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Abstract

For better guiding a system, senior managers should have accurate information. Using Data Envelop-
ment analysis (DEA) help managers in this objective. Thus, many investigations have been made in
order to find the most productive scale size (MPSS) for the evaluating decision making units (DMUs).
In this paper we consider this case where there exist subsets of input and output variables to be integer
valued. We use data envelopment analysis (DEA) technique, which is a mathematical programming
for efficiency evaluation and target setting for a set of DMUs, and develop a model with which the
desired MPSS point can be found. The applicability of developed model is illustrated in the context
of the analysis to show the validity of the proposed model.
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1 Introduction

D
ata envelopment analysis (DEA) is a math-
ematical programming technique for ef-

ficiency assessment of decision making units
(DMUs). The CCR model, Charnes et al. [5],
evaluates the relative efficiency of DMUs under
constat returns to scale form of technology and
Banker et al. [3] provided the BCC model under
that of variable returns to scale. In DEA litera-
ture there are some methods for determining the
returns to scale (RTS) situation such as Banker
et al. [2], Färe et al. ([8]) and Zarepisheh et
al. [?]. The type of RTS for each efficient DMU
in a variable returns to scale production technol-
ogy, indicates the direction of rescaling needed
for improving the productivity. Banker et al.
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[3] reported that a new free BCC dual variable,
uo, estimates RTS. If the case of increasing re-
turns to scale (IRS) the expansion of the DMU
under evaluation is suggested, and by decreasing
returns to scale (DRS), contraction is suggested.
In the case of constant returns to scale (CRS) it
is said that DMU under evaluation operates as
a most productive scale size (MPSS). Banker [1]
shows that the CCR model can be employed to
test for DMU’s RTS using the concept of MPSS.
The concept of most productive scale size (MPSS)
has been defined by Banker [1] is invariant with
respect to the orientation of the model. In the
production technology of the BCC model Banker
[1] gave conditions for identifying increasing, con-
stant and decreasing returns to scale. He showed
that the type of RTS also serves as an indicator of
the direction towards the MPSS. As Podinovski
[11] states, if a DMU exhibits CRS, it operates at
MPSS and if it exhibits IRS and DRS, it does
not operate at MPSS but would achieve it by
scaling its operations up and down, respectively.
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Also, Cooper et al. [6] proposed a model with a
fractional objective function for determining most
productive scale size. Jahanshahloo and Khod-
abakhshi [9], also, provided an input−output ori-
entation model to estimate most productive scale
size units with linear objective function. Khod-
abakhshi [10] stated that one of the important
methods to deal with imprecise data is consider-
ing stochastic data in DEA. Thus he has studied
most productive scale size considering stochas-
tic data in DEA. Therefore, input output ori-
entation model introduced in Jahanshahloo and
Khodabakhshi [9] has been extended in stochas-
tic data envelopment analysis.
Although real valued inputs and outputs are usu-
ally utilized in data envelopment analysis tech-
nique, in many occasions some inputs and/ or
outputs can only take integer values. In this oc-
casion rounding the acquired solution can lead
to misleading efficiency assessments and perfor-
mance targets. Therefore, some changes in con-
ventional DEA models should be made in order
to consider the real life settings. The aim of
this paper is to propose a procedure for detect-
ing the most productive scale size and guide units
through the region of the most productive scale
size when some inputs and/ or outputs can only
take integer values.

The paper unfolds as follows: in Section 2, data
envelopment analysis will be briefly reviewed. In
Section 3, the proposed model will be presented.
Section 4 contains an illustrative example and
Section 5 concludes the paper.

2 Data envelopment analysis

Assume there are n homogeneous decision mak-
ing units each of them uses m inputs xij (i=1,...,
m) to produce s outputs yrj (r=1,..., s). Also let
Xj ∈ Rm and Yj ∈ Rs be non-negative vectors.
We define the set of production possibility as
T = {(X,Y )|X can produce Y }.

