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Abstract

In this paper a numerical method for solving second order fuzzy differential equations under general-
ized differentiability is proposed. This method is based on the interpolating a solution by piecewise
polynomial of degree 4 in the range of solution. Moreover we investigate the existence, uniqueness
and convergence of approximate solutions. Finally the accuracy of piecewise approximate method by
some examples are shown.
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1 Introduction

F
uzzy differential equations (FDE) are a suit-
able tool to model problem in science and

engineering in which uncertainties or vagueness
pervade. There are many idea to define a fuzzy
derivative and in consequence, to study FDE.
The first and most popular approach is using
the Hukuhara differentiability for fuzzy valued
function. Kaleva in [19] proposed FDE using
Hukuhara derivative and it was developed by
some other authors [15, 23]. Hukuhara differen-
tiability has the drawback that the solution of
FDE need to have increasing length of its sup-
port, so in order to overcome this weakness, Bede
and Gal [9], introduced the strongly generalized
differentiability of fuzzy valued function. This
concept allows us to solve the above-mentioned
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shortcoming, also the strongly generalized deriva-
tive is defined for a larger class of fuzzy valued
functions than the Hukuhara derivatives.

Many researchers some numerical method for
solving FDE under Hukuhara differentiability
presented in [1, 2, 5], and under generalized dif-
ferentiability investigated in [6, 7]. Higher-order
fuzzy differential equations with Hukuhura differ-
entiability were presented in [18, 13, 3, 4]. Khas-
tan in [20], proposed a analytic method to solve
higher-order fuzzy differential equations based on
the selection different type of derivatives, they ob-
tained several solution to fuzzy initial value prob-
lem. In this paper a numerical method for sec-
ond order fuzzy differential equations is proposed.
The idea of this method is based on interpolat-
ing the solution by polynomial of degree 4 in the
range of solution, the step size used is of length
H = 3h. Also existence, uniqueness and conver-
gency of the approximate solutions are proved.

The paper is organized as follows: In section 2,
some basic definitions are brought. A proposed
method for solving second order fuzzy differen-
tial equations is introduced also the existence,
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uniqueness and convergency are proved in section
3. A numerical example are presented in section
4 and finally conclusion is drawn.

2 Notation and definitions

First notations which shall be used in this paper
are introduced.
We denote by RF , the set of fuzzy numbers, that
is, normal, fuzzy convex, upper semi-continuous
and compactly supported fuzzy sets which are de-
fined over the real line.
For 0 < r ≤ 1, set [u]r =

{
t ∈ R

∣∣∣u(t) ≥ r
}
,

and [u]0 = cl
{
t ∈ R

∣∣∣u(t) > 0
}
. We represent

[u]r = [u−(r), u+(r)], so if u ∈ RF , the r-level
set [u]r is a closed interval for all r ∈ [0, 1].
For arbitrary u, v ∈ RF and k ∈ R, the ad-
dition and scalar multiplication are defined by
[u+ v]r = [u]r + [v]r , [ku]r = k[u]r respectively.

A triangular fuzzy number is defined as a fuzzy
set in RF , that is specified by an ordered triple
u = (a, b, c) ∈ R3 with a ≤ b ≤ c such that
u−(r) = a+(b− a)r and u+(r) = c− (c− b)r are
the endpoints of r-level sets for all r ∈ [0, 1].

Definition 2.1 [16]The Hausdorff distance be-
tween fuzzy numbers is given by D : RF ×RF −→
R+ ∪ {0} as

D(u, v) = sup
r∈[0, 1]

max
{
|u−(r)− v−(r)|, (2.1)

|u+(r)− v+(r)|
}
.

Consider u, v, w, z ∈ RF and λ ∈ R, then the
following properties are well-known for metric D,

1. D(u⊕w, v⊕w) = D(u, v), for all u, v, w ∈
RF ,

2. D(λu, λv) = |λ|D(u, v), for all u, v ∈ RF ,
λ ∈ R

3. D(u ⊕ v, w ⊕ z) ≤ D(u, w) + D(v, z), for
all u, v, w, z ∈ RF ,

4. D(u⊖v, w⊖z) ≤ D(u, w)+D(v, z), as long
as u⊖ v and w⊖ z exist, where u, v, w, z ∈
RF .

where, ⊖ is the Hukuhara difference(H-
difference), it means that w ⊖ v = u if and
only if u⊕ v = w.

