

Available online at http://ijim.srbiau.ac.ir/

Int. J. Industrial Mathematics (ISSN 2008-5621)

Vol. 7, No. 2, 2015 Article ID IJIM-00658, 7 pages Re[search Article](http://ijim.srbiau.ac.ir/)

Positive-additive functional equations in non-Archimedean *C ∗* -algebras

R. Saadati *∗†*

Abstract

————————————————————————————————–

Hensel [K. Hensel, Deutsch. Math. Verein, 6 (1897), 83-88.] discovered the *p*-adic number as a number theoretical analogue of power series in complex analysis. Fix a prime number *p*. for any nonzero rational number *x*, there exists a unique integer $n_x \in \mathbb{Z}$ such that $x = \frac{a}{b}p^{n_x}$, where *a* and *b* are integers not divisible by *p*. Then $|x|_p := p^{-n_x}$ defines a non-Archimedean norm on Q. The completion of $\mathbb Q$ with respect to metric $d(x, y) = |x - y|_p$, which is denoted by $\mathbb Q_p$, is called *p-adic number field.* In fact, \mathbb{Q}_p is the set of all formal series $x = \sum_{k \ge n}^{\infty} a_k p^k$, where $|a_k| \le p-1$ are integers. The addition and multiplication between any two elements of $\overline{}$ \mathbb{Q}_p are defined naturally. The norm $\left|\sum_{k\geq n_x}^{\infty} a_k p^k\right|_p = p^{-n_x}$ is a non-Archimedean norm on \mathbb{Q}_p and it makes \mathbb{Q}_p a locally compact field. In this paper, we consider non-Archimedean *C ∗* -algebras and, using the fixed point method, we provide an approximation of the positive-additive functional equations in non-Archimedean *C ∗* -algebras.

Keywords : Functional equation; Fixed point; Positive-additive functional equation; Linear mapping; Non-Archimedean *C ∗* -algebra.

—————————————————————————————————–

1 Introduction

 ${\bf P}^{\rm Ark}$ et al. [29] introduced the following func-
tional equation: tional equation:

$$
f\left(\left(\sqrt{x} + \sqrt{y}\right)^2\right) = \left(\sqrt{f(x)} + \sqrt{f(y)}\right)^2
$$

in the set of non-negative real numbers.

In this paper, we consider the following functional equation

$$
T\left(\left(x^{\frac{1}{m}}+y^{\frac{1}{m}}\right)^m\right) = \left(T(x)^{\frac{1}{m}}+T(y)^{\frac{1}{m}}\right)^m (1.1)
$$

for all $x, y \in A^+$ and a fixed integer *m* greater than 1, which is called a *positive-additive functional equation* (see [16]). Each solution of the positive-additive functional equation is called a *positive-additive mapping*.

Note that the function $f(x) = cx$ for any $c \geq 0$ in the set of non-negative real numbers is a solution of the functional equation (1.1).

Let *X* be a set. A function $d: X \times X \to [0, \infty]$ is called a *generalized metric* on *X* if *d* satisfies the following conditions: for all $x, y, z \in X$,

- (1) $d(x, y) = 0$ if and only if $x = y$;
- (2) $d(x, y) = d(y, x)$;
- (3) $d(x, z) \leq d(x, y) + d(y, z)$.

The set *X* with a generalized metric *d* is called a *generalized metric space*.

We recall a fundamental result in fixed point

*[∗]*Corresponding author. rsaadati@iust.ac.ir

*[†]*Department of Mathematics, Iran University of Science and Technology, Te[hran](#page-5-1), Iran.

theory.

