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Abstract

In the Data Envelopment Analysis (DEA) the efficiency of the units can be obtained
by identifying the degree of the importance of the criteria (inputs-outputs).In DEA
basic models, challenges are zero and unequal weights of the criteria when decision-
making units are evaluated. One of the strategies applied to deal with these problems
is using common weights of the each input/output in all decision making units (DMUs).
In practice the DMUs are containing intermediate process. However, these units are
considered as a black box in DEA basic models, disregarding internal process. This was
the main reason network data envelopment analysis was introduced. On the other hand,
similar challenges mentioned for DEA, zero and unequal weights of the criteria, exist
for network structures as well. This paper suggests a common set of the weights for
network structures to deal with the above problems using nonlinear models, for general
case. Also some numerical examples using proposed models are presented.

Keywords : Network Data Envelopment Analysis (NDEA); Decision Making Units
(DMU); Efficiency; Epsilon; Assurance Value.

——————————————————————————————–

1 Introduction

D
ata envelopment analysis (DEA), intro-
duced by Charnes et al.[1], is an im-

portant tool for measuring the efficiency of
decision making units (DMUs). This ba-
sic model evaluate a set of unites in which
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similar inputs applied to produce similar
outputs. This method allocates weights to
both input and output indicators to max-
imize the relative efficiency of each evalu-
ated unit. The determined weights for each
indicator are calculated in the best form for
all the DMUs, in which they may vary from
unit to unit. Charnes et al. classified set of
controls on weights as following:
i) Direct analysis rejecting or assuming zero
weight and eliminating some factors (ε).
ii) Ignoring decision maker’s ideas.
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iii) Considering a relative importance of
some factors by decision maker.
iv) Discarding the number of DMUs when
the number of indicators is more than the
number of DMUs under evaluation.

The common weights approach in DEA,
initially introduced in 1990 by Cook et
al.[3], and Roll et al.[4] in 1991, is known as
one of the accurate approaches for evaluat-
ing all DMUs considering a unique weights
for all the DMUs. Other researchers
adopted some of the strategies for reaching
common set of the weights. For instance,
Roll et al.[4] obtained the common weights
by narrowing the range of the weights and
reducing domain using weighted average

of the weights Ūr =
∑

j Ejurj∑
j Ej

and V̄i =∑
j Ejvij∑
j Ej

, in which Ej is the efficiency of

DMUj . In 1995, Doyle [5] considered the
optimized average weights of all DMUs as
the common weights. In 2013, Hossein-
zadeh et al.[6] used multi-objective pro-
gramming (MOP) method to attain the
common weights. In 2005, Kao and Hung
[7] proposed the best common weights for
the two-stage network model using the cal-
culated efficiency scores of DEA model and
the shortest distance function.

Usually in the evaluating DMUs there are
internal process with their own input and
outputs. In some cases an internal output
can be an input for another internal process
or it can be the main output of the unit. In
these system the output may get affected
by the internal process and ignoring these
internal process will result on inaccurate
outcome. For the first time, in 1996, Fre
and Grosskopf [8] called these units as net-
worked structure units.

Network structures are generally clas-
sified into series, parallel, and general
groups.The structures or units in which the
internal processes are connected in series
mode, known as a series network model.
Kao and Hwangs, in 2008 [9], Fukuyama
and Webers in 2010 [10], and Tone and