When T = TBCC we have;

TBCC =

{(x, y)| x ≥ λX, y ≤ λY, 1λ = 1, λ ≥ 0}

and when T = TCCR we have;

TCCR = {(x, y)| x ≥ λX, y ≤ λY, λ ≥ 0}

The constant returns to scale form of the en-
veloping problem, which was first introduced by
Charnes et al. (1978), is as follows:

min θ − ε(
m∑
i=1

s−i +
s∑

r=1

s+r )

s.t.

n∑
j=1

λjxij + s−i = θxio, i = 1, ...,m,

n∑
j=1

λjyrj − s+r = yro, r = 1, ..., s,

λj ≥ 0, j = 1, ..., n.
(2.1)

The variable returns to scale form of the en-
veloping problem, which was first introduced by
Banker et al. (1984), is as follows:

min θ − ε(

m∑
i=1

s−i +

s∑
r=1

s+r )

s.t.
n∑

j=1

λjxij + s−i = θxio, i = 1, ...,m,

n∑
j=1

λjyrj − s+r = yro, r = 1, ..., s,

n∑
j=1

λj = 1,

λj ≥ 0, j = 1, ..., n.
(2.2)

If a DMUo is not CCR (BCC) efficient, via
the following formulas which use the optimal
values of the above models, we can project this
DMU onto the CCR (BCC) efficiency frontier:


x̂io = θ∗xio − s−

∗

i =
n∑

j=1

λ∗
jxij , i = 1, ...,m,

ŷro = yro + s+
∗

r =
n∑

j=1

λ∗
jyrj , r = 1, ..., s.

(2.3)

It should be noted that the DMU under assess-
ment may be projected into the MPSS region
by means of the following formulas, Banker and
Morey [4]:
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(
θ∗xio − s−

∗

i∑n
j=1 λ̂∗

j

,
yro + s+

∗
r∑n

j=1 λ̂∗
j

) (2.4)

in which θ∗, s−
∗
and s+

∗
are optimal solution of

CCR model and
∑n

j=1 λ̂∗
j is the optimal solution

of the following model while decreasing returns
to scale prevail at DMUo.

max
n∑

j=1

λ̂j + ε(
m∑
i=1

ŝ−i +
s∑

r=1

ŝ+r )

s.t.
n∑

j=1

λ̂jxij + ŝ−i = θ∗xio, i = 1, ...,m,

n∑
j=1

λ̂jyrj − ŝ+r = yro, r = 1, ..., s,

n∑
j=1

λ̂j ≤ 1, (a)

ŝ− ≥ 0, ŝ+ ≥ 0, λj ≥ 0, j = 1, ..., n.
(2.5)

It is noteworthy of attention that while in-
creasing returns to scale prevail at DMU under
evaluation the objective function of this model
should be changed into minimization and also∑n

j=1 λ̂j ≤ 1, should be replaced by
∑n

j=1 λ̂j ≥ 1.

As mentioned in Banker and Morey [4], con-
vexification of (2.3) provides a point in MPSS
projection. That means, using the additional
step provided by the benchmark projection
formula one can achieve MPSS points.

3 MPSS with integer valued
data

In this section, a model for finding a suitable
MPSS will be introduced while there exist some
inputs and/ or outputs that can only take integer
values. Usually real valued data utilized in data
envelopment analysis but in many occasions
some inputs and/ or outputs can only take
integer values. In this case rounding the real
number will yield inaccurate results.
Without of loss of generality assume that DMUo

is BCC efficient. We emphasis that in order
to find the maximum and minimum value of∑n

j=1 λ̂j there is no need to consider constraint

(a) in model (2.5) and introduce different models
for DMUs which have various RTS status. But
it is sufficient to solve the following model for
under assessment DMUs without consideration
of its RTS type. Thus, consider the following
problems which have constant returns to scale
technology.

λ− = min
n∑

j=1

λ̂j − ε(
m∑
i=1

ŝ−i +
s∑

r=1

ŝ+r )

s.t.
n∑

j=1

λ̂jxij + ŝ−i = θ∗xio, i = 1, ...,m,

n∑
j=1

λ̂jyrj − ŝ+r = yro, r = 1, ..., s,

ŝ− ≥ 0, ŝ+ ≥ 0,
λj ≥ 0, j = 1, ..., n.

(3.6)

λ+ = max

n∑
j=1

λ̂j + ε(

m∑
i=1

ŝ−i +

s∑
r=1

ŝ+r )

s.t.

n∑
j=1

λ̂jxij + ŝ−i = θ∗xio, i = 1, ...,m,

n∑
j=1

λ̂jyrj − ŝ+r = yro, r = 1, ..., s,

ŝ− ≥ 0, ŝ+ ≥ 0,
λj ≥ 0, j = 1, ..., n.