Definition 2.2 [9] Let u, v ∈ RF . If there exists
w ∈ RF such that

u⊖gH v = w ⇔


(i) u = v + w,

or
(ii) v = u+ (−1)w,

Then w is called the generalized Hukuhara differ-
ence of u and v.

Remark 2.1 [9] Throughout the rest of this pa-
per, we assume that u⊖gH v ∈ RF .

Note that a function f : [a, b] ⊆ R → RF is
called fuzzy-valued function. The r-level repre-
sentation of this function is given by f(t; r) =
[f−(t; r) , f+(t; r)], for all t ∈ [a, b] and r ∈ [0, 1].

Definition 2.3 ([16]) A fuzzy valued function
f : [a, b] → RF is said to be continuous at
t0 ∈ [a, b] if for each ϵ > 0 there is δ > 0 such
that D(f(t), f(t0)) < ϵ, whenever t ∈ [a, b] and
|t− t0|< δ. We say that f is fuzzy continuous on
[a, b] if f is continuous at each t0 ∈ [a, b].

Definition 2.4 ([12]) The generalized Hukuhara
derivative of the fuzzy-valued function f : (a, b) →
RF at t0 ∈ (a, b) is defined as

f ′
gH(t0) = lim

h→0

f(t0 + h)⊖gH f(t0)

h
. (2.2)

If f ′
gH(t0) ∈ RF satisfying (2.2) exists, we say

that f is generalized Hukuhara differentiable (gH-
differentiable for short) at t0.

Definition 2.5 ([12]) Let f : [a, b] → RF and
t0 ∈ (a, b), with f−(t; r) and f+(t; r) both differ-
entiable at t0 for all r ∈ [0, 1]. We say that

• f is [(i)− gH]-differentiable at t0 if

f ′
i.gH(t0; r) = [(f−)′(t0; r) , (f+)′(t0; r)], (2.3)

• f is [(ii)− gH]-differentiable at t0 if

f ′
ii.gH(t0; r) = [(f+)′(t0; r) , (f−)′(t0; r)]. (2.4)

Definition 2.6 ([12]) We say that a point t0 ∈
(a, b), is a switching point for the differentiability
of f , if in any neighborhood V of t0 there exist
points t1 < t0 < t2 such that

type(I) at t1 (2.3) holds while (2.4) does not
hold and at t2 (2.4) holds and (2.3) does not
hold, or
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type(II) at t1 (2.4) holds while (2.3) does not
hold and at t2 (2.3) holds and (2.4) does not
hold.

Theorem 2.1 [6] Let T = [a, a + β] ⊂ R, with
β > 0 and f ∈ Cn

gH([a, b], R
F).Fors ∈ T

(i) If f (i), i = 0, 1, . . . , n − 1 are [(i) − gH]-
differentiable, provided that type of gH-
differentiability has no change. Then

f(s) = f(a)⊕ f ′
i.gH(a)⊙ (s− a)

⊕ f ′′
i.gH(a)⊙ (s− a)2

2!
⊕ . . .

⊕f
(n−1)
i.gH (a)⊙ (s− a)n−1

(n− 1)!
⊕Rn(a, s),

where

Rn(a, s) :=

∫ s

a

(∫ s1

a
. . .(∫ sn−1

a
f
(n)
i.gH(sn)dsn

)
dsn−1 . . .

)
ds1.

(ii) If f (i), i = 0, 1, . . . , n − 1 is [(ii) − gH]-
differentiable, provided that type of gH-
differentiability has no change. Then

f(s) = f(a)⊖ (−1)f ′
ii.gH(a)⊙ (s− a)

⊖ (−1)f ′′
ii.gH(a)⊙ (a− s)2

2!
⊖ (−1)

. . .⊖ (−1)f
(n−1)
ii.gH (a)⊙ (a− s)n−1

(n− 1)!

⊖ (−1)Rn(a, s),

where

Rn(a, s) :=

∫ s

a

(∫ s1

a
. . .(∫ sn−1

a
f
(n)
ii.gH(sn)dsn

)
dsn−1 . . .

)
ds1.

(iii) If f (i) are [(i) − gH]-differentiable for i =
2k − 1, k ∈ N, and f (i) are [(ii) − gH]-
differentiable for i = 2k, k ∈ N ∪ {0}. Then

f(s) = f(a)⊖ (−1)f ′
ii.gH(a)⊙ (s− a)

⊕ f ′′
i.gH(a)⊙ (a− s)2

2!
⊖ (−1) . . .

