≤t≤b
∥f(t)∥𝟋

and

ωs(k, h) = sup
a≤t≤b

{sup|k(s1, t)−k(s2, t)|: |s1−s2|≤ h},

and

ωt(k, h) = sup
a≤s≤b

{sup|k(s, t1)−k(s, t2)|: |t1−t2|≤ h}.
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Proof. Since Fm(t) = f(t) ⊕ λ ⊙
(FR)

∫ 1
0 k(s, t)⊙Fm−1(s)ds, ∀t ∈ [0, 1], we have:

D(Fm(t), ym(t)) =

D(f(t), f(t)) + λD
(
(FR)

∫ 1

0
k(s, t)

⊙Fm−1(s)ds,

n∑
i=0

∗

k(ti, t)⊙ym−1(ti)⊙
∫ 1

0
pn,i(s)ds

)

= λD

(
(FR)

∫ 1

0
k(s, t)⊙ Fm−1(s)ds,

n∑
i=0

∗

k(ti, t)

⊙ym−1(ti)⊙
∫ 1

0
pn,i(s)ds

)

≤ λD
(∫ 1

0
k(s, t)⊙Fm−1(s)ds,

∫ 1

0

n∑
i=0

∗

pn,i(s)k(s, t)

⊙Fm−1(ti)ds
)
+λ

∫ 1

0

n∑
i=0

D
(
pn,i(s)k(s, t)⊙Fm−1(ti),

pn,i(s)k(s, t)⊙ ym−1(ti)
)
ds

+λ

∫ 1

0

n∑
i=0

D
(
pn,i(s)k(s, t)⊙ym−1(ti), pn,i(s)k(ti, t)

⊙ym−1(ti)
)
ds.

With suppose that M = max
s,t∈[0,1]

|k(s, t)| we

have:

D(Fm(t), ym(t)) ≤ λM

∫ 1

0
D
(
Fm−1(s),

n∑
i=0

∗

pn,i(s)Fm−1(ti)
)
ds+ λM

∫ 1

0

n∑
i=0

|pn,i(t)|

D
(
Fm−1(ti), ym−1(ti)

)
ds

+λ

∫ 1

0

n∑
i=0

|pn,i(t)||k(s, t)− k(ti, t)|

D
(
ym−1(ti), 0̃)

)
ds.

Regarding to Theorem 2.3 and taking into ac-
count that

∑n
i=0 pn,i(t) = 1 and L = λM and

∥ ym−1∥𝟋= sup
0≤t≤1

D(ym−1(t), 0̃) we have:

D(Fm(t), ym(t)) ≤ 3L

2
ω [0,1](Fm−1,

1√
n
)

+L.D
(
Fm−1(ti), ym−1(ti)

)
+λ ∥ ym−1∥𝟋ωs(k, h).

Taking the supremum for 0 ≤ t ≤ 1 from above
inequality we have:

D∗(Fm, ym) ≤ 3L

2
ω [0,1](Fm−1,

1√
n
)

+L.D∗(Fm−1, ym−1) +
L

M
∥ ym−1∥𝟋ωs(k, h),

where ωs(k, h) is the partial modulus of conti-
nuity with respect to s.
Considering inequality (3.9) we rewrite the fol-
lowing inequalities:

D∗(Fm, ym) ≤ 3L

2
ω [0,1](Fm−1,

1√
n
)

+L.D∗(Fm−1, ym−1) +
L

M
∥ ym−1∥𝟋ωs(k, h),

D∗(Fm−1, ym−1) ≤
3L

2
ω [0,1](Fm−2,

1√
n
)

+L.D∗(Fm−2, ym−2) +
L

M
∥ ym−2∥𝟋ωs(k, h),

...

D∗(F1, y1) ≤
3L

2
ω [0,1](f,

1√
n
)

+
L

M
∥ f∥𝟋ωs(k, h). (4.10)

Multiplying the above inequalities by
1, L, L2 . . . , Lm−1, respectively and summing
them we have

D∗(Fm, ym) ≤ 3L

2

(
ω [0,1](Fm−1,

1√
n
)

+Lω [0,1](Fm−2,
1√
n
) + . . .+ Lm−1ω [0,1](f,

1√
n
)
)

+
L

M
ωs(k, h)

(
∥ ym−1∥𝟋+L ∥ ym−2∥𝟋

+ . . .+ Lm−1 ∥ f∥𝟋
)
. (4.11)

Taking norm from (3.8) and considering the
Remark 3.1 we obtain

∥yi(t)∥𝟋≤ ∥f(t)∥𝟋+L∥yi−1(t)∥𝟋, 1 ≤ i ≤ m.
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Taking supremum the above inequality and then
by successive substitutions on the obtained in-
equality and taking into account L = λM ≤ 1 we
have:

∥ yi∥𝟋≤
1

1− L
∥ f∥𝟋 1 ≤ i ≤ m−1.

(4.12)
Also, according to the proof of Theorem (11) in
[7] we have the following inequalities:

ω [0,1](Fi, h) ≤ ω [0,1](f, h) +
L

M
ωt(k, h) ∥Fi−1∥𝟋

1 ≤ i ≤ m− 1. (4.13)

Also, taking norm from (3.5) we get

∥Fi(t)∥𝟋≤ ∥f(t)∥𝟋+L∥Fi−1(t)∥𝟋, 1 ≤ i ≤ m.