(3.7)

As stated in Jahanshahloo and Khodabakhshi
[9], the largest and the smallest MPSS can be
achieved. In regard of the obtained optimal
solution of CCR model and the obtained λ− and
λ+ through solving the aforesaid models, we can
define the largest MPSS correspond with DMUo

as following:

(
θ∗Xo − S−∗

λ− ,
Yo + S+∗

λ− ) = (X̄o, Ȳo) (3.8)

Equivalently, the smallest MPSS correspond
with DMUo can be defined as following:

(
θ∗Xo − S−∗

λ+
,
Yo + S+∗

λ+
) = (X̃o, Ỹo) (3.9)
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Considering CCR model, it is noteworthy of
attention that since (θ∗Xo − s−∗, Yo + s+∗)
belongs to the CCR frontier and due to the
constant returns to scale axiom in CCR pro-
duction possibility set, (3.8) also belongs to
CCR frontier. As provided in Banker and
Morey [4] it can be easily verified that when the
projection point on CCR frontier is scaled by
λ− the obtained point is located onto the BCC
frontier. Thus this convexification provides a
MPSS point. The same procedure is true for the
smallest MPSS. Considering the largest and the
smallest MPSS points corresponding to DMUo,
for all γ ∈ [0, 1], γ(X̄o, Ȳo) + (1 − γ)(X̃o, Ỹo) is
MPSS as well. According to constant returns to
scale axiom in CCR model, by rescaling a point
located onto the frontier the projected point is
located onto this frontier. Thus it is possible
to find a point with integer value. But, the
important issue is that we are looking for a point
with integer value in the intersection of CCR
and BCC frontiers. Note that the largest and
smallest MPSS points correspond with DMUo

have integer coordinate in the required element
then, but the aim is find a point suitable for the
unit under evaluation in regards of its ability
and the corresponding inputs and outputs. Since
the convex combination of MPSS points is not
necessarily an MPSS point, thus for finding an
desired point we confine the analysis to seek
in the intersection of CCR frontier and convex
combination of MPSS points.

For finding an MPSS point with integer
values for DMUo we propose the following model
in which E, indicates the set of MPSS points.
These points can be recognized through solving
the mentioned models in previous section. For
DMUo under assessment, after finding the
largest and the smallest corresponding MPSS
points we are seeking for the nearest point to
the line segmented the largest and the smallest
points. Moreover, since the aim is find a point
which is MPSS thus we restrict the analysis to
the intersection of CCR frontier and convex hull
of MPSS points because under this condition
the obtained point will be MPSS. The objective
of the proposed model, (3.10), is to minimize
the distance in order to find the smallest region
in the intersection of CCR frontier and convex
hull of MPSS points which contains a unit with
integer value. In model (3.10) constraints (a) and
(b) confine the analysis into the CCR frontier.
Constraint (c) is also imposed to ensure that
the obtained point has integer values. Moreover,
Constraints (d), (e) and (f) indicate the convex
combination of MPSS points. I1 shows the set

of inputs which can only take integer values.
s̃− and s̃+ are considered unrestricted in sign
in order to increase the flexibility of this model
to find a suitable MPSS point. It should be
reminded that X̃ and X̄ are those introduced in
(3.9) and (3.8). For purpose of the remainder
of this paper, we assume that in input side, a
subset of variables can only take integer values.

min
m∑
i=1

|s̃−i |+
s∑

r=1

|s̃+r |

subject to
n∑

j=1

λ̃jxij = (αx̄io + (1− α)x̃io) + s̃−i , i = 1, ...,m, (a)

n∑
j=1

λ̃jyrj = (αȳro + (1− α)ỹro) + s̃+r , r = 1, ..., s, (b)

(αx̄io + (1− α)x̃io) + s̃−i = wi, i ∈ I1, (c)∑
j∈E

µ̃jxij = (αx̄io + (1− α)x̃io) + s̃−i , i = 1, ...,m, (d)∑
j∈E

µ̃jyrj = (αȳro + (1− α)ỹro) + s̃+r , r = 1, ..., s, (e)∑
j∈E

µ̂j = 1, (f)

s̃−, s̃+unrestricted, wi ∈ Z+, i ∈ I1,

λ̃j ≥ 0, j = 1, ..., n, 0 ≤ α ≤ 1.
(3.10)

This model can be easily converted into
its linear counterpart. To this end let
s̃+r = ur − vr, ur ≥ 0, vr ≥ 0 for all r and
s̃−i = ui − vi, ui ≥ 0, vi ≥ 0 for all i, where

ur =

{
0, s̃+r ≤ 0,
s̃+r , s̃+r ≥ 0.