Theorem 1.1 *[[2, 10]]* Let (X,d) be a complete *generalized metric space and let* $J: X \rightarrow X$ *be a strictly contractive mapping with Lipschitz constant* $L < 1$ *. Then, for each* $x \in X$ *, either*

$$
d(J^n x, J^{n+1} x) = \infty
$$

for all $n \geq 0$ *or there exists a positive integer* n_0 *such that*

 (1) $d(J^{n}x, J^{n+1}x) < \infty$ for all $n \geq n_0$;

(2) *the sequence* $\{J^n x\}$ *converges to a fixed point y ∗ of J;*

(3) *y ∗ is the unique fixed point of J in the set* $Y = \{ y \in X \mid d(J^{n_0}x, y) < \infty \};$

(4)
$$
d(y, y^*) \le \frac{1}{1-L}d(y, Jy)
$$
 for all $y \in Y$.

In 1996, Isac and Th.M. Rassias [19] were the first to provide applications of stability theory of functional equations for the proof of new fixed point theorems with applications. By using the fixed point method, the stability pro[ble](#page-5-2)ms of several functional equations have been extensively investigated by a number of authors (see [3], [4], [27]–[34], [38] and [1, 5, 6, 7, 8, 9, 13, 14, 15, 17, 18, 20, 21, 22, 24, 25, 26, 28, 31, 33, 36, 35, 37, 39, 40, 43, 44]).

[2](#page-5-7) [n](#page-5-8)[on](#page-5-9)[–A](#page-5-10)[rc](#page-5-11)[him](#page-5-12)[ed](#page-5-13)[ea](#page-5-14)[n](#page-5-15) *[C](#page-5-16) [∗](#page-5-6)***[–](#page-5-17) [a](#page-6-0)[lge](#page-6-1)[br](#page-6-2)as**

In this section, we consider non-Archimedean *C ∗* -algebras. By a *non-Archimedean field* we mean a field *K* equipped with a function (valuation) $|\cdot|$ from K into $[0, \infty)$ such that

(a) $|r| = 0$ if and only if $r = 0$;

(b) $|rs| = |r||s|$;

(c) $|r + s| \le \max\{|r|, |s|\}$ for all $r, s \in K$.

Clearly, $|1| = |-1| = 1$ and $|n| \leq 1$ for all $n \in \mathbb{N}$. By the trivial valuation we mean the mapping *|·|* taking everything but 0 into 1 and $|0|=0$.

Let *X* be a vector space over a field *K* with a non-Archimedean non-trivial valuation *|·|*. A function $\|\cdot\|$: $X \to [0,\infty)$ is called a *non*-*Archimedean norm* if it satisfies the following conditions:

- (a) $||x|| = 0$ if and only if $x = 0$;
- (b) for any $r \in K$, $x \in X$, $||rx|| = |r| ||x||$;

(c) the strong triangle inequality (ultrametric) holds; namely,

$$
||x + y|| \le \max\{||x||, ||y||\}
$$

for all $x, y \in X$.

Then (*X, ∥·∥*) is called a *non-Archimedean normed space*. From the fact that

$$
||x_n - x_m||
$$

\n
$$
\leq \max{||x_{j+1} - x_j|| : m \leq j \leq n-1}
$$

for all $n, m \in \mathbb{N}$ with $n > m$ holds, a sequence $\{x_n\}$ is a Cauchy sequence if and only if ${x_{n+1} - x_n}$ converges to zero in a non-Archimedean normed space. By a *complete non-Archimedean normed space* we mean one in which every Cauchy sequence is convergent.

For any nonzero rational number *x*, there exists a unique integer $n_x \in \mathbb{Z}$ such that $x = \frac{a}{b}$ $\frac{a}{b}p^{n_x},$ where *a* and *b* are integers not divisible by *p*. Then $|x|_p := p^{-n_x}$ defines a non-Archimedean norm on Q. The completion of Q with respect to the metric $d(x, y) = |x - y|_p$ is denoted by \mathbb{Q}_p , which is called the *p-adic number field*.

A *non-Archimedean Banach algebra* is a complete non-Archimedean algebra *A* which satisfies

$$
||ab|| \le ||a|| \cdot ||b||
$$

for all $a, b \in \mathcal{A}$. For more detailed definitions of non-Archimedean Banach algebras, refer to [7, 12, 41].