⊖ (−1)f
( i−1

2
)

ii.gH (a)⊙ (a− s)
i
2
−1

( i2 − 1)!

⊕ f
( i
2
)

i.gH(a)⊙ (a− s)
i
2

( i2)!
⊖ (−1) . . .

⊖ (−1)Rn(a, s),

where

Rn(a, s) :=

∫ s

a

(∫ s1

a
. . .(∫ sn−1

a
f
(n)
i.gH(sn)dsn

)
dsn−1 . . .

)
ds1.

(iv) Suppose that f ∈ Cn
gH([a, b], R

F) ,n≥ 3.

Furthermore let f in [a, ξ] is [(i) − gH]-
differentiable and in [ξ, b] is [(ii) − gH]-
differentiable, in fact ξ is switching point type I
for first order derivative of f and t0 ∈ [a, ξ] in a
neighborhood of ξ. Moreover suppose that second
order derivative of f in ζ1 of [t0, ξ] have switching
point type II. Moreover type of differentiability
for f (i), i ≤ n on [ξ, b] don’t change. So

f(s) = f(t0)⊕ f ′
i.gH(t0)⊙ (ξ − t0)

⊖f ′′
ii.gH(t0)⊙ (t0 − ζ1)⊙ (ξ − t0)

⊕f ′′
i.gH(ζ1)

((ξ − ζ1)
2

2
− (t0 − ζ1)

2

2

)
⊙⊖ (−1)f ′

ii.gH(ξ)

⊙(s− ξ)⊖ (−1)f ′′
ii.gH(ξ)⊙ (s− ξ)2

2!

⊖(−1)

∫ ξ

t0

(∫ ζ1

t0

(∫ s2

t0

f ′′′
ii.gH(s4)

ds4

)
ds2

)
ds1

⊕
∫ ξ

t0

(∫ s1

ζ1

(∫ s3

ζ1

f ′′′
i.gH(s5)

ds5

)
ds3

)
ds1

⊖(−1)

∫ s

ξ

(∫ t1

ξ

(∫ t2

t0

f ′′′
ii.gH(t3)

dt3

)
dt2

)
dt1.
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3 Piecewise Approximate
Method (PWA Method)

Consider the following second order fuzzy differ-
ential equation{

y′′(t) = f(t, y(t)), t ∈ I = [0, T ],
y(0) = y0, y

′(0) = y′0,
(3.5)

where the derivative y(i), i = 1, 2, is considered
in the sense of gH-differentiable, where at the end
points of I we consider only the one-sided deriva-
tives, and the fuzzy function f : I × RF → RF
is sufficiently smooth function. The initial data
y0, y

′
0 are assumed in RF . The interval I may be

[0, T ] for some T > 0 or I = [0,∞). We assume
that f : I × RF → RF be a continuous fuzzy
function, such that there exists k > 0 such that

D(f(t, x), f(t, z)) ≤ kD(x, z),

∀t ∈ I, x, z ∈ RF .

(3.6)

Our construction of the fuzzy approximate solu-
tion s(t) is as follows:
let y(t) be the fuzzy solution of (3.5) determined
by the fuzzy initial value problem y0 and y′0 .
We divided the range of solution [0, T ] into sub-
intervals of equal length H = 3h = T

n , and let
Ik = [kH, (k + 1)H], where k = 0, · · · , n− 1. Let
s(t), 0 ≤ t ≤ T be a fuzzy approximate function
of degree m.
In this paper we assume that m = 4, and we ap-
proximate fuzzy solution of (3.5) by fuzzy piece-
wise polynomial of order 4. Piecewise approx-
imate solution s(t) on Ik = [kH, (k + 1)H], is
construct step by step as follows:

Step 1: We define the first component of s(t) by
s0(t), in three cases:

Case(i): Let us suppose that the unique so-
lution of problem (3.5), y(t) is [(i) −
gH]-differentiable, therefore

s0(t) = y(0) (3.7)

⊕t⊙ y′i.gH(0)⊕
4∑

i=2

αi,0 ⊙
ti

i!
,

for 0 ≤ t ≤ H,

Case(ii): Now, consider y(t) is [(ii) − gH]-
differentiable, then s0(t) is obtained as

follows:

s0(t) = y(0) (3.8)

