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Abstract

In this paper the problem on ”Magnetic fluid lubrication of porous-pivoted slider bearing with slip
velocity by Ahmad et.al. (N. Ahmad, J. P. Singh, Magnetic fluid lubrication of porous-pivoted slider
bearing with slip velocity, Journal of Engineering Tribology, 2007)” has been recapitulated using
Jenkin’s model (J. T. Jenkins, A Theory of magnetic fluids, Archive for Rational Mechanics and
Analysis, 1972) with the additional effect of squeeze velocity of the above plate. It is found that while
discussing the above problem, (N. Ahmad, J. P. Singh, Magnetic fluid lubrication of porous-pivoted
slider bearing with slip velocity, Journal of Engineering Tribology, 2007) has stated but ignored the
term ρα2∇ ×

(
M
M ×M∗), where M∗ = DM

Dt + 1
2 (∇ × q) ×M, in their study (Refer equation (2.2)).

This paper reconsiders the above neglected term with M∗ = 1
2 (∇× q) ×M, where M = µ̄H. Since

M∗ is the corotational derivative of magnetization vector, so it has an impact on the performance of
the problem (P. Ram, P. D. S. Verma, Ferrofluid lubrication in porous inclined slider bearing, Indian
Journal of Pure and Applied Mathematics, 1999). With the addition of the above term and under
an oblique magnetic field, it is found that the dimensionless load carrying capacity can be improved
substantially with and without squeeze effect. The paper also studied in detail about the effects of
squeeze velocity and sliding velocity. It is observed that dimensionless load carrying capacity increases
when squeeze velocity increases and sliding velocity decreases.
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1 Introduction

M
agnetic fluids or Ferrofluids [15] are stable
colloidal suspensions containing fine ferro-

magnetic particles which are dispersing in a liq-
uid, called carrier liquid (in our case water), in
which a surfactant is added to generate a coating
layer preventing the flocculation of the particles.
When an external magnetic field is applied, fer-
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rofluids experience magnetic body forces which
depend upon the magnetization of ferromagnetic
particles. Owing to these features ferrofluids are
useful in many applications, for example [5].
Agrawal [16] studied magnetic fluid based
porous inclined slider bearing using Neuringer-
Rosensweig’s model. Shah and Bhat in [13,
14] considered respectively squeeze film and
slider bearing in their study using Neuringer-
Rosensweig’s model. Recently Ahmad et. al.
[7] studied ”Magnetic fluid lubrication of porous-
pivoted slider bearing with slip velocity” and they
have ignored the term ρα2∇×

(
M
M ×M∗), where

M∗ = DM
Dt +

1
2(∇×q)×M in the governing system

of equations. In this paper we have recapitulated
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the above problem [7] including the ignored term
which is given by Jenkin’s [4] and worked on by
Ram and Verma [9], Shah and Bhat [11] in their
study from different view point.
With the addition of the above term and under
an oblique magnetic field, it is found that the
dimensionless load carrying capacity can be im-
proved substantially with and without squeeze ef-
fect. The paper also studied in detail about the
effects of squeeze velocity and sliding velocity. It
is observed that dimensionless load carrying ca-
pacity increases when squeeze velocity increases
and sliding velocity decreases.

2 The Mathematical Model

The configuration of the porous-pivoted slider
bearing with squeeze velocity is displayed in Fig-
ure 1 consists of a slider having a convex pad
surface of length A(metres) with central thick-
ness Hc(metres) and moving with uniform veloc-
ity U(ms−1) in the x-direction. The stator has a
porous matrix with uniform thickness l2(metres)
backed by a solid wall. The porous flat lower plate
is normally approached by the upper plate with
a uniform velocity ḣ = dh/dt, where h(metres)
is the central film thickness and t is time in
second. The expression for the central film thick-

Figure 1: Porous-pivoted slider bearing
with a convex pad surface

ness h(metres) is given by [7, 11]

h = Hc

{
4

(
x

A
− 1

2

)2

− 1

}
+h1

{
a− a

A
x+

x

A

}
,

(2.1)

with a = h2
h1
; h2(metres) and h1(metres)

are maximum and minimum film thickness
respectively.