If *U* is a non-Archimedean Banach algebra, then an *involution* on U is a mapping $t \to t^*$ from U into U which satisfies the following conditio[ns:](#page-4-3)

- (a) $t^{**} = t$ for all $t \in \mathcal{U}$;
- (b) $(\alpha s + \beta t)^* = \overline{\alpha} s^* + \beta t^*$;
- (c) $(st)^* = t^*s^*$ for $s, t \in \mathcal{U}$.

If, in addition, $||t^*t|| = ||t||^2$ for all $t \in \mathcal{U}$, then *U* is a *non-Archimedean C ∗ -algebra*.

Definition 2.1 ([11]) *Let A be a non-* $Archimedean$ C^* -algebra and $x \in A$ be a $self-adjoint element, i.e., $x^* = x$. Then x is said$ *to be positive if i[t is](#page-4-7) of the form yy∗ for some y ∈ A.*

The set of positive elements of *A* is denoted by A^+ . Note that A^+ is a closed convex cone (see [11]). It is well-known that, for a positive element *x* and a positive integer *n*, there exists a unique positive element $y \in A^+$ such that $x = y^n$. We denote *y* by $x^{\frac{1}{n}}$ (see [16]).

Throughout this paper, let A^+ and B^+ be the sets of positive elements in non-Archimedean *C ∗* algebras *A* and *B*, r[espe](#page-5-1)ctively. Assume that *m* is a fixed integer greater than 1.

3 Approximation of the positive-additive functional equation 1.1: fixed point approach

In this section, w[e inv](#page-0-0)estigate the positiveadditive functional equation 1.1 in non-Archimedean *C ∗* -algebras.

Lemma 3.1 ([29]) *Let* $T : A^+ \to B^+$ *be a positive-additive mapping satisfying 1.1. Then T satisfies*

$$
T(2^{mn}x) = 2^{mn}T(x)
$$

for all $x \in A^+$ *and* $n \in \mathbb{Z}$ *.*

Using the fixed point method, we provide an approximation of the positive-additive functional equation 1.1 in non-Archimedean *C ∗* -algebras. Note that the fundamental ideas in the proofs of the main results in this section are contained in $[2, 3, 4]$.

Theorem 3.1 *Let* $\varphi : A^+ \times A^+ \to [0, \infty)$ *be a [fu](#page-4-8)[nc](#page-4-9)ti[o](#page-4-10)n such that there exists* $L < 1$ *with*

$$
|2|\varphi\left(\frac{x}{2},\frac{y}{2}\right) \le L\varphi\left(x,y\right) \tag{3.2}
$$

for all $x, y \in A^+$ *. Let* $f : A^+ \to B^+$ *be a mapping satisfying*

$$
\left\| f\left(\left(x^{\frac{1}{m}} + y^{\frac{1}{m}} \right)^m \right) - \left(f(x)^{\frac{1}{m}} + f(y)^{\frac{1}{m}} \right)^m \right\| \qquad (3.3)
$$

$$
\leq \varphi(x, y)
$$

for all $x, y \in A^+$ *. Then there exists a unique positive-additive mapping* $T : A^+ \rightarrow A^+$ *satisfying 1.1 and*

$$
||f(x) - T(x)|| \le \frac{L}{|2|^m - |2|^m L} \varphi(x, x) \qquad (3.4)
$$

for all $x \in A^+$ *.*

Proof. It follows from (3.2) that

$$
\lim_{m \to \infty} |2|^m \varphi \left(\frac{x}{2^m}, \frac{y}{2^m}\right) = 0 \tag{3.5}
$$

for all $x, y \in A^+$. Letting $y = x$ $y = x$ $y = x$ in (3.3), we get

$$
||f(2^m x) - 2^m f(x)|| \le \varphi(x, x) \tag{3.6}
$$

for all $x \in A^+$. Consider the set

$$
X:=\{g:A^+\rightarrow B^+\}
$$

and introduce the generalized metric on *X* as follows:

$$
d(g, h) = \inf \{ \mu \in \mathbb{R}_+ : \|g(x) - h(x)\| \le \mu \varphi(x, x), \quad \forall x \in A^+ \},
$$

where, as usual, inf $\phi = +\infty$.