⊖(−1)t⊙ y′ii.gH(0)⊕
4∑

i=2

αi,0 ⊙
ti

i!
,

for 0 ≤ t ≤ H,

In Eqs (3.7) and (3.8), the coefficients αi,0

for i = 2, 3, 4 as yet undetermined and to be
obtained where s0(t) satisfy the relations:

s′′0(jh) = f(jh, s0(jh)), (3.9)

for j = 1, 2, 3. By using Hausdorff dis-
tance(2.1), for j = 1, 2, 3 we obtain:

(s−0 )
′′(jh, r) = f−(jh, s0(jh, r)), (3.10)

(s+0 )
′′(jh, r) = f+(jh, s0(jh, r)), (3.11)

by solving (3.10) and (3.11), the value of αi,0

for i = 2, 3, 4 are obtained and s0(t) is con-
structed.

Step 2: The approximate solution s(t) in inter-
val [H, 2H] is obtained as follows:

s(t) =

1∑
i=0

s
(i)
0 (t) (3.12)

⊙(t−H)i

i!
⊕

4∑
i=2

αi,k ⊙
(t−H)i

i!
,

where s0(t) is obtained by step 1. The value
of αi,k are to be determined where s(t) satisfy
the following relations:

s′′(jh) = f(jh, s(jh)). (3.13)

This means for j = 4, 5, 6,

(s−)′′(jh, r) = f−(jh, s(jh, r)), (3.14)

(s+)′′(jh, r) = f+(jh, s(jh, r)), (3.15)

by solving (3.14) and (3.15), the values of
αi,k are obtained.

Step 3: The approximate solution s(t) in inter-
val [kH, (k + 1)H] for k = 2, · · · , n − 1 is
obtained as follows:

s(t) =

1∑
i=0

s
(i)
3k (t) (3.16)

⊙(t− kH)i

i!
⊕

4∑
i=2

αi,k ⊙
(t− kH)i

i!
,
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The value of αi,k are to be determined where
s(t) satisfy the following relations:

s′′(jh) = f(jh, s(jh)). (3.17)

This means for j = 3k + 1, 3k + 2, 3k + 3;
k = 2, · · · , n− 1,

(s−)′′(jh, r) = f−(jh, s(jh, r)), (3.18)

(s+)′′(jh, r) = f+(jh, s(jh, r)), (3.19)

by solving (3.18) and (3.19), the values of
αi,k are obtained.

Finally the PWA method is obtained as follows

s(t) =

1∑
i=0

s
(i)
3k (t) (3.20)

⊙(t− kH)i

i!
⊕

4∑
i=2

αi,k ⊙
(t− kH)i

i!
,

where

s0(t) = y(0) (3.21)

⊕t⊙ y′i.gH(0)⊕
4∑

i=2

αi,0 ⊙
ti

i!
,

if y(t) is [(i)− gH]− differentiable.

s0(t) = y(0) (3.22)

⊖(−1)t⊙ y′ii.gH(0)⊕
4∑

i=2

αi,0 ⊙
ti

i!
,

if y(t) is [(ii)− gH]− differentiable.

3.1 Existence and uniqueness

In this section we prove that there exist a unique
fuzzy function s(t) where approximate the solu-
tion of second order fuzzy differential equation
(3.5), provided that the size of the subinterval h
satisfies some constraints.

Theorem 3.1 If h = min{h1, h2, h3}, where

h1 <

√
2

L
, h2 <

√
6

L
, h3 <

√
24

L
(3.23)

then the approximate solution defined by (3.20),
exists and unique.

Proof : Let t = jh and j = 3k+ η for η = 1, 2, 3,
therefore

s′′((3k + η)h) = (3.24)

s′′3k+η =

4∑
i=2

αi,k
(ηh)i−2

(i− 2)!