Taking supremum the above inequality and then
by successive substitutions on the obtained in-
equality and taking into account L = λM ≤ 1 we
have:

∥Fi∥𝟋≤
1

1− L
∥ f∥𝟋 1 ≤ i ≤ m−2.

(4.14)
Thus, substituting (4.13) into (4.14) we obtain:

ω [0,1](Fi, h) ≤ ω [0,1](f, h)+
L

M(1− L)
∥ f∥𝟋ωt(k, h)

1 ≤ i ≤ m− 1. (4.15)

Finally, by substituting (4.12) and (4.15) into
(4.11), we obtain the following inequality:

D∗(Fm, ym) ≤ 3L

2(1− L)
ω [0,1](f,

1√
n
)

+
L ∥ f∥𝟋

2M(1− L)2

(
3ωs(k, h) + 2Lωt(k,

1√
n
)
)
.

Considering the inequality (3.6) we obtain

D∗(F, ym) ≤ D∗(F, Fm) +D∗(Fm, ym)

≤ Lm

1− L
D∗(F1, F0) +D∗(Fm, ym).

Since

D(F1(t), F0(t)) = D

(
f(t)⊕ λ(FR)

∫ 1

0
k(s, t)

⊙F0(s)ds, F0(t)

)

≤ λD

(
(FR)

∫ 1

0
k(s, t)⊙ F0(s)ds, 0̃

)
,

we conclude that

D∗(F1, F0) ≤ L sup
0≤s≤1

D(F0(s), 0̃) ≤ L ∥ f∥𝟋.

Hence, we have:

D∗(F, ym) ≤ 3L

2(1− L)
ω [0,1](f,

1√
n
)

+

[
Lm+1

1− L
+

L

2M(1− L)2

(
3ωs(k, h)

+2Lωt(k,
1√
n
)
)]

∥ f∥𝟋. 2

Remark 4.1 Since L < 1, it follows that

lim
m→∞

Lm+1 = 0.

In addition,

lim
h→0

ω [0,1](f, h) = 0,

lim
h→0

ωs(k, h) = 0,

lim
h→0

ωt(k, h) = 0.

So,
lim

m→∞,h→0
D∗(F, ym) = 0

that shows the convergence of the method.

5 Numerical examples

To illustrate the efficiency of the presented
method in the previous section, we give two ex-
amples. Also, we compare the numerical solution
obtained by using the proposed method with the
exact solution.

Example 5.1 Consider the following linear
fuzzy Fredholm integral equations of the second
kind:

F (t) =

(
et − 0.2(et+1 − 1)

t+ 1

)
⊙γ⊕0.2⊙

∫ 1

0
est⊙F (s)ds,

where γ = (r, 2− r).
The exact solution in this case is given by

F (t) = et ⊙ γ.

To compare the error with n = 10, m = 12 and
n = 100, m = 9, see Table 1.
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Table 1: The accuracy on the level sets for Example 5.1 in t = 0.5

n=10, m=12 n=100, m=9

r-level |F − y
m
| |F − ym| |F − y

m
| |F − ym|

0.00 0.000000 0.222423 0.000000 0.027002

0.25 0.027803 0.194620 0.003375 0.023627

0.50 0.055606 0.166817 0.006751 0.020252

0.75 0.083409 0.139014 0.010126 0.016876

1.00 0.111211 0.111211 0.013501 0.013501

Table 2: The accuracy on the level sets for Example 5.2 in t = 1.5

n=10, m=9 n=100, m=9

r-level |F − y
m
| |F − ym| |F − y

m
| |F − ym|

0.00 0.000000 0.163788 0.000000 0.019717

0.25 0.020473 0.143314 0.002465 0.017253

0.50 0.040947 0.122841 0.004930 0.014788

0.75 0.061420 0.102367 0.007394 0.012323

1.00 0.081894 0.081894 0.009859 0.009859

Example 5.2 Consider the following linear
fuzzy Fredholm integral equations of the second
kind:

f(t, r) = rt− 3

26
rt2 − 3

52
r

f(t, r) = 2t− rt− 3

13
t2 − 3

26
+

3

26
rt2 +

3

52
r

and kernel

k(s, t) =
(s2 + t2 − 2)

13

and a = 1, b = 2. The exact solution in this case
is given by

F (t, r) = rt

F (t, r) = (2− r)t.

Since the the fuzzy Fredholm integral equations
with this method is defined only for t ∈ [0, 1], so
the transformation z = (b−a)t+a must be done.
To compare the error with n = 10, m = 9 and
n = 100, m = 9, see Table 2.

6 Conclusions

In this paper, we proposed a numerical method to
solve linear fuzzy Fredholm integral equations of
the second kind based on iterative procedure us-
ing fuzzy Bernstein polynomials. Also, we have
presented the error estimation for approximate
solution of linear fuzzy Fredholm integral equa-
tions of the second kind, in terms of modulus of
continuity. Illustrative numerical examples are
included to demonstrate the accuracy of the pro-
posed method. In the above presented numeri-
cal examples we see that the proposed method
well perform for linear fuzzy integral equations
and the convergence result, Theorem 4.1, is con-
firmed.
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