It is easy to show that (X, d) is complete (see [23]).

Now, we consider the linear mapping $J: X \rightarrow$ *X* such that

$$
Jg(x) := 2^m g\left(\frac{x}{2^m}\right)
$$

for all $x \in A^+$. Let $g, h \in X$ be given such that $d(g, h) \leq \varepsilon$. Then we have

$$
||g(x) - h(x)|| \le \varepsilon \varphi(x, x)
$$

for all $x \in A^+$ and so

$$
\left\|2^m g\left(\frac{x}{2^m}\right) - 2^m h\left(\frac{x}{2^m}\right)\right\| \leq \varepsilon |2|^m \varphi\left(\frac{x}{2^m}, \frac{x}{2^m}\right)
$$

for all $x \in A^+$ and $m \in \mathbb{N}$. Hence it follows that

$$
||Jg(x) - Jh(x)|| \le L\varepsilon\varphi(x, x)
$$

for all $x \in A^+$ and So $d(g, h) \leq \varepsilon$ implies that for all $x, y \in A^+$ and $n \in \mathbb{N}$ and so $d(Jg, Jh) \leq L\varepsilon$. This means that

$$
d(Jg, Jh) \le Ld(g, h)
$$

for all $g, h \in X$. It follows from (3.6) that

$$
\left\|f(x) - 2^m f\left(\frac{x}{2^m}\right)\right\| \le \frac{L}{|2|^m} \varphi(x, x)
$$

for all $x \in A^+$ and so $d(f, Jf) \leq \frac{L}{|2|^m}$.
By Theorem 1.1, there exists a mapping

 $T: A^+ \rightarrow B^+$ satisfying the following:

(1) T is a fixed point of J , i.e.,

$$
T\left(\frac{x}{2^m}\right) = \frac{1}{2^m}T(x) \tag{3.7}
$$

for all $x \in A^+$. The mapping *T* is a unique fixed point of *J* in the set

$$
M = \{ g \in X : d(f, g) < \infty \}.
$$

This implies that *T* is a unique mapping satisfying (3.7) such that there exists $\mu \in (0, \infty)$ satisfying

$$
||f(x) - T(x)|| \le \mu \varphi(x, x)
$$

for all $x \in A^+$ $x \in A^+$;

(2) $d(J^n f, T) \rightarrow 0$ as $n \rightarrow \infty$. This implies the equality

$$
\lim_{n \to \infty} 2^{mn} f\left(\frac{x}{2^{mn}}\right) = T(x)
$$

for all $x \in A^+$;

 (3) $d(f,T) \leq \frac{1}{1-1}$ $\frac{1}{1-L}d(f,Jf)$, which implies the inequality

$$
d(f,T)\leq \frac{L}{|2|^m-|2|^mL}.
$$

This implies that the inequality (3.4) holds. By (3.3) and (3.5) , we have

$$
|2|^{mn} \Big\| f\Big(\frac{\left(x^{\frac{1}{m}} + y^{\frac{1}{m}}\right)^m}{2^{mn}}\Big) - \Big(\Big(2^{mn} f\Big(\frac{x}{2^{mn}}\Big)\Big)^{\frac{1}{m}} + \Big(2^{mn} f\Big(\frac{y}{2^{mn}}\Big)\Big)^{\frac{1}{m}} \Big)^m \Big\|
$$

$$
\leq |2|^{mn} \varphi\Big(\frac{x}{2^{mn}}, \frac{y}{2^{mn}}\Big)
$$

$$
\left\|T\left(\left(x^{\frac{1}{m}}+y^{\frac{1}{m}}\right)^m\right) - \left(T(x)^{\frac{1}{m}}+T(y)^{\frac{1}{m}}\right)^m\right\|
$$

= 0

for all $x, y \in A^+$. Thus the mapping T : $A^+ \rightarrow B^+$ is positive-additive. This completes the proof.