By solving system (3.24) we obtain:

α+
2,k = (3.25)

3(s+3k+1)
′′ − 3(s+3k+2)

′′ + (s+3k+3)
′′,

α+
3,k = (3.26)

1

h
[−5

2
(s+3k+1)

′′ + 4(s+3k+2)
′′ − 3

2
(s+3k+3)

′′],

α+
4,k = (3.27)

1

h2
[(s+3k+1)

′′ − 2(s+3k+2)
′′ + (s+3k+3)

′′],

and

α−
2,k = (3.28)

3(s−3k+1)
′′ − 3(s−3k+2)

′′ + (s−3k+3)
′′,

α−
3,k = (3.29)

1

h
[−5

2
(s−3k+1)

′′ + 4(s−3k+2)
′′ − 3

2
(s−3k+3)

′′],

α−
4,k = (3.30)

1

h2
[(s−3k+1)

′′ − 2(s−3k+2)
′′ + (s−3k+3)

′′],

To prove the existence and uniqueness of s(t),
let us define the operator Gν : RF → RF by
αj,k = Gν(αj,k) for j = 2, 3, 4 and v = 1, 2, 3. Ac-
cording to condition (3.6) and equations (3.25),
(3.26), (3.27) and (3.28), (3.29), (3.30) we con-
clude that

D(G1(α2,k), G1(α
∗
2,k) (3.31)

≤ L
h2

2
D(α2,k, α

∗
2,k)|3− 3 + 1|,

D(G2(α3,k), G2(α
∗
3,k) (3.32)

≤ L
h3

6
D(α3,k, α

∗
3,k)|

1

h
(−5

2
+ 8− 9

2
)|,

D(G3(α4,k), G3(α
∗
4,k) (3.33)

≤ L
h4

24
D(α4,k, α

∗
4,k)|

1

h2
(
1

2
− 4 +

9

2
)|,
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From Equations (3.31), (3.32), (3.33), and

h1 <

√
2

L
, h2 <

√
6

L
, h3 <

√
24

L

it follows that Gν , ν = 1, 2, 3 are contraction
operators. This implies the existence and unique-
ness of approximate solution under the stated
conditions of theorem.

3.2 Consistency relations and conver-
gence

It is well-known that a linear method will be con-
vergent if and only if, It is both consistent and
stable.

Theorem 3.2 The piecewise approximate func-
tions (3.20), are consistent.

proof: In the case of [(i)-gH]-differentiability, s(t)
is defined on Ik as:

s(t) =

1∑
i=0

s
(i)
3k (t)⊙

(t− 3kh)i

i!

⊕
4∑

i=2

αi,k ⊙
(t− 3kh)i

i!
, (3.34)

and the parametric form of s(t) =
(s−(t, r), s+(t, r)) is as following:

s−(t, r) =

1∑
i=0

(s−3k)
(i)(t)

i!
(t− 3kh)i

+
4∑

i=2

α−
i,k

i!
(t− 3kh)i, (3.35)

s+(t, r) =
1∑

i=0

(s+3k)
(i)(t)

i!
(t− 3kh)i

+

4∑
i=2

α+
i,k

i!
(t− 3kh)i, (3.36)

without lose generality, we just proof consistency
for s+, and for s− is similar.

On differentiating equation (3.36) and setting
t = jh with j = 3k+1, 3k+2, 3k+3, we obtain

(s+)′′((3k + η)h) = (s+)′′3k+η (3.37)

=
4∑

i=2

α+
i,k

(ηh)i−2

(i− 2)!
, for η = 1(1)3,

on eliminating α+
i,k, we obtain:

s+3(k−1) − 2s+3k + s+3(k+1) (3.38)

= h2{405
12

(s+3k+1)
′′ − 486

12
(s+3k+2)

′′

+
189

12
(s+3k+3)

′′}

Hence, the associative polynomials ρ(ξ) and σ(ξ)
are

ρ(ξ) = ξ6 − 2ξ3 + 1, (3.39)

σ(ξ) =
405

12
ξ4 − 486

12
ξ5 +

189

12
ξ6,

clearly ρ(1) = 0, ρ′(1) = 0 and ρ′′(1) = 2σ(1),
and the method is consistent. Also the condition
of stability is fulfilled since the zeros of ρ(ξ) do
not exceed unity in modulus, multiple zeros of
multiplicity 2 and thus the method is convergent.

