
Available online at http://ijim.srbiau.ac.ir/

Int. J. Industrial Mathematics (ISSN 2008-5621)

Vol. 7, No. 2, 2015 Article ID IJIM-00658, 7 pages

Research Article

Positive-additive functional equations in non-Archimedean

C∗-algebras

R. Saadati ∗†

————————————————————————————————–

Abstract

Hensel [K. Hensel, Deutsch. Math. Verein, 6 (1897), 83-88.] discovered the p-adic number as a
number theoretical analogue of power series in complex analysis. Fix a prime number p. for any
nonzero rational number x, there exists a unique integer nx ∈ Z such that x = a

b p
nx , where a and

b are integers not divisible by p. Then |x|p:= p−nx defines a non-Archimedean norm on Q. The
completion of Q with respect to metric d(x, y) = |x − y|p, which is denoted by Qp, is called p-adic
number field. In fact, Qp is the set of all formal series x =

∑∞
k≥nx

akp
k, where |ak|≤ p−1 are integers.

The addition and multiplication between any two elements of Qp are defined naturally. The norm∣∣∣∑∞
k≥nx

akp
k
∣∣∣
p
= p−nx is a non-Archimedean norm on Qp and it makes Qp a locally compact field. In

this paper, we consider non-Archimedean C∗-algebras and, using the fixed point method, we provide
an approximation of the positive-additive functional equations in non-Archimedean C∗-algebras.

Keywords : Functional equation; Fixed point; Positive-additive functional equation; Linear mapping;
Non-Archimedean C∗-algebra.

—————————————————————————————————–

1 Introduction

P
ark et al. [29] introduced the following func-
tional equation:

f
((√

x+
√
y
)2)

=
(√

f(x) +
√
f(y)

)2

in the set of non-negative real numbers.

In this paper, we consider the following func-
tional equation

T
((
x

1
m + y

1
m

)m)
=

(
T (x)

1
m + T (y)

1
m

)m
(1.1)

for all x, y ∈ A+ and a fixed integer m greater
than 1, which is called a positive-additive func-
tional equation (see [16]). Each solution of the
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positive-additive functional equation is called a
positive-additive mapping.

Note that the function f(x) = cx for any c ≥ 0
in the set of non-negative real numbers is a solu-
tion of the functional equation (1.1).

Let X be a set. A function d : X ×X → [0,∞]
is called a generalized metric on X if d satisfies
the following conditions: for all x, y, z ∈ X,

(1) d(x, y) = 0 if and only if x = y;

(2) d(x, y) = d(y, x);

(3) d(x, z) ≤ d(x, y) + d(y, z).

The set X with a generalized metric d is called
a generalized metric space.

We recall a fundamental result in fixed point
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theory.

Theorem 1.1 [[2, 10]] Let (X, d) be a complete
generalized metric space and let J : X → X be
a strictly contractive mapping with Lipschitz con-
stant L < 1. Then, for each x ∈ X, either

d(Jnx, Jn+1x) = ∞

for all n ≥ 0 or there exists a positive integer n0
such that

(1) d(Jnx, Jn+1x) <∞ for all n ≥ n0;

(2) the sequence {Jnx} converges to a fixed
point y∗ of J ;

(3) y∗ is the unique fixed point of J in the set
Y = {y ∈ X | d(Jn0x, y) <∞};

(4) d(y, y∗) ≤ 1
1−Ld(y, Jy) for all y ∈ Y .

In 1996, Isac and Th.M. Rassias [19] were the
first to provide applications of stability theory of
functional equations for the proof of new fixed
point theorems with applications. By using the
fixed point method, the stability problems of sev-
eral functional equations have been extensively
investigated by a number of authors (see [3], [4],
[27]–[34], [38] and [1, 5, 6, 7, 8, 9, 13, 14, 15, 17,
18, 20, 21, 22, 24, 25, 26, 28, 31, 33, 36, 35, 37,
39, 40, 43, 44]).

2 non–Archimedean C∗–
algebras

In this section, we consider non-Archimedean
C∗-algebras. By a non-Archimedean field we
mean a field K equipped with a function (valua-
tion) |·| from K into [0,∞) such that

(a) |r|= 0 if and only if r = 0;

(b) |rs|= |r| |s|;

(c) |r + s|≤ max{|r|, |s|} for all r, s ∈ K.

Clearly, |1|= |−1|= 1 and |n|≤ 1 for all n ∈ N.
By the trivial valuation we mean the mapping |·|
taking everything but 0 into 1 and |0|= 0.

Let X be a vector space over a field K with
a non-Archimedean non-trivial valuation |·|.

A function ∥·∥: X → [0,∞) is called a non-
Archimedean norm if it satisfies the following
conditions:

(a) ∥x∥= 0 if and only if x = 0;

(b) for any r ∈ K,x ∈ X, ∥rx∥= |r|∥x∥;

(c) the strong triangle inequality (ultrametric)
holds; namely,

∥x+ y∥≤ max{∥x∥, ∥y∥}

for all x, y ∈ X.