Tsutsuis in 2009 [11] have studied series
network models. Parallel network models
representing the behavior of parallel struc-
tures in which the internal processes are
connected in a parallel mode. Models pro-
posed by Tone and Tsutsui, in 2009 [11],
and Lozano, in 2011 [13], are envelopment
form of the parallel models and the model
proposed by Kao in 2009 [12] is in multiplier
form of the parallel models. Later Kao ex-
tended (2010) its model to general network
having a combination of the series and the
parallel models. In these studies the ef-
ficiency of the DMUs has been discussed.
However, common set of the weights in net-
work structure is not being studied consid-
erably.Kao and Hungs in 2005 [7] and Yang
and Liu in 2012 [14] have studied common
set of the weights only for special cases.
This paper suggests a model for the gen-
eral network structure so that each in-
put/output and intermediate indicator has
the same weight for evaluating efficiency of
all involved processes. A new model is pre-
sented in order to obtain a common set of
weights in such a way that all DMUs simul-
taneously are achieved the highest possible
efficiency rating while the efficiency mea-
sures of divisions do not violates one.
The content of this study is organized as
follows. Section 2 has a literature of the
multiplier model with network structure
and common set of weights model. In sec-
tion 3, a new MOP method is suggested
and the common set of weights in the net-
work structure using goal programming is
obtained and reported. Also a solution for a
multiple optimal solutions problem is pre-
sented. Some numerical examples of ob-
taining the common set of weights in the
general network structure are provided in
the Section 4. Finally, section 5 analyzes
obtained results and make a conclusion.
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2 Review of the literature

In this section the common weight model
based on Kaos multiple network model ap-
proach [12] and Hosseinzadeh et al. [6] is
presented.

2.1 obtaining common weight us-
ing MOP

Hosseinzadeh et al.(2013), [6] evaluated ef-
ficiency of the DMUs by common weights
and using MOP. MOP method is an opti-
mization process for two or more possibly
conflicting optimization processes and sub-
jected to certain restrictions.

Suppose that J number of the DMUs
consume m input DMU to produce s out-
put. The following MOF problem gives the
maximum simultaneous efficiency of the all
DMUs:

Max {
∑s

r=1 uryrj∑m
i=1 viyij

|j = 1, 2, · · · , J}

s.t.
∑s

r=1 uryrj∑m
i=1 viyij

≤ 1; ∀j

ur ≥ ε; ∀r
vi ≥ ε; ∀i

(2.1)
There are several approach for solving

problem (2.1). Goal programming is one
of the main methods of the MOP [15].
In goal programming approach, decision
maker consider all ideal levels for objec-
tive functions. Hence, the sum of the de-
viations from ideal levels, as the objec-
tive function of goal programming problem
will be minimized. Accordingly, if Aj , j =
1, 2, · · · , J , presents the goal of the jth ob-
jective function and φ+

j , φ
−
j are negative

deviation (under-achievement) and positive
deviation (over-achievement)of the jth goal,
respectively, Model (2.1) can be written as
follows:

min
∑J

j=1 φ
−
j + φ+

j

s.t.
∑s

r=1 uryrj∑m
i=1 vixij

+ φ−
j − φ+

j = Aj ; ∀j (a)∑s
r=1 uryrj∑m
i=1 vixij

≤ 1; ∀j (b)

ur ≥ ε; ∀r
vi ≥ ε; ∀i

(2.2)

On the other hand, according to constraint
(2.2 b), the positive deviation (φ+

j ) lacks

a positive value and as a result, φ+
j = 0.

Thus, this Constraint (2.2b) is redundant
and the constraint (2.2a), considering Aj =
1, can be written as follows:

s∑
r=1

uryrj+φ−
j

m∑
i=1

vixij =
m∑
i=1

vixij ∀j

( 2.2-1)
Thus, the non-linear model (2.2-1) cannot
be transformed into a linear form. There-
fore, Hosseinzadeh et al., for linearization
of Model (2.2) using the concept of goal
programming and substituting Aj = 1 in
Model (2.2), presented the following model
to obtain the common set of weights:

min
J∑

j=1

φj

s.t.

s∑
r=1

uryrj −
m∑
i=1

viyij + φj = 0 ∀j

ur, vi ≥ ε, ∀r, i

φj ≥ 0, ∀j

(2.2-2)
in which φj is the deviation from goal
(unity value for the efficiency score).

Using this model, the common set of
weights for a set of DMUs under evalua-
tion is obtained and the units utilizing ob-
tained common set of the weights are eval-
uated. However, when this model has mul-
tiple optimal solutions, ranking units may
vary. This is considered a drawback for
Hosseinzadeh et al. study and this paper
suggests strategies to avoid this issue.

