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Abstract

In this paper, we have investigated the chaotic behavior of thermal convection in couple stress liquid
saturated porous layer subject to gravity, heated from below and cooled from above, based on theory
of dynamical system. A low dimensional Lorenz- like model is obtained by using Galerkin-truncation
approximation. We found that there is proportional relation between scaled couple stress parameter
and rescaled Rayleigh number. We analyzed that increase in level of couple stress parameter increases
the level of chaos.
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1 Introduction

Chaotic convection in fluid saturated porous
medium has great interest due to its wide range
of applications in laboratory and nature. In the
laboratory, chaos is used to design electric circuits
and mechanical devices. In the nature, chaos the-
ory can be used in the dynamics of satellites in
the solar system, thermal insulation and geother-
mal energy utilization.
The problem of couple stress liquid in porous
medium has not much attention till now. The
investigations of non-Newtonian fluids with sus-
pended particles in the field of modern technology
and industries are of great importance. Stokes
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[24] has proposed couple stress theory in the sim-
plest polar fluid theory. The main feature of this
model is that momentum equation is similar to
the Navier-Stokes equation, thereby it gives us
facility to compare with the result for the clas-
sical non-polar case. Applications of such fluids
are occur in industry such as extraction of crude
oil from petroleum industry, cooling of metallic
plate in a bath, solidification of liquid crystals
and exotic lubrication. In the category of non-
Newtonian fluids, couple stress fluids have differ-
ent features such as polar effects, having large
viscosity.
There are many researchers who have investi-
gated the effect of couple stress liquid in porous
medium. Vadasz and Olek [27] found that for a
low Prandtl number, solitary limit cycle obtained
by subcritical hopf bifurcation may be associated
with a homoclinic explosion. Also, Vadasz [29]
suggested an explanation by analytical method
for the appearance of this solitary limit cycle.
Jawdat and Hasim [9] investigated the chaotic
convection in a porous medium for low Prandtl
number with internal heat generation. They
found that the amount of internal heat genera-
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tion is inversely proportional to scaled Rayleigh
number. Mahmud and Hasim [16] investigated
the effect of magnetic field on chaotic convection
in fluid layer. They found that transition from
chaotic convection to steady convection occurs by
a subcritical hopf bifurcation producing a homo-
clinic explosion may be limit cycle as Hartmann
number increases. The generalized Lorenz mod-
els and their routes to chaos by energy-conserving
horizontal mode truncations are investigated by
Roy and Musielek [26]. They observed that in
horizontal modes, 5D system is the lowest order
generalized Lorenz model. Vadasz and Olek [28]
investigated the route to chaos occurs by a pe-
riod doubling sequence of bifurcations when the
Prandtl number is moderate. Sheu[21] reported
that the route to chaos and its applications of
thermal non-equilibrium model tends to stabi-
lize steady convection. Sheu et. al. [22] in-
vestigated the onset of chaos through the use of
an Oldrydian-fluid. The effect of feedback con-
trol on chaos in porous media has been stud-
ied by Mahmud and Hasim[15]. They observed
that amount of feedback control is proportional
to scaled Rayleigh number. Magyari [13] demon-
strated that the structure of feedback control sys-
tem proposed by Mahmud and Hasim[15] does
not alter the original uncontrolled system but its
effect is in changing the initial condition of the
system. Gupta and Singh [5] reported the effect
of anisotropic parameters on chaotic convection.
They founded a proportional relation between
scaled Rayleigh number and scaled anisotropic
parameters. Gupta and Bhadauria [6] investi-
gated the double diffusive convection in a couple
stress liquid saturated porous layer with soret ef-
fect using thermal non-equilibrium model.
From the above paragraph, we observed that a
huge amount of analysis on chaotic behavior has
been discussed on the onset of convection for var-
ious flow models. However, not much work has
been done for couple stress liquid to analyze its
chaotic behavior. Therefore, in this paper, we
have intend to study, the effect of couple stress
parameter on Darcy convection by dynamical sys-
tem approach. for C = 0.1, Rc2 = 26.4 for C =
0.2, Rc2 = 31.25 for C = 0.5,Rc2 = 42.85714286
for C = 1.0 and R = 57.56578947 for C = 1.5
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Figure 1: Evolution of the complex eigenvalues with
increasing Rayleigh number, for σ = 5, γ = 0.5,C =
0.1, 0.5, 1.0