Corollary 3.1 *Let* $p > 1$ *and* θ_1, θ_2 *be nonnegative real numbers, and let* $f : A^+ \rightarrow B^+$ *be a mapping such that*

$$
\|f((x^{\frac{1}{m}}+y^{\frac{1}{m}}))^m\right\|
$$

– $(f(x)^{\frac{1}{m}}+f(y)^{\frac{1}{m}})^m\|$
≤ $\theta_1(\|x\|^p+\|y\|^p)+\theta_2 \cdot \|x\|^{\frac{p}{2}} \cdot \|y\|^{\frac{p}{2}}$ (3.8)

for all $x, y \in A^+$ *. Then there exists a unique positive-additive mapping* $T: A^+ \rightarrow B^+$ *satisfying 1.1 and*

$$
||f(x) - T(x)|| \le \frac{|2|\theta_1 + \theta_2}{|2|^{mp} - |2|^m} ||x||^p
$$

for all $x \in A^+$ *.*

Proof. The proof follows from Theorem 3.1 by taking

$$
\varphi(x,y) = \theta_1(||x||^p + ||y||^p) + \theta_2 \cdot ||x||^{\frac{p}{2}} \cdot ||y||^{\frac{p}{2}}
$$

for all $x, y \in A^+$. Then we can choose $L =$ *|*2*| ^m−mp* and we get the desired result.

Theorem 3.2 *Let* $\varphi : A^+ \times A^+ \to [0, \infty)$ *be a function such that there exists L <* 1 *with*

$$
\varphi(x,y) \leq |2|L\varphi\left(\frac{x}{2},\frac{y}{2}\right)
$$

for all $x, y \in A^+$ *. Let* $f : A^+ \to B^+$ *be a mapping satisfying* (3.3)*. Then there exists a unique positive-additive mapping* $T: A^+ \rightarrow A^+$ *satisfying 1.1 and*

$$
||f(x) - T(x)|| \le \frac{1}{|2|^m - |2|^m L} \varphi(x, x)
$$

for all $x \in A^+$ *.*

Proof. Let (*X, d*) be the generalized metric space defined in the proof of Theorem 3.1. Consider the linear mapping $J: X \to X$ such that

$$
Jg(x) := \frac{1}{2^m} g\left(2^m x\right)
$$

for all $x \in A^+$. It follows from (3.6) that

$$
\left\| f(x) - \frac{1}{2^m} f(2^m x) \right\| \le \frac{1}{2^m} \varphi(x, x)
$$

for all $x \in A^+$ and so $d(f, Jf) \leq \frac{1}{2^m}$.

The rest of the proof is similar to the proof of Theorem 3.1.

Corollary 3.2 *Let* $0 < p < 1$ *and* θ_1, θ_2 *be nonnegative real numbers and let* $f : A^+ \rightarrow B^+$ *be a mappin[g sa](#page-2-2)tisfying* (3.8)*. Then there exists a unique positive-additive mapping* $T : A^+ \rightarrow B^+$ *satisfying 1.1 and*

$$
||f(x) - T(x)|| \le \frac{|2|\theta_1 + \theta_2}{|2|^m - |2|^m} ||x||^p
$$

for all $x \in A^+$ *.*

Proof. The proof follows from Theorem 3.2 by taking

$$
\varphi(x,y) = \theta_1(||x||^p + ||y||^p) + \theta_2 \cdot ||x||^{\frac{p}{2}} \cdot ||y||^{\frac{p}{2}}
$$

for all $x, y \in A^+$. Then we can choose $L =$ *|*2*| mp−^m* and we get the desired result.