The above bearing is lubricated with water
based ferrofluid and the equations governing the
flow of ferrofluid by Jenkin’s model [4, 7, 11] are

ρ

{
∂q

∂t
+ (q · ∇)q

}
= −∇p+ η∇2q

+ µ0(M · ∇)H+ ρα2∇×
(
M

M
×M∗

)
, (2.2)

∇ · q = 0, (2.3)

∇×H = 0, (2.4)

∇ · (H+ 4πM) = 0, (2.5)

γ
D2M

Dt2
= −4πρ

Ms

µ̄0

M

Ms −M
− 2α2

M
M∗ +H,

(2.6)
with

M∗ =
DM

Dt
+

1

2
(∇× q)×M. (2.7)

where ρ, p, η, q, µ0, M, H, M , M∗, α2,
µ̄0, Ms, γ are fluid density, film pressure, fluid
viscosity, fluid velocity, free space permeability,
the magnetization vector, magnetic field vector,
magnitude of magnetization vector, corotational
derivative of M, material constant, initial sus-
ceptibility of fluid, the saturation magnetization
and another material constant of Jenkin’s model
respectively.

In the present discussion, equation (2.6) is re-
placed by

M = µ̄H (µ̄ is magnetic susceptibility), (2.8)

as suggested by Maugin [1] and

M∗ =
1

2
(∇× q)×M. (2.9)

The lubricant is ferrofluid, so a magnetic field
vector H is applied such that it is inclined at an
angle ϕ as shown in Figure 1 with the stator and
vanishes at the ends of the bearing. The angle
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ϕ is determined in Shah and Bhat [11] and the
magnitude H of magnetic field is given by

H2 = Kx(A− x), (2.10)

where K being a quantity chosen to suit the
dimensions of both sides of equation (2.10).

The equation of continuity in the film region is

∂u

∂x
+

∂w

∂z
= 0, (2.11)

where u and w are components of film fluid ve-
locity in x-direction and z-direction respectively.

The equation of continuity in porous region is

∂ū

∂x
+

∂w̄

∂z
= 0, (2.12)

where ū and w̄ are components of fluid velocity in
the porous region in x-direction and z-direction
respectively.

Referring the work of Agrawal [16] and Shah
et. al. [11], using equations (2.2) to (2.9), one
obtains

∂2u

∂z2
=

1

η
(
1− ρα2µ̄H

2η

) ∂

∂x

(
p− 1

2
µ0µ̄H

2

)
.

(2.13)
The velocity components of fluid in the porous

region are

ū =

−φ

η

{
∂

∂x

(
P − 1

2
µ0µ̄H

2

)
+

ρα2

2
µ̄
∂

∂z

(
H

∂u

∂z

)}
,

(2.14)
w̄ =

−φ

η

{
∂

∂z

(
P − 1

2
µ0µ̄H

2

)
− ρα2

2
µ̄
∂

∂x

(
H

∂u

∂z

)}
,

(2.15)
where φ and P are permeability and fluid
pressure in the porous region respectively.

Substituting equations (2.14) and (2.15) into
equation (2.12), one obtains

∂2

∂x2

(
P − 1

2
µ0µ̄H

2

)
+

∂2

∂z2

(
P − 1

2
µ0µ̄H

2

)
= 0,

(2.16)
which on integration with respect to z across the
porous region (−l2, 0), yields

∂
∂z

(
P − 1

2µ0µ̄H
2
) ∣∣∣∣

z=0

=

− l2
∂2

∂x2

(
p− 1

2
µ0µ̄H

2

)
, (2.17)

using Morgan-Cameron approximation [3, 11, 12]
and that the surface z = −l2 is non-porous.

The relevant boundary conditions for the ve-
locity field [2] in the lubricant region is

u =
1

s

∂u

∂z
at z = 0, (2.18)

and
u = U at z = h, (2.19)

where 1
s =

√
φ
k ; s is slip parameter and k is slip

coefficient, which depends on the structure of
the porous material.

Solving equation (2.13) with boundary condi-
tions (2.18) and (2.19), one obtains

u =
1

2η
(
1− ρα2µ̄H

2η

){z2 − sh2z

(sh+ 1)
−

h2

(sh+ 1)

}
∂

∂x

(
p− 1

2
µ0µ̄H

2

)
+

U(sz + 1)

(sh+ 1)
.

(2.20)
Integrating continuity equation (2.11) in film re-
gion over (0, h), one obtains

∂

∂x

h∫
0

u dz + wh − w0 = 0. (2.21)

Using wh = V = −ḣ because of squeeze veloc-
ity is in the downward direction and w0 = w|z=0=
w̄|z=0 because of continuity of velocity component
at z = 0 of film region and porous region respec-
tively, equations (2.17), (2.20), (2.21), gives

d

dx

{
g
d

dx

(
p− 1

2
µ0µ̄H

2

)}
=

df

dx
, (2.22)

where

g = 12φl2 +
h3(sh+ 4)−

(
3ρα2µ̄φsh2H

η

)
(sh+ 1)

(
1− ρα2µ̄H

2η

)
and

f =
6ηUh(sh+ 2)− 6Uρα2µ̄φsH

(sh+ 1)
+ 12ηV x.