vr =

{
0, s̃+r ≥ 0,
−s̃+r , s̃+r ≤ 0,

and

ui =

{
0, s̃−i ≤ 0,
s̃−i , s̃−i ≥ 0.

vi =

{
0, s̃−i ≥ 0,
−s̃−i , s̃−i ≤ 0,

which results in ui.vi = 0 and ur.vr = 0
for every r and i. Now, accordingly |s̃+r |= ur + vr
for all r and |s̃−i |= ui + vi for all i. It should
be noted that by using this variable transfor-
mation the nonlinear constraint, ur.vr = 0 and
ui.vi = 0 for every r and i, are also added to the
model. But nonlinear constraints, ur.vr = 0 and
ui.vi = 0, are redundant due to the dependency
of corresponding coefficient column vectors.
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Thus, model (3.10) can be easily written in linear
form. The linear counterpart of model (3.10) is
as follows:

min

m∑
i=1

(ui + vi) +

s∑
r=1

(ur + vr)

subjec to
n∑

j=1

λ̃jxij =

(αx̄io + (1− α)x̃io) + ui − vi, i = 1, ...,m, (a)
n∑

j=1

λ̃jyrj =

(αȳro + (1− α)ỹro) + ur − vr, r = 1, ..., s, (b)

(αx̄io + (1− α)x̃io) + ui − vi = wi, i ∈ I1, (c)∑
j∈E

µ̃jxij =

(αx̄io + (1− α)x̃io) + ui − vi, i = 1, ...,m, (d)∑
j∈E

µ̃jyrj =

(αȳro + (1− α)ỹro) + ur − vr, r = 1, ..., s, (e)∑
j∈E

µ̂j = 1, (f)

ui ≥ 0, vi ≥ 0, i = 1, ...,m,wi ∈ Z+, i ∈ I1,

λ̃j ≥ 0, j = 1, ..., n, 0 ≤ α ≤ 1.
(3.11)

To clarify we proceed to develop the follow-
ing examples by using the coordinate values as
follows:
A = (1, 1) B = (2, 3) C = (4, 6) D =
(6, 9) E = (7, 9.5) F = (7, 10)

The coordinates are in the order (X, Y). In
this example only input is confined to take
integer value.
In this figure the BCC efficiency frontier repre-
sented by the solid lines and the CCR efficiency
frontier represented by the dotted line from the
origin which evaluates the technical and returns
to scale performances of DMUs, simultaneously.
We illustrate with A=(1, 1) in Fig. 1 for which
we utilize expression (3.9) to obtain the smallest
MPSS. By assessing unit A with CCR model we
have θ∗ = 2

3 and s−
∗
= s+

∗
= 0. Thus;

1θ∗ − s−
∗

1
3

= 2,
1 + s+

∗

1
3

= 3

Figure 1: Most productive scale size..

which is unit B. Also, by Considering (3.8) the
smallest and the largest MPSS points corre-
sponding to unit A, will be unit B and D. Taking
into account units B and D, as corresponding
MPSS points for unit A, and solving the pro-
posed model we will have α∗ = 0.5, s− = 0
and s+ = 0 which results in a point with the
coordinate of (3, 4).

According to Fig. 1, this is the point in
line segment of units B and C. This example is
in R2, one-input and one-output, thus at the
first step the required MPSS is obtained but we
use it just to show that how this model works.
As noted, input is integer and it is needed to
find a MPSS point with integer value in input.
It should be mentioned that the largest and the
smallest MPSS points in this example, as they
are observed DMUs, have integer value in input.
The proposed model has the ability to find other
points in MPSS region with input being integer
in accordance to the input and outputs of the
unit under evaluation which is more suitable
and achievable. As mentioned, considering other
methods (3,4) can not be achieved.

4 Application

In this section we consider the data that were
used in benchmarking marketing productivity
written by Donthu et al.[7]. Input/Output data
are gathered in Table 1.

The input variables, used by Donthu et al.[7].,
include advertising and promotion expenses
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Table 1: Data set of chain stores.