Then (X, ∥·∥) is called a non-Archimedean
normed space. From the fact that

∥xn − xm∥
≤ max{∥xj+1 − xj∥: m ≤ j ≤ n− 1}

for all n,m ∈ N with n > m holds, a se-
quence {xn} is a Cauchy sequence if and only
if {xn+1 − xn} converges to zero in a non-
Archimedean normed space. By a complete non-
Archimedean normed space we mean one in which
every Cauchy sequence is convergent.

For any nonzero rational number x, there ex-
ists a unique integer nx ∈ Z such that x = a

bp
nx ,

where a and b are integers not divisible by p.
Then |x|p:= p−nx defines a non-Archimedean
norm on Q. The completion of Q with respect
to the metric d(x, y) = |x− y|p is denoted by Qp,
which is called the p-adic number field.

A non-Archimedean Banach algebra is a com-
plete non-Archimedean algebra A which satisfies

∥ab∥≤ ∥a∥·∥b∥

for all a, b ∈ A. For more detailed definitions
of non-Archimedean Banach algebras, refer to [7,
12, 41].

If U is a non-Archimedean Banach algebra,
then an involution on U is a mapping t→ t∗ from
U into U which satisfies the following conditions:

(a) t∗∗ = t for all t ∈ U ;

(b) (αs+ βt)∗ = αs∗ + βt∗;

(c) (st)∗ = t∗s∗ for s, t ∈ U .
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If, in addition, ∥t∗t∥= ∥t∥2 for all t ∈ U , then
U is a non-Archimedean C∗-algebra.

Definition 2.1 ([11]) Let A be a non-
Archimedean C∗-algebra and x ∈ A be a
self-adjoint element, i.e., x∗ = x. Then x is said
to be positive if it is of the form yy∗ for some
y ∈ A.

The set of positive elements of A is denoted by
A+. Note that A+ is a closed convex cone (see
[11]). It is well-known that, for a positive element
x and a positive integer n, there exists a unique
positive element y ∈ A+ such that x = yn. We
denote y by x

1
n (see [16]).

Throughout this paper, let A+ and B+ be the
sets of positive elements in non-Archimedean C∗-
algebras A and B, respectively. Assume that m
is a fixed integer greater than 1.

3 Approximation of the
positive-additive functional
equation 1.1: fixed point
approach

In this section, we investigate the positive-
additive functional equation 1.1 in non-
Archimedean C∗-algebras.

Lemma 3.1 ([29]) Let T : A+ → B+ be a
positive-additive mapping satisfying 1.1. Then T
satisfies

T (2mnx) = 2mnT (x)

for all x ∈ A+ and n ∈ Z.

Using the fixed point method, we provide an
approximation of the positive-additive functional
equation 1.1 in non-Archimedean C∗-algebras.
Note that the fundamental ideas in the proofs of
the main results in this section are contained in
[2, 3, 4].

Theorem 3.1 Let φ : A+ × A+ → [0,∞) be a
function such that there exists L < 1 with

|2|φ
(x
2
,
y

2

)
≤ Lφ (x, y) (3.2)

for all x, y ∈ A+. Let f : A+ → B+ be a mapping
satisfying ∥∥∥f((x 1

m + y
1
m

)m)
−

(
f(x)

1
m + f(y)

1
m

)m∥∥∥ (3.3)

≤ φ(x, y)

for all x, y ∈ A+. Then there exists a unique
positive-additive mapping T : A+ → A+ satisfy-
ing 1.1 and

∥f(x)− T (x)∥≤ L

|2|m−|2|mL
φ(x, x) (3.4)

for all x ∈ A+.

Proof. It follows from (3.2) that

lim
m→∞

|2|mφ
( x

2m
,
y

2m

)
= 0 (3.5)

for all x, y ∈ A+. Letting y = x in (3.3), we get

∥f(2mx)− 2mf(x)∥≤ φ(x, x) (3.6)

for all x ∈ A+. Consider the set

X := {g : A+ → B+}

and introduce the generalized metric on X as fol-
lows:

d(g, h) = inf{µ ∈ R+

: ∥g(x)− h(x)∥≤ µφ(x, x), ∀x ∈ A+},

where, as usual, inf ϕ = +∞.
It is easy to show that (X, d) is complete (see

[23]).
Now, we consider the linear mapping J : X →

X such that

Jg(x) := 2mg
( x

2m

)
for all x ∈ A+. Let g, h ∈ X be given such that
d(g, h) ≤ ε. Then we have

∥g(x)− h(x)∥≤ εφ(x, x)

for all x ∈ A+ and so∥∥∥2mg ( x

2m

)
− 2mh

( x

2m

)∥∥∥ ≤ ε|2|mφ
( x

2m
,
x

2m

)
for all x ∈ A+ and m ∈ N. Hence it follows that

∥Jg(x)− Jh(x)∥≤ Lεφ(x, x)
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for all x ∈ A+ and So d(g, h) ≤ ε implies that
d(Jg, Jh) ≤ Lε. This means that

d(Jg, Jh) ≤ Ld(g, h)

for all g, h ∈ X. It follows from (3.6) that∥∥∥f(x)− 2mf
( x

2m

)∥∥∥ ≤ L

|2|m
φ(x, x)

for all x ∈ A+ and so d(f, Jf) ≤ L
|2|m .

By Theorem 1.1, there exists a mapping
T : A+ → B+ satisfying the following:

(1) T is a fixed point of J , i.e.,

T
( x

2m

)
=

1

2m
T (x) (3.7)

for all x ∈ A+. The mapping T is a unique fixed
point of J in the set

M = {g ∈ X : d(f, g) <∞}.

This implies that T is a unique mapping satisfy-
ing (3.7) such that there exists µ ∈ (0,∞) satis-
fying

∥f(x)− T (x)∥≤ µφ(x, x)

for all x ∈ A+;

(2) d(Jnf, T ) → 0 as n → ∞. This implies
the equality

lim
n→∞

2mnf
( x

2mn

)
= T (x)

for all x ∈ A+;

(3) d(f, T ) ≤ 1
1−Ld(f, Jf), which implies

the inequality

d(f, T ) ≤ L

|2|m−|2|mL
.

This implies that the inequality (3.4) holds.
By (3.3) and (3.5), we have

|2|mn
∥∥∥f(

(
x

1
m + y

1
m

)m

2mn

)
−((

2mnf
( x

2mn

)) 1
m

+
(
2mnf

( y

2mn

)) 1
m
)m∥∥∥

≤ |2|mnφ
( x

2mn
,
y

2mn

)

for all x, y ∈ A+ and n ∈ N and so∥∥∥T((x 1
m + y

1
m

)m)
−

(
T (x)

1
m + T (y)

1
m

)m∥∥∥
= 0

for all x, y ∈ A+. Thus the mapping T :
A+ → B+ is positive-additive. This completes
the proof.

Corollary 3.1 Let p > 1 and θ1, θ2 be non-
negative real numbers, and let f : A+ → B+ be a
mapping such that∥∥∥f((x 1

m + y
1
m

)m)
−

(
f(x)

1
m + f(y)

1
m

)m∥∥∥ (3.8)

≤ θ1(∥x∥p+∥y∥p) + θ2 · ∥x∥
p
2 ·∥y∥

p
2

for all x, y ∈ A+. Then there exists a unique
positive-additive mapping T : A+ → B+ satisfy-
ing 1.1 and

∥f(x)− T (x)∥≤ |2|θ1 + θ2
|2|mp−|2|m

||x||p

for all x ∈ A+.

Proof. The proof follows from Theorem 3.1 by
taking

φ(x, y) = θ1(∥x∥p+∥y∥p) + θ2 · ∥x∥
p
2 ·∥y∥

p
2

for all x, y ∈ A+. Then we can choose L =
|2|m−mp and we get the desired result.

Theorem 3.2 Let φ : A+ × A+ → [0,∞) be a
function such that there exists L < 1 with

φ(x, y) ≤ |2|Lφ
(x
2
,
y

2

)
for all x, y ∈ A+. Let f : A+ → B+ be a map-
ping satisfying (3.3). Then there exists a unique
positive-additive mapping T : A+ → A+ satisfy-
ing 1.1 and

∥f(x)− T (x)∥≤ 1

|2|m−|2|mL
φ(x, x)

for all x ∈ A+.
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Proof. Let (X, d) be the generalized metric
space defined in the proof of Theorem 3.1. Con-
sider the linear mapping J : X → X such that

Jg(x) :=
1

2m
g (2mx)

for all x ∈ A+. It follows from (3.6) that∥∥∥∥f(x)− 1

2m
f(2mx)

∥∥∥∥ ≤ 1

2m
φ(x, x)

for all x ∈ A+ and so d(f, Jf) ≤ 1
2m .

The rest of the proof is similar to the proof of
Theorem 3.1.

Corollary 3.2 Let 0 < p < 1 and θ1, θ2 be non-
negative real numbers and let f : A+ → B+ be
a mapping satisfying (3.8). Then there exists a
unique positive-additive mapping T : A+ → B+

satisfying 1.1 and

∥f(x)− T (x)∥≤ |2|θ1 + θ2
|2|m−|2|mp

∥x∥p

for all x ∈ A+.

Proof. The proof follows from Theorem 3.2 by
taking

φ(x, y) = θ1(∥x∥p+∥y∥p) + θ2 · ∥x∥
p
2 ·∥y∥

p
2

for all x, y ∈ A+. Then we can choose L =
|2|mp−m and we get the desired result.
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