Table 1: Error of PWA method by Hausdorff dis-
tance in example 4.1

Error of PWA method
t Case (i) Case(ii)

0 0 0
0.1 0 0
0.2 0 0
0.3 0 0
0.4 0 0
0.5 0 0
0.6 0 0
0.7 0 0
0.8 0 0
0.9 0 0

Table 2: Error of PWA method by Hausdorff dis-
tance in example 4.2

t Case (i) Case(ii)

0 0 0
0.1 0.000003073 0.0000030737
0.2 0.000007067 0.0000070678
0.3 0.000010994 0.0000109946
0.4 0.000018675 0.0000186745
0.5 0.000027282 0.0000272813
0.6 0.000035617 0.0000356173
0.7 0.000047701 0.0000477022
0.8 0.000060486 0.00006048718
0.9 0.000072667 0.0000726680
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Figure 1: Approximate solution for case(i) in ex-
ample 4.1. Red points: s0(t); Green points: s3(t);
Blue. points: s6(t)

4 Numerical Example

Example 4.1 [20] Let us consider the following
second-order fuzzy initial value problem

y′′(t) = σ0, y0 = γ0, y′(0) = γ1, (4.40)

where σ0 = γ0 = γ1 are the triangular fuzzy num-
ber having r-level sets [r − 1, 1− r].

Case(i) If y(t) is [(i)−gH]-differentiable, the real
solution is:

y−(t, r) = (r − 1){ t
2

2
+ t+ 1},

y+(t, r) = (1− r){ t
2

2
+ t+ 1},

Now we use PWA method to obtain piecewise ap-
proximate solution s(t). Let Ik = [kH, (k+1)H],
for k = 0, 1, 2, H = 3h and h = 0.1. s0(t), s3(t)

and s6(t) are obtained as follows:

s−0 (t) = (r − 1) + t(r − 1) +
t2

2
(r − 1),

s+0 (t) = (1− r) + t(1− r)t+
t2

2
(1− r),

s−3 (t) = 1.345r − 1.345

+ (t− 0.3)(1.3r − 1.3)

+
(t− 0.3)2

2
(r − 1),

s+3 (t) = 1.345− 1.345r

+ (t− 0.3)(1.3− 1.3r)

+
(t− 0.3)2

2
(1− r),

s−6 (t) = 1.78r − 1.78

+ (t− 0.6)(1.6r − 1.6)

+
(t− 0.6)2

2
(r − 1),

s+6 (t) = 1.78− 1.78r

+ (t− 0.6)(1.6− 1.6r))

+
(t− 0.6)2

2
(1− r),

The approximate solution si(t) in Case(i), for
i = 0, 1, 2, is plotted in Fig 1.

Case(ii)If y(t) is [(ii) − gH]-differentiable,
the real solution is:

y−(t, r) = (r − 1){ t
2

2
− t+ 1},

y+(t, r) = (1− r){ t
2

2
− t+ 1},
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in this case s0(t), s3(t) and s6(t) are obtained as
follows:

s−0 (t) = (r − 1) + t(1− r) +
t2

2
(r − 1),

s+0 (t) = (1− r) + t(r − 1)t+
t2

2
(1− r),

s−3 (t) = .745r − .745 + (t− 0.3)(0.7− .7r)

+
(t− 0.3)2

2
(r − 1),

s+3 (t) = .745− .745r + (t− 0.3)(0.7r − .7)

+
(t− 0.3)2

2
(1− r),

s−6 (t) = .58r − .58 + (t− 0.6)(.4− .4r)

+
(t− 0.6)2

2
(r − 1),

s+6 (t) = .58− .58r + (t− 0.6)(.4r − .4r)

+
(t− 0.6)2

2
(1− r),

The approximate solution si(t) in Case(ii), for i =
0, 1, 2, is plotted in Fig 2.

Example 4.2 [20] Consider the fuzzy initial
value problem

y′′(t) + y(t) = σ0, y(0) = γ0, y′(0) = γ1,

where σ0 is the fuzzy number having r-level sets
[r, 2− r]. [γ0]

r = [γ1]
r = [r − 1, 1− r].

Case(i) If y(t) is [(i)−gH]-differentiable, the real
solution is:

y−(t, r) = r(1 + sin(t))− sin(t)− cos(t),

y+(t, r) = (2− r)(1 + sin(t))

− sin(t)− cos(t),

Let Ik = [kH, (k + 1)H], for k = 0, 1, 2, H = 3h
and h = 0.1. s0(t), s3(t) and s6(t) are obtained

as follows:

s−0 (t) = (r − 1) + t(r − 1)

+
t2

2
(.9992 + 0.00099r)

+
t3

3!
(1.016− 1.01817r)

+
t4

4!
(−1.1778 + .1986r),

s+0 (t) = (1− r) + t(1− r)

+
t2

2
(1.001− 0.00099r)