DMU # θ∗BCC θ∗CCR Input1 Input2 Output1 Output2

1 0.95 1.00 3.5 24 4.1 3.6
2 1.00 1.00 2.2 32 4.0 3.2
3 0.85 0.97 3.9 30 4.4 4.2
4 0.78 0.87 4.1 35 4.4 4.4
5 1.00 1.00 2.5 25 3.6 4.0
6 0.93 1.00 3.3 24 3.9 4.2
7 0.76 0.90 5.0 33 4.5 4.5
8 1.00 1.00 2.1 32 3.6 3.7
9 1.00 1.00 2.8 20 3.6 3.8
10 0.77 0.97 4.3 36 4.5 4.6
11 0.74 0.78 4.0 33 4.0 4.1
12 0.84 0.90 3.5 32 4.2 4.2
13 0.92 1.00 4.0 26 4.3 4.0
14 0.81 0.82 3.0 38 3.9 4.0
15 0.85 1.00 4.6 30 4.6 4.5
16 0.89 0.97 3.5 28 4.2 4.0
17 0.88 0.96 3.5 29 4.2 4.2
18 0.93 0.93 2.6 30 3.7 3.9
19 0.87 0.90 3.0 24 3.5 3.7
20 0.89 0.97 3.5 25 4.0 4.0
21 0.81 1.00 4.2 30 4.3 4.6
22 0.83 0.92 3.8 32 4.3 4.4
23 0.96 1.00 3.0 35 4.5 4.6
24 0.84 0.87 3.4 30 4.0 4.1
25 0.90 0.96 3.8 24 3.9 4.0
26 0.87 0.88 2.9 28 3.7 3.6

Table 2: The obtained MPSS point after scaling.

DMU # Input1 Input2 Output1 Output2

1 2.80 20.00 3.60 3.80
6 2.78 20.25 3.60 3.81
13 2.80 20.00 3.60 3.80
15 2.80 20.00 3.60 3.80
21 2.80 20.00 3.60 3.80
23 2.37 27.66 3.69 3.77

Table 3: MPSS points through solving the proposed model.

DMU # Input1 Input2 Output1 Output2

1 2.80 20 3.60 3.80
6 2.80 20 3.60 3.80
13 2.80 20 3.60 3.80
15 2.80 20 3.60 3.80
21 2.80 20 3.60 3.80
23 2.35 28 3.68 3.77

(I1) and number of employees (I2). Output
variables include customer satisfaction (O1) and
sales (O2). As mentioned above, the number
of employee (I2) was included as an explicit

input but it should be considered that number
of employee is an integer value.



Z. Moghaddas, et al /IJIM Vol. 6, No. 2 (2014) 107-114 113

By solving BCC models efficient units un-
der variable returns to scale can be identified.
By solving CCR and BCC models the MPSS
DMUs have been found which are DMUs 2, 5,
8 and 9. As noted in Table 1, DMUs 1, 6, 13,
15, 21 and 23 are BCC efficient but they are
not MPSS. After examining the status of RTS
it has been found that decreasing returns to
scale prevail on all these units. Which means
they do not operate at MPSS unless by scaling
their operations down. As already mentioned,
by projecting these units onto the CCR fron-
tier and finding maximum and minimum of∑n

j=1 λ̂
∗
j , for any DMUj can be scaled thus

the largest and the smallest MPSS points will
be acquired. Finally, after this scaling if an
MPSS point, with integer value in the second
input, can not be found by solving the pro-
posed model a suitable MPSS will be obtained.
Consider DMU23 for which λ+ = λ− = 1.22
thus after scaling (I1, I2) = (2.37, 27.66) and
(O1, O2) = (3.69, 3.77) will be obtained which
is not a suitable MPSS. The result of using
expressions (3.8) and (3.9) are gathered in Table
2. Noted that using these expressions the largest
and the smallest MPSS points coincide into each
other. Considering the units that were gathered
in Table 2 and solving the proposed model we
will have the following results listed in Table 3.
According to the presented method MPSS points
with integer value found, as indicated in Table 3.
Now, in regards of the obtained MPPS points, it
is possible for managers to guide units to reach
the most productive scale size region in order to
perform efficiently.

5 Conclusion

Real valued inputs and outputs are usually uti-
lized in DEA technique. In many occasions some
inputs and/ or outputs can only take integer val-
ues. The aim of this paper is to propose a pro-
cedure for detecting the MPSS and guide units
through the region of the most productive scale
size when some inputs and/ or outputs can only
take integer values. In this paper we consider this
case where there exist subsets of inputs variables
to be integer valued. This procedure can be easily
be generalized for different subsets of inputs and
/ or outputs. Illustrative example is also docu-
mented which confirms validity of this model as

a means for determining MPSS points.
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