References

- [1] T. Aoki, *On the stability of the linear transformation in Banach spaces*, J. Math. Soc. Japan 2 (1950) 64-66.
- [2] L. Cădariu, V. Radu, *Fixed points and the stability of Jensen's functional equation*, J. Inequal. Pure Appl. Math. 4 (2003) 7 pp.
- [3] L. Cădariu, V. Radu, *On the stability of the Cauchy functional equation: a fixed point approach*, Grazer Math. Ber. 346 (2004) 43-52.
- [4] L. Cădariu, V. Radu, *Fixed point methods for the generalized stability of functional equations in a single variable*, Fixed Point Theory Appl. 8 (2008) 15-30.
- [5] S. Chauhan, B. D. Pant, *Fixed point theorems for compatible and subsequentially continuous mappings in Menger spaces*, J. Nonlinear Sci. Appl. 7 (2014) 78-89.
- [6] Y. J. Cho, Th. M. Rassias, R. Saadati, *Stability of functional equations in random normed spaces*, Springer Optimization and Its Applications, 86. Springer, New York, (2013).
- [7] Y. J. Cho, R. Saadati, J. Vahidi, *Approximation of homomorphisms and derivations on non-Archimedean Lie C ∗ -algebras via fixed point method*, Discrete Dyn. Nat. Soc. 12 (2012) 9-18.
- [8] Y. J. Cho, R. Saadati, *Lattictic non-Archimedean random stability of ACQ functional equation*, Adv. Difference Equ. 11 (2011) 12-23.
- [9] P. Czerwik, *Functional Equations and Inequalities in Several Variables*, World Scientific Publishing Company, New Jersey, Hong Kong, Singapore and London, (2002).
- [10] J. Diaz, B. Margolis, *A fixed point theorem of the alternative for contractions on a generalized complete metric space*, Bull. Amer. Math. Soc. 74 (1968) 305-309.
- [11] J. Dixmier, *C ∗ -Algebras*, North-Holland Publ. Com., Amsterdam, New York and Oxford, (1977).
- [12] M. Eshaghi Gordji, Z. Alizadeh, *Stability and Superstability of Ring Homomorphisms on Non-Archimedean Banach Algebras*, Abstr. Appl. Anal. 11 (2011) 10-20.
- [13] G. L. Forti, *Comments on the core of the direct method for proving Hyers-Ulam stability of functional equations*, J. Math. Anal. Appl. 295 (2004) 127-133.
- [14] G. L. Forti, *Elementary remarks on Ulam-Hyers stability of linear functional equations*, J. Math. Anal. Appl. 328 (2007) 109-118.
- [15] P. Găvruta, *A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings*, J. Math. Anal. Appl. 184 (1994) 431-436.
- [16] K. R. Goodearl, *Notes on Real and Complex C ∗ -Algebras*, Shiva Math. Series *IV* , Shiva Publ. Limited, Cheshire, England, (1982).
- [17] D. H. Hyers, *On the stability of the linear functional equation*, Proc. Nat. Acad. Sci. USA 27 (1941) 222-224.
- [18] D. H. Hyers, G. Isac, Th. M. Rassias, *Stability of Functional Equations in Several Variables*, Birkhäuser, Basel, (1998).
- [19] G. Isac, Th. M. Rassias, *Stability of* ψ *additive mappings: Appications to nonlinear analysis*, Internat. J. Math. Math. Sci. 19 (1996) 219-228.
- [20] S. M. Jung, *Hyers - Ulam - Rassias Stability of Functional Equations in Nonlinear Analysis*, Springer, New York, (2011).
- [21] J. I. Kang, R. Saadati, *Approximation of homomorphisms and derivations on non-Archimedean random Lie C ∗ -algebras via fixed point method*, J. Inequal. Appl. 12 (2012) 10-22.
- [22] S.J. Lee, R. Saadati, *On stability of functional inequalities at random lattice ϕnormed spaces*, J. Comput. Anal. Appl. 15 (2013) 1403-1412.
- [23] D. Mihet, V. Radu, *On the stability of the additive Cauchy functional equation in random normed spaces*, J. Math. Anal. Appl. 343 (2008) 567-572.