+
t3

3!
(−1.021 + 1.0182r)

+
t4

4!
(−.7807− .1985r),

s−3 (t) = (1.295r − 1.2509)

+ (t− 0.3)(.9554r − .6599)

+
(t− 0.3)2

2
(1.251− .2947r)

+
(t− 0.3)3

3!
(.6688− .972r)

+
(t− 0.3)4

4!
(−1.356 + .4791),

s+3 (t) = (1.3402− 1.296r)

+ (t− 0.3)(1.2509− .9554r)

+
(t− 0.3)2

2
(.6612 + .2946r)

+
(t− 0.3)3

3!
(−1.275 + .972r)

+
(t− 0.3)4

4!
(−.3978− .4791r),

s−6 (t) = (1.565r − 1.39)

+ (t− 0.6)(.8254r − .2608)

+
(t− 0.6)2

2
(1.39− .564r)

+
(t− 0.6)3

3!
(.26201− .839r)

+
(t− 0.3)4

4!
(−1.413 + .7169r),

s+6 (t) = (1.74− 1.565r)

+ (t− 0.6)(1.3901− .8254r)

+
(t− 0.6)2

2
(.26208 + .56394r)

+
(t− 0.6)3

3!
(−1.416 + .839r)

+
(t− 0.3)4

4!
(0.0206− .7168r),
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The approximate solution si(t) in Case(i), for
i = 0, 1, 2, is plotted in Fig 3.

Case(ii)If y(t) is [(ii) − gH]-differentiable,
the real solution is:

Figure 2: Approximate solution for case(ii) in ex-
ample 4.1. Red points: s0(t); Green points: s3(t);
Blue points: s6(t)

Figure 3: Approximate solution for case(ii) in ex-
ample 4.2. Red points: s0(t); Green points:s3(t);
Blue points: s6(t)

Figure 4: Approximate solution for case(i) in ex-
ample 4.2. Red points: s0(t); Green points: s3(t);
Blue points: s6(t)

y−(t, r) = r(1− sin(t)) + sin(t)− cos(t),

y+(t, r) = (2− r)(1− sin(t))

+ sin(t)− cos(t),

s0(t), s3(t) and s6(t) are obtained as follows:

s−0 (t) = (r − 1) + t(1− r)

+
t2

2
(1.0011− 0.00099r)

+
t3

3!
(−1.021 + 1.0182r)

+
t4

4!
(−.78074− .19851r),

s+0 (t) = (1− r) + t(r − 1)

+
t2

2
(.9992 + 0.00099r)

+
t3

3!
(1.0157− 1.01818r)

+
t4

4!
(−1.1778 + .1985r),

s−3 (t) = (.7045r − .6599)

+ (t− 0.3)(1.251− .95537r)

+
(t− 0.3)2

2
(.66114 + .2946r)

+
(t− 0.3)3

3!
(−1.7527 + .97199r)

+
(t− 0.3)4

4!
(−.3978− .4791r),

s+3 (t) = (.7492− .70447r)

+ (t− 0.3)(.9554r − .65985)

+
(t− 0.3)2

2
(1.2504− .29463r)

+
(t− 0.3)3

3!
(.66872− .97199r)

+
(t− 0.3)4

4!
(−1.3559 + .47905r),

s−6 (t) = (.43533r − .26066)

+ (t− 0.6)(1.3901− .825399r)

+
(t− 0.6)2

2
(.26207 + .56394r)

+
(t− 0.6)3

3!
(−1.41597 + .83899r)

+
(t− 0.3)4

4!
(0.0207− .71680r),

s+6 (t) = (.610− .43533r)

+ (t− 0.6)(.8254r − .26074)

+
(t− 0.6)2

2
(1.3899− .56394r)

+
(t− 0.6)3

3!
(.26201− .838989r)

+
(t− 0.3)4

4!
(−1.413 + .7168r),
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The approximate solution si(t) in Case(ii), for i =
0, 1, 2, is plotted in Fig 4.

5 Conclusion

In this paper a new approach for solving sec-
ond order fuzzy differential equations under gen-
eralized differentiability was proposed. We used
piecewise fuzzy polynomial of degree 4 based on
the Taylor expansion for approximating solutions
of second order fuzzy differential equations. Also,
we can develop this method for Nth-order fuzzy
differential equations under generalized deriva-
tives.
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