2.2 NDEA multiplier models

Many researchers suggested multiplier
model for network structures and a few of
them were introduced in the introduction
section. Kao[12](2009)introduced a multi-
plier model of DEA for network structure
for series, parallel and general states. He
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provided a methodology to convert the sys-
tem with an overall network structure to a
series network structure while each struc-
ture has parallel structure (s).

Kazemi Matin and Azizi [16] in 2015 in-
troduced the integrated NDEA model to
measure the production systems perfor-
mance and showed that the model pre-
sented by Kao (2009), is a special case of
the presented model. Kao introduced a
general network structure using an example
in which each unit had the third divisions
(Figure 1).

In Kao example, system main inputs and
outputs are X1 and X2 and Y1, Y2 and Y3,
respectively. Division 1 may consumes only
some of X1 and X2 values for producing Y1
and a part of Y1 may remains for division 3.
Division 2 consumes a specific value of X1

and X2 producing Y 2 similar to division 1
and a part of Y2 for division 3. Division 3
consumes the rest of X1 and X2 alongside
with the parts produced Y1 and Y2 resulting
from divisions 1 and 2 for producing Y3.

Assume that X
(k)
ij indicates the ith input

of division k(k = 1, 2, 3) from DMUj . Par-
ticularly, sum of all inputs of three divisions

(X
(1)
ij + X

(2)
ij + X

(3)
ij ) for system input are

Xij(j = 1, · · · , J, i = 1, 2). It means that

(X
(1)
ij +X

(2)
ij +X

(3)
ij ) = Xij ; i = 1, 2,

j = 1, · · · , J.

The output of division 1 is separated as

Y
(I)
1 , Y

(O)
1 , where, Y

(O)
1 is the system final

output and Y
(I)
1 is a value consumed by the

division 3 as an input. Similarly, output of

division 2 is Y
(I)
2 , Y

(O)
2 , where Y

(o)
2 is the

system final output and Y
(I)
2 is a value con-

sumed by division 3 as an input. Accord-
ingly,

Y
(I)
rj + Y

(O)
rj = Yrj ; r = 1, 2;

j = 1, · · · , J.

Multiplier model of general network

structure of figure 1 is as follows:

Eo : for o = 1, · · · , J

Max u1y
(o)
1o + u2y

(o)
2o + u3y3o

s.t. v1x1o + v21x2o = 1

(u1y
(o)
1j + u2y

(o)
2j + u3y3j)

−(v1x1j + v2x2j) ≤ 0 ∀j
u1y1j − (v1x

(1)
1j + v2x

(1)
2j ) ≤ 0 ∀j

u2y2j − (v1x
(2)
1j + v2x

(2)
2j ) ≤ 0 ∀j

u1y3j − (v1x
(3)
1j + v2x

(3)
2j

+u1y
(I)
1j + u2y

(I)
2j ) ≤ 0 ∀j

u1, u2, u3, v1, v2,≥ ε
(2.3)

Where, ur indicates the allocated weight
to rth output (r = 1, 2, 3) and vi is the
allocated weight to the ith input (i = 1, 2)
used for measuring system efficiencyDMUo

of the each process. As observed in model
2.3, X1 input weight is always v1 no mat-

ter to be used by division 1 for x
(1)
1j input,

division 2 as x
(2)
1j or division 3 as x

(3)
1j ; or

that y1 output weight is always u1 no mat-
ter to be used by division 3 as input or to
be the final output of the system. Other
indices complies in a similar condition.

..

1

.

2

. 3.X1, X2.
X

(3)
1 , X

(3)
2.

X
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)
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.
Y (I)1.
Y
(I
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2

. Y3.

Y (O)
1

.

Y
(O)

2

.
Y

(O)
1 , Y

(O)
2 , Y3

Figure 1: A network system with three division.

Kao also showed that every general net-
work structure could be converted into a
two-stage network structure through intro-
ducing dummy divisions, where each stage
has a parallel structure. If dummy divi-
sions 4 and 5 are added in Figure 1 as an
example, Figure 2 with two-stage parallel
structure will be created.
The process for calculating the efficiency

score of the divisions in Figure 1 is as fol-
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Figure 2: An equivalent tandem system where each stage

has a parallel structure.

lowing.