2 Mathematical formulation of
Problem

We consider a couple stress fluid saturated in
horizontal porous layer of depth H∗ and width L∗
with stress free boundaries, which is heated from
below and cooled from above. The x-axis is taken
along the lower boundary, and the Z−axis verti-
cally upward. The lower surface is held at tem-
perature T0+△T , while the upper surface is at T0.
A uniform adverse temperature gradient △T/H∗
is maintained between the lower and upper sur-
faces. The extended Darcy model that includes
the time derivative term and couple stress term is
employed for the momentum equation. The con-
tinuity and momentum equations governing the
motion of an incompressible couple stress fluid in
the absence of body couple are given by

∇.q = 0 (2.1)

1

ε

∂q

∂t
= − 1

ρ0
∇p+ ρ

ρ0
g− 1

K

1

ρ0
(µ−µc∇2)q (2.2)

ε(ρ0c)
∂T

∂t
+ (ρ0c)(q.∇)T = εκ∇2T (2.3)

ρ = ρ0[1− αT (T − T0)] (2.4)

The boundary conditions are given by

T = T0 +△T at z = 0

and T = T0 at z = H∗
(2.5)

where q is the velocity of couple stress fluid in
porous medium, ε the porosity, K the permeabil-
ity of the medium, p the fluid pressure, g the
gravitational acceleration, µ the dynamic viscos-
ity, µc is the material constant responsible for
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C = 0.1, R = 24.543

Y

X

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
-4

-3

-2

-1

0

1

2

3

 

 

2(e)

C = 0.1, R = 25.41

Y

X

Figure 2: Phase portraits for evolution of trajectories
over time in the state space for increasing value of
rescaled Rayleigh number (R). The graphs represent
the projection of the solution data points onto Y −X
plane for σ = 5, γ = 0.5 and C = 0.1.
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C = 0.5, R = 29
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C = 0.5, R = 30.595
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Figure 3: Phase portraits for evolution of trajectories
over time in the state space for increasing value of
rescaled Rayleigh number (R). The graphs represent
the projection of the solution data points onto Y −X
plane for σ = 5, γ = 0.5 and C = 0.5.
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Figure 4: Phase portraits for evolution of trajectories
over time in the state space for increasing value of
rescaled Rayleigh number (R). The graphs represent
the projection of the solution data points onto Y −X
plane for σ = 5, γ = 0.5 and C = 1.0.

the couple stress property known as the couple
stress viscosity and has the dimension of momen-
tum (MLT−1).

The basic state is assumed to be quiescent
and quantities in this state are given by

qb = (0, 0, 0), p = pb(z), T = Tb(z)

and ρ = ρb(z)
(2.6)

Substituting Eq. (2.6) in Eqs. (2.2) and (2.3), we
get

dpb
dz

= −ρbg (2.7)

d2Tb
dz2

= 0, (2.8)

where b refers to the basic state. The solution of
Eq. (2.8) subject to the boundary condition (2.5)
is given by

Tb = T0 +△T (1− z

H∗
) (2.9)

Now, we superimpose the small perturbations at
the basic state in the form:

q = qb + q
′
, T = Tb + T

′
,

p = pb + p
′
, ρ = ρb + ρ

′ (2.10)

where primes denote the quantities at the per-
turbations. Using Eqs. (2.9)-(2.10) in Eqs. (2.1)-
(2.3) we obtain the following equations,

∇.q′ = 0 (2.11)

1

ε

∂q′

∂t
= − 1

ρ0
∇.p′ − gβTT

′ − 1

Kρ0
(µ− µc∇2)q′

(2.12)

ε(ρ0c)
∂T

′

∂t
+ (ρ0c)(q

′.∇)T ′+

(ρ0c)w
′∂Tb
∂z

= εκ∇2T
′

(2.13)

Now, non-dimensionalising Eqs.(2.1) − (2.3) by
using the following transformations:

q∗ = (H∗/κ)q
′, p∗ = (K/νκ)p′, T∗ =

T ′ − T0
△T

,

(x∗, y∗, z∗) = H∗(x, y, z), t∗ = tH2
∗/κ. (2.14)