202 Rajesh C. Shah, et al /IJIM Vol. 6, No. 3 (2014) 199-206

Equation (2.22) is known as Reynolds’s equa-
tion.

Introducing following dimensionless quantities

X =
x

A
, h̄ =

h

h1
, s̄ = sh1, p̄ =

ph21
ηAU

,

µ∗ =
µ0µ̄h

2
1AK

ηU
, β2 =

ρα2µ̄A
√
K

2η
,

φ̄ =
12φl2
h31

, S = −2V A

Uh1
, γ∗ =

6φ

h21
, (2.23)

the dimensionless form of equation (2.22) is

d

dX

{
G

d

dX

(
p̄− 1

2
µ∗X(1−X)

)}
=

dE

dX
,

(2.24)
where

G = φ̄+
h̄3(s̄h̄+ 4)− β2γ∗s̄h̄2

√
X(1−X)

(s̄h̄+ 1)[1− β2
√

X(1−X)]
,

E =
6h̄(s̄h̄+ 2)− 2β2γ∗s̄

√
X(1−X)

(s̄h̄+ 1)
− 6SX,

which is known as dimensionless form of
Reynolds’s equation.
Solving equation (2.24) for pressure under the ap-
propriate boundary conditions

p̄ = 0 at X = 0, 1,

yields

p̄ =
1

2
µ∗X(1−X) +

X∫
0

(
E −Q

G

)
dX, (2.25)

where

Q =
∫ 1
0

E
G
dX∫ 1

0
1
G
dX

.

The dimensionless form of equation (2.1) is

h̄ = lX2 +mX + n, (2.26)

where

l = 4δ, m = −(4δ + a− 1), n = a; δ =
Hc

h1
.

(2.27)

The dimensionless form of load carrying capac-
ity using (2.25) can be obtained as

W̄ =

1∫
0

p̄ dX =
µ∗

12
−

1∫
0

(
E −Q

G

)
X dX. (2.28)

3 Results and Discussion

The problem on ”Magnetic fluid lubrication of
porous-pivoted slider bearing with slip velocity
by [7]” is recapitulated here for its optimum per-
formance.
During the course of investigation it is observed
from equation (2.13) that a constant magnetic
field does not enhance the bearing characteris-
tics in Rosensweig’s model as well as in Jenkin’s
model of ferrofluid flow.
The values of the dimensionless load carrying ca-
pacity W̄ has been calculated for the following
values [6] of the parameters using Simpson’s 1/3
rule with step size 0.1.

h1 = 0.000005(m), h2 = 0.00001(m),

µ̄ = 0.05, A = 0.02(m), k = 0.1,

η = 0.012(Kgm−1s−1), ρ = 1400(Kgm−3),

µ0 = 4π × 10−7(Kgms−2A−2),

Hc = 0.0000015(m), l2 = 0.0001(m).

The ferrofluid used here is water based. The
magnetic field considered here is oblique to the
stator and its strength is of O(103) in order to
get maximum magnetic field at x = A/2 for the
calculation of W̄ in Figure 10. For remaining fig-
ures, magnetic field strength is indicated there.
The calculation of magnetic field strength is
shown below [10]: From equation (2.10),

H2 = Kx(A− x)

Max H2 = 10−4K,

For H = O(103), K = O(1010).

The calculated values of W̄ are presented
graphically as shown in Figures 2 to 10 for vari-
ous cases.
Figure 2 and 3 indicates the study of the effect of
squeeze velocity (ḣ ̸= 0) when α2 ̸= 0 (Jenkin’s
model) and α2 = 0 (Rosensweig’s model) re-
spectively with respect to order of magnetic field
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Figure 2: Values of W̄ for various values
of K when α2 = 0.0001(m3A−1s−1), φ =
10−12(m2) and U = 6.28(ms−1)

Figure 3: Values of W̄ for various val-
ues of K when α2 = 0.0(m3A−1s−1), φ =
10−12(m2) and U = 6.28(ms−1)

strength (H is obtained from K as per above cal-
culation).