E
(1)
o =

u∗
1y1o

v∗1x
(1)
1o +v∗2x

(1)
2o

E
(2)
o =

u∗
2y2o

v∗1x
(2)
1o +v∗2x

(2)
2o

E
(3)
o =

u∗
3y3o

v∗1x
(3)
1o +v∗2x

(3)
2o +u∗

1y
(I)
1o +u∗

2y
(I)
2o

(2.4)

The efficiency score of the two stages

shown in Figure 2, can be obtained using

following relation.

EI
o =

u∗
1y1o+(v∗1x

(3)
1o +v∗2x

(3)
2o )+u∗

2y2o
v∗1x1o+v∗2x2o

EII
o =

u∗
1y

(o)
1o +u∗

2y
(o)
2o +u∗

3y3o

u∗
1y1o+(v∗1x

(3)
1o +v∗2x

(3)
2o )+u∗

2y2o

(2.5)

So that according to 2.5, the overall ef-
ficiency is equal to the product efficiency
of the two stages, in other words: Eo =
EI

o × EII
o

3 Common weights in
network structures

3.1 Common weights considering
units efficiency deviation

Suppose J is the number of the network
structures and each structure consist of K
divisions (K=3 for the Kao example). Each
division can receive input(s) from the out-
side or from other division(s), consuming
them in production process to generate the
main output of the system. The generated
output also can be received by the another
division of the system.

For Kao’s network structure a model is
introduced to obtain the common weights
set.

min
∑J

j=1 φj

s.t. (u1y
(o)
1j + u2y

(o)
2j + u3y3j)

−(v1x1j + v2x2j) + φj = 0 ;∀j

u1y1j − (v1x
(1)
1j + v2x

(1)
2j ) ≤ 0 ;∀j

u2y2j − (v1x
(2)
1j + v2x

(2)
2j ) ≤ 0 ;∀j

u3y3j − (v1x
(3)
1j + v2x

(3)
2j

+u1y
(I)
1j + u2y

(I)
2j ) ≤ 0 ;∀j

u1, u2, u3, v1, v2 ≥ ε ∀j
φj ≥ 0 ∀j

(3.6)
Where φj is the efficiency deviation of
DMUj and u1, u2, u3, v1, v2 are the com-
mon weight indicators. In this model the
goal is to minimize the sum of φj , subject
to maximizing the efficiency scores of the
network structure and divisions.

If (v∗r , u
∗
i ) is the optimal solution, the effi-

ciency score for DMUj is calculated as fol-
lows:

E∗
j =

∑s
r=1 u

∗
ryrj∑m

i=1 u
∗
i xij

(3.7)

The units can be ranked using obtained
efficiency scores from equation (3.7).

When a problem has multiple optimal
solutions, the objection of ”the ranking is
not stable” is appeared. Thus, in order to
resolve the objection, the problem is con-
verted into a two-phase problem, in which
the first phase is solving the Model (3.6),
and the second is solving following model:

Maxmin { (u1y
(O)
1j +u2y

(O)
2j +u3y3j)

(v1x1j+v2x2j)
|∀j}

s.t. (u1y
(O)
1j + u2y

(O)
2j + u3y3j)

−(v1x1j + v2x2j) + φ∗
j = 0 ∀j

u1y1j − (v1x
(1)
1j + v2x

(1)
2j ) ≤ 0 ∀j

u2y2j − (v1x
(2)
1j + v2x

(2)
2j ) ≤ 0 ∀j

u3y3j − (v1x
(3)
1j + v2x

(3)
2j

+u1y
(I)
1j + u2y

(I)
2j ) ≤ 0 ∀j

u1, u2, u3, v1, v2 ≥ ε
(3.8)
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Variable

λ = min{u1y
(O)
1j +u2y

(O)
2j +u3y3j

v1x1j+v2x2j
|∀j}

is defined to change the multi-objective
model (3.8) into the nonlinear model as fol-
lows:

Max λ

s.t.
u1y

(O)
1j +u2y

(O)
2j +u3y3j

v1x1j+v2x2j
≥ λ

(u1y
(O)
1j + u2y

(O)
2j + u3y3j)

−(v1x1j + v2x2j) + φ∗
j = 0 ∀j

u1y1j − (v1x
(1)
1j + v2x

(1)
2j ) ≤ 0 ∀j

u2y2j − (v1x
(2)
1j + v2x

(2)
2j ) ≤ 0 ∀j

u3y3j − (v1x
(3)
1j + v2x

(3)
2j

+u1y
(I)
1j + u2y

(I)
2j ) ≤ 0 ∀j

u1, u2, u3, v1, v2, λ ≥ ε
(3.9)

By solving the nonlinear model (3.9 )
and obtaining the weights, (v∗r , u

∗
i ), the effi-

ciency score ofDMUj is calculated as (3.7).

In Model (5),

(v1, v2, u1, u2, u3, φ) = (0, 0, 0, 0, 0, 0)

satisfies in the first four constrains, and
considering the fifth constrains and the ob-
jective function in the optimum solution the
weights reaches into near zero.

Because of the computer limited memory,
answers are strongly depend on the value of
epsilon; and sometimes irrational results on
obtaining error propagation. Therefore, to
resolve with this problem, the epsilon has
to be obtained from [17] and the optimum

value is used in Models (3.6 ) to (3.12 ).

Max ε
s.t. v1x1j + v2x2j ≤ 1 ∀j

(u1y
(o)
1j + u2y

(o)
2j + u3y3j)

−(v1x1j + v2x2j) ≤ 0 ∀j
u1y1j − (v1x

(1)
1j + v2x

(1)
2j ) ≤ 0 ∀j

u2y2j − (v1x
(2)
1j + v2x

(2)
2j ) ≤ 0 ∀j

u3y3j − (v1x
(3)
1j + v2x

(3)
2j

+u1y
(I)
1j + u2y

(I)
2j ) ≤ 0 ∀j

u1 − ε ≥ 0
u2 − ε ≥ 0
u3 − ε ≥ 0
v1 − ε ≥ 0
v2 − ε ≥ 0

(3.10)

For example, if the optimum value for the
Model (3.10) is ε∗, the Model (3.6 ) con-
straint Type 5 is as follows:
u1, u2, u3, v1, v2 ≥ ε∗, φj ≥ 0 ∀j
Using ε∗ in other models is alike.
Model (3.10) is used for finding ε∗ . ε∗ is
used for finding, divisions, stage, and over-
all efficiency of the system. It should be
noted that the obtained values for the effi-
ciency using ε∗ may vary slightly with the
values obtained using Kaoa’s model.

3.2 Common weights of network
structures with efficiency de-
viation of the units and divi-
sions

The model presented in the previous sec-
tion is obtained based on the the efficiency
deviation of the entire system. In this
section this model is expanded using the
efficiency deviation of both the divisions,
and the entire system; and maintaining the
maximum efficiency of the system, and the
intermediate divisions. Considering these



J. Pourmahmoud et al, /IJIM Vol. 8, No. 1 (2016) 87-98 93

conditions the model is as follows:

min
∑J

j=1(φj +
∑3

k=1 φkj)

s.t. (u1y
(o)
1j + u2y

(o)
2j + u3y3j)

−(v1x1j + v2x2j) + φj = 0

u1y1j − (v1x
(1)
1j + v2x

(1)
2j ) + φ1j = 0

u2y2j − (v1x
(2)
1j + v2x

(2)
2j ) + φ2j = 0

u3y3j − (v1x
(3)
1j + v2x

(3)
2j

+u1y
(I)
1j + u2y

(I)
2j ) + φ3j = 0

j = 1, 2, · · · , J
φj , φkj ≥ 0; ∀k, j
u1, u2, u3, v1, v2 ≥ ε∗

(3.11)

By solving this model, the common
weights set of the system units under eval-
uation is achieved using the maximum effi-
ciency of units and divisions.

Suppose (v∗r , u
∗
i , φ

∗
j , φ

∗
kj) is the optimal