Since, we are considering only two dimensional
flow model, therefore introduce the stream func-
tion ψ as u = ∂ψ/∂z and w = −∂ψ/∂x obtain
the following equations(for simplicity dropping
the asterisks)

(
1

V a

∂

∂t
+ 1− C∇2)∇2ψ +RaT

∂T

∂x
= 0 (2.15)
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(
∂

∂t
−∇2)T = −∂ψ

∂x
+
∂(ψ, T )

∂(x, z)
(2.16)

where V a = εPr/Da, the Vadasz number, RaT=
β(△T )gH∗K

ενκ , the Darcy- Rayleigh number and
Da = K/L2

∗, the Darcy number, C1 = µc/µL
2
∗,

couple stress parameter, Pr = ν/κ, the Prandtl
number.
Assumed, boundaries are stress free and isother-
mal, therefore the boundary conditions are given
by

ψ =
∂2ψ

∂z2
= 0 at z = 0 and z = 1 (2.17)

T = 0 at z = 0 and z = 1 (2.18)

The set of partial differential Eqs.(2.15) -
(2.16) form a non-linear coupled system with the
above boundary conditions.

3 Truncated Galerkin expan-
sion

To obtain the solution of non-linear coupled sys-
tem of partial differential Eqs.(2.15)-(2.16), we
represent the stream function ψ and temperature
T in the form

ψ = A11 sin(
πx

L
) sin(πz) (3.19)

T = B11 cos(
πx

L
) sin(πz) +B02 sin(2πz) (3.20)

This representation is equivalent to Galerkin ex-
pansion of the solution in both the X− and
Z−directions. Substituting Eqs. (3.19) and
(3.20) in the Eqs. (2.15) - (2.16), multiply-
ing the equations by the orthogonal character-
istic functions corresponding to Eqs.(3.19) and
(3.20) and integrating them over the domain
[0, L] × [0, 1],yields a set of three ordinary dif-
ferential equations for the time evolution of the
amplitudes:

dA11(τ)

dτ
= −V aγ

π2

(RaT
πθ

B11(τ)+A11(τ)

+C
π2

γ
A11(τ)

) (3.21)

dB11(τ)

dτ
=− 1

πθ
A11(τ)−

1

θ
A11(τ)B02(τ)

−B11(τ)

(3.22)

dB02(τ)

dτ
= −4γB02(τ)+

1

2θ
A11(τ)B11(τ) (3.23)

In the Eqs. (3.21)- (3.23), time is rescaled and
some additional notations has been used:

τ =
(L2 + 1)π2t

L2
, θ =

L2 + 1

L

γ =
L

θ
=

L2

L2 + 1
(3.24)

Although we cannot establish the relationship be-
tween the solutions of the governing partial dif-
ferential and the corresponding truncated ordi-
nary differential system, these lower-order spec-
tral models may qualitatively reproduce the con-
vective phenomena observed in the full system.
The result can also be used as starting values
when discussing the fully non-linear problem.

We introduce the following notations

R =
Ra

π2θ2
, C =

C1π
2

γ
, S = 1 + C,

σ =
Pr

π2γ

(3.25)

and rescale the amplitudes in the form of

X(τ) =
A11(τ)

2θ
√

2γ(R− 1)
, Y (τ) =

πRB11(τ)√
2γ(R− 1)

and Z(τ) = −πRB02(τ)

R− 1
(3.26)

to obtain the following set of equations,

Ẋ = σ[Y − SX] (3.27)

Ẏ = RX − Y − (R− 1)XZ (3.28)

Ż = 4γ(XY − Z) (3.29)

where the dots(.) denote the time derivative
d()/dτ . Eqs. (3.27)-(3.29) are like the Lorenz
equations (Lorenz [12], Sparrrow [23], with the
different coefficients.

4 Stability Analysis

In this section, We consider the thermal instabil-
ity of buoyancy-driven flow in couple stress liq-
uid confined between stress-free boundaries. The
fluid layer is subjected to a constant vertical tem-
perature gradient. Stability analysis of the sta-
tionary solutions will be perform in order to de-
termine the nature of dynamics about the fixed
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points. The non-linear dynamics of Lorenz-like
system (3.27) − (3.29) has been analyzed and
solved for σ = 5 and γ = 0.5 corresponding to
convection.

4.1 Dissipation

Let the general form of nonlinear dynamical sys-
tem of Eqs.(3.27) − (3.29) be Ẋs = f(Xs) and
V (τ) be the volume in phase space of closed sur-
face s(τ) at instantaneous time τ . So, f(Xs) will
be instantaneous velocity. Hence,volume can be
obtained by expression (Strogatz[25])

V̇ =

∫
s
f(Xs).n̂dA (4.30)

where n̂ denotes the outward normal on surface
s(τ) and dA denotes the area in time τ . By di-
vergence theorem, above integral can be written
as

V̇ =

∫
V
∇.f(Xs)dV (4.31)

Now,

∇.f(Xs) =
∂Ẋ

∂X
+
∂Ẏ

∂Y
+
∂Ż

∂Z
= −[σS + 4γ + 1] < 0

(4.32)

Since the divergence is constant, Eq. (4.31) re-
duces to

V̇ = −(σS + 4γ + 1)V (4.33)

Hence, if set of initial points in the phase space
occupies volume V (0) at time t = 0, then volume
in the phase space is

V (τ) = V (0) exp
[
−(σS + 1 + 4γ)τ

]
(4.34)

The above expression shows that the volume in
phase space shrink exponentially. Which indi-
cates that the solution is bounded as time →

4.2 Equilibrium points

System of Eqs.(3.27)-(3.29) has the general
form Ẋs = f(Xs) and the equilibrium (fixed or
stationary) points are obtained by f(Xs) = 0.
The equilibrium points of the rescaled system
are

(X1, Y1, Z1) = (0, 0, 0) (4.35)

and

X2,3 = ±

√
R− S

(R− 1)S
(4.36)

Y2,3 = ±
√

(R− S)S

R− 1
(4.37)

Z2,3 =
R− S

R− 1
(4.38)

corresponding to the motionless and convection
solutions respectively. When C = 0, the values
coincides with Vadasz and Olek [27]

4.3 Stability of equilibrium points

By linearizing system of Eqs.(3.27)-(3.29), we ob-
tain its Jacobian matrix as follows:

J =

 −σS σ 0
R− (R− 1)Z −1 −(R− 1)X

4γY 4γX −4γ


(4.39)

The Routh-Hurwitz criteria has been used
to determine the stability of fixed points. The
stability condition are obtained by solving the ze-
ros of characteristic polynomial of the Jacobian
matrix. If the eigen polynomial of the Jacobian
matrix of a system of a differential equation at an
equilibrium point, it is of the form

a0λ
3 + a1λ

2 + a2λ+ a3 = 0 (4.40)

where a0 > 0 and △1 = a1, △2 = det

[
a1 a0
a3 a2

]
,

the equilibrium points are stable iff △1 > 0,
△2 > 0 and a3 > 0. The system of equa-
tions (3.27)-(3.29) has a feasible equilibrium point
(0, 0, 0), and the associated characteristic equa-
tion of Jacobian matrix is,

λ3 + (σS + 4γ + 1)λ2 + σ(4γ + S −R)λ

+ 4γσ(S −R) = 0
(4.41)

Here, △1 = a1 = (σS + 4γ + 1) > 0 and a3 =
4γσ(S − R) > 0 if R < S, the first eigenvalue
λ1 = −4γ is always negative as γ > 0, but the
other two eigenvalues are given by equation

λ2,3 =
1

2

[
−{σS + 1}

±
√

(σ S + 1)2 + 4σ(R− S)
] (4.42)
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λ3 is always negative and λ2 provides the sta-
bility condition for the motionless solution in the
form R < S. Therefore the critical value of R,
where the motionless solution loses stability and
the convection solution (expressed by the other
two fixed points) takes over, is determined as

Rc1 = Rcr = S = 1 + C (4.43)

which corresponds to Racr = 4π2S.