From Figure 2, it is observed that, for α2 ̸= 0, W̄
increases considerably in the presence of squeeze
velocity. Also, as K increases (that is, as order of
magnetic field strength increases), W̄ increases.
From Figure 3, it is observed that, for α2 = 0,
again W̄ increases considerably in the presence of
squeeze velocity, but it does not affect much when
the order of magnetic field strength increases.
Figure 4 and 5 shows the comparative study of
Jenkin’s model and Rosensweig’s model when
ḣ ̸= 0 and ḣ = 0 respectively with respect to
order of magnetic field strength. From Figure 4
it is observed that when ḣ ̸= 0; that is, when
squeeze velocity is present, W̄ increases consid-

Figure 4: Values of W̄ for various values
of K when ḣ = 0.02(ms−1), φ = 10−12(m2)
and U = 6.28(ms−1)

Figure 5: Values of W̄ for various values of
K when ḣ = 0.0(ms−1), φ = 10−12(m2) and
U = 6.28(ms−1)

erably in the case of α2 ̸= 0. Also, W̄ has an
increasing behavior with the increase of order of
magnetic field strength. Whereas the behavior
of W̄ is consistent with respect to increase of or-
der of magnetic field strength for α2 = 0. The
same behavior of W̄ can be observed from Figure
5 when ḣ = 0, that is, when there is no squeeze
velocity.
Figure 6 and 7 shows the study of effect of squeeze
velocity (ḣ ̸= 0) when α2 ̸= 0 (Jenkin’s model)
and α2 = 0 (Rosensweig’s model) respectively
with respect to permeability φ of the porous
medium. From both the figures it is observed
that, W̄ increases with the decrease of perme-
ability φ. Also, when ḣ ̸= 0, W̄ is increases more
as compared to ḣ = 0.
Figure 8 and 9 shows the comparative study of
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Figure 6: Values of W̄ for various values of
φ when α2 = 0.0001(m3A−1s−1), K = 1012

and U = 6.28(ms−1)

Figure 7: Values of W̄ for various values of
φ when α2 = 0.0(m3A−1s−1), K = 1012 and
U = 6.28(ms−1)

Jenkin’s model and Rosensweig’s model when
ḣ ̸= 0 and ḣ = 0 respectively with respect to per-
meability φ. From both the figures it is observed
that, W̄ increases with the decrease of permeabil-
ity φ.
Figure 10 displays values of W̄ for various values
of ḣ and U for α2 ̸= 0, and from it the following
observations can be made:

(1) W̄ increases with the increase of ḣ.

(2) W̄ increases with the decrease of U.

From Figures 2 to 9, it is observed that the
values of W̄ increases substantially in the case of
Jenkin’s model; that is, with the consideration of
the ignored term of Ahmad et. al. [7] as ρα2∇×
(MM ×M∗) with M∗ = 1

2(∇×q)×M and M = µ̄H

Figure 8: Values of W̄ for various values
of φ when ḣ = 0.02(ms−1), K = 1012 and
U = 6.28(ms−1)

Figure 9: Values of W̄ for various values
of φ when ḣ = 0.0(ms−1), K = 1012 and
U = 6.28(ms−1)

for ḣ = 0 and ḣ ̸= 0 rather than Rosensweig’s case
(Ahmad et. al. [7] for ḣ = 0).

4 Conclusions

The problem on ”Magnetic fluid lubrication of
porous-pivoted slider bearing with slip velocity
by [7]” is recapitulated here for its optimum
performance with the inclusion of the ignored
term ρα2∇×(MM ×M∗) with M∗ = 1

2(∇×q)×M
and M = µ̄H. The ferrofluid used here is water
based and magnetic field strength considered is
of as shown in figures in order to get maximum
magnetic field at x = A/2.

The design of the pivoted slider bearing can be
made with the considerations of the following ob-
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Figure 10: Values of W̄ for various values
of ḣ and U when K = 1010, φ = 10−12(m2)
and α2 = 0.0001(m3A−1s−1).

servations:
Under an oblique magnetic field to the stator, the
dimensionless load carrying capacity can be im-
proved substantially by considering following fea-
tures:

(1) Ferrofluid flow behavior given by Jenkin’s
model

(2) Presence of the squeeze velocity

(3) Smaller values of permeability parameter φ

(4) Increasing values of H2 up to O(105) as per
[8]

It should be noted from equation (2.13) that
a constant magnetic field does not enhance the
bearing characteristics in Rosensweig’s model of
ferrofluid flow.
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