- [24] D. Mihet, Common coupled fixed point theorems for contractive mappings in fuzzy metric spaces, J. Nonlinear Sci., Appl. 6 (2013) 35-40.
- [25] D. Mihet, R. Saadati, *On the stability of the additive Cauchy functional equation in random normed spaces*, Appl. Math. Lett. 24 (2011) 2005-2009.
- [26] D. Mihet, R. Saadati, S. M. Vaezpour, *The stability of the quartic functional equation in random normed spaces*, Acta Appl. Math. 110 (2010) 797-803.
- [27] M. Mirzavaziri, M. S. Moslehian, *A fixed point approach to stability of a quadratic equation*, Bull. Braz. Math. Soc. 37 (2006) 361-376.
- [28] M. Mohamadi, Y. J. Cho, C. Park, P. Vetro, R. Saadati, *Random stability on an additivequadratic-quartic functional equation*, J. Inequal. Appl. 2010 (2010) 18-36.
- [29] C. Park, H. A. Kenary, S. O. Kim, *Positiveadditive functional equations in C ∗ -algebras*, Fixed Point Theory 13 (2012) 613-622.
- [30] C. Park, *Fixed points and Hyers-Ulam-Rassias stability of Cauchy-Jensen functional equations in Banach algebras*, Fixed Point Theory Appl. 7 (2007) 15-22.
- [31] C. Park, M. Eshaghi Gordji, R. Saadati, *Random homomorphisms and random derivations in random normed algebras via fixed point method*, J. Inequal. Appl. 2 (2012) 13-26.
- [32] C. Park, *Generalized Hyers-Ulam-Rassias stability of quadratic functional equations: a fixed point approach*, Fixed Point Theory Appl. 8 (2008) 9-17.
- [33] C. Park, M. Eshaghi Gordji, A. Najati, *Generalized Hyers-Ulam stability of an AQCQfunctional equation in non-Archimedean Banach spaces*, J. Nonlinear Sci. Appl. 3 (2010) 272-281.
- [34] V. Radu, *The fixed point alternative and the stability of functional equations*, Fixed Point Theory 4 (2003) 91-96.
- [35] J. M. Rassias, R. Saadati, Gh. Sadeghi, J. Vahidi, *On nonlinear stability in various random normed spaces*, J. Inequal. Appl. 11 (2011) 17-28.
- [36] Th. M. Rassias, *On the stability of the linear mapping in Banach spaces*, Proc. Amer. Math. Soc. 72 (1978) 297-300.
- [37] R. Saadati, S. M. Vaezpour, Y. J. Cho, *A note to paper "On the stability of cubic mappings and quartic mappings in random normed spaces"*, J. Inequal. Appl. 9 (2009) 6-15.
- [38] R. Saadati, M. M. Zohdi, S. M. Vaezpour, *Nonlinear L-random stability of an ACQ functional equation*, J. Inequal. Appl. 11 (2011) 23-34.
- [39] S. Shakeri, *A contraction theorem in Menger probabilistic metric spaces*, J. Nonlinear Sci. Appl. 1 (2008) 189-193.
- [40] S. Shakeri, *A note on the "A contraction theorem in Menger probabilistic metric spaces"*, J. Nonlinear Sci. Appl. 2 (2009) 25-26.
- [41] N. Shilkret, *Non-Archimedean Banach algebras*, Ph.D. Thesis, Polytechnic University, (1968).
- [42] J. Vahidi, C. Park, R. Saadati, *A functional equation related to inner product spaces in non-Archimedean L-random normed spaces* , J. Inequal. Appl. 12 (2012) 16-28.
- [43] S. M. Ulam, *A Collection of the Mathematical Problems*, Interscience Publ. New York, (1960).
- [44] C. Zaharia, *On the probabilistic stability of the monomial functional equation*, J. Nonlinear Sci. Appl. 6 (2013) 51-59.

Reza Saadati has got PhD degree from Amirkabir University of Technology in 2010 and now he is the assistant professor in Iran University of Science and Technology, Tehran, Iran. He has published more than 150 papers in interna-

tional journals and conferences and three international books with H-index 18. Now, he is working on nonlinear operator theory and topology.