The stability of the fixed points correspond-
ing to the convective solution (X2,3, Y2,3, Z2,3)
is controlled by the following equation for the
eigenvalues, λi(i = 1, 2, 3) :

Sλ3 + S(σS + 4γ + 1)λ2 + 4γ(S2 +R)λ

+ 8Sσγ(R− S) = 0
(4.44)

Eq.(4.44) yields three eigenvalues, all the roots
are real and negative at slightly supercritical
value of R, such that the convection fixed points
are stable, that is simple nodes. These roots move
on the real axis towards the origin as the value
of R increases. These roots become equal when
R =

Rc2 =
σS2(σS + 4γ + 3)

σS − 4γ − 1
(4.45)

When C = 0, value of Rc2 coincides with in
Vadasz and Olek [9]. The loss of stability of the
convective fixed points for σ = 5, γ = 0.5, using
Eq.(4.45) is evaluated to be Rc2 = 25, which
recover Vadasz and Olek’s solution for C = 0,
Rc2 = 25.41

5 Result and discussion

In this section, we perform some numerical solu-
tion of the system of Eqs.(3.27) − (3.29) for the
time domain 0 ≤ t ≤ 80. Numerical solutions
are obtained by using fourth-order Runge- Kutta
method on double precision with the step size
0.001, fixing the values σ = 5, γ = 0.5 and taking
the initial conditions X(0) = 0.8, Y (0) = 0.8 and
Z(0) = 0.9.
Also, we display the stability diagrams in Fig.
1 for the complex eigenvalues versus scaled
Rayleigh number R and different values of scaled
couple stress parameterC . From Fig. 1, We

observed that the increase in value of couple-
stress parameter C increases the Rayleigh num-
ber at which there are exactly two complex conju-
gate roots and they have still negative real parts,
therefore, the convection fixed points are stable.

For C = 0.1, we obtained from Eq. (4.43),
the motionless solution loses their stability at
Rc1 = 1.1 as well as the convective solution
present in system. The convective fixed points
become unstable at R = 25.41 and chaos is ob-
tained. The evolution of trajectories over time
in the state space for increasing value of scaled
Rayleigh number is shown in Fig.2 in terms of
projection of trajectories onto Y − X plane. In
Fig. 2a, we see that the trajectory moves to the
steady convection points on a straight line for a
Rayleigh number slightly above the loss of sta-
bility of the motionless solution (R = 1.1). At
R = 15 the trajectories approach the fixed point
on a spiral as shown in Fig. 2b. At the critical
value of R = 25.41 in Fig. 2e, we observe that
transition from laminar to chaotic behavior oc-
curs via limit cycle at R = 24.543 (Fig. 2d).

From Fig. 3, we reveal that the convective
solution will start from Rc1 = 1.5 at C = 0.5
while chaotic solution occurs at R = 31.25. The
detail relation between phase portraits X and Y
are shown by Figs. 3(a) -(e). In Fig. 3a, we see
that the trajectory moves to the steady convec-
tion point on a straight line for a Rayleigh number
slightly above the critical value of scaled Rayleigh
number for the motionless solution (R = 1.5). At
R = 24 the trajectories approach to the fixed
point in a spiral as shown in Fig. 3b. At the crit-
ical value of R = 31.25 in Fig. 3e, we observe that
transition to chaotic behavior occurs via limit cy-
cle at R = 30.595 (Fig. 3d).

For C = 1, we found that at Rc1 = 2, the
motionless solution takes over by the convective
solution. We found a chaotic behavior of convec-
tive fixed points at R = 42.85714286. The evo-
lution of trajectories over time in the state space
for different values of scaled Rayleigh number is
shown in Fig.4 in terms of projection of trajecto-
ries onto Y −X plane. In Fig. 4a, we see that the
trajectory moves to the steady convection points
on a straight line for a Rayleigh number slightly
above the loss of stability of the motionless so-
lution (R = 2). At R = 32 the trajectories ap-
proach the fixed point on a spiral as shown in Fig.
4b. At the critical value of R = 42.85714286 in
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Fig. 4e, we observe that transition to chaotic be-
havior occurs via limit cycle at R = 41.985 (Fig.
4d).

6 Conclusion

In this paper, we have investigated the chaotic
behavior under the effect of different scaled cou-
ple stress parameter, in a couple stress liquid
saturated in a porous layer, subjected to grav-
ity and heated from below. We found that there
is proportional relation between the scaled cou-
ple stress parameter and scaled Rayleigh number
R. We found that increase in scaled couple stress
parameter increases the level of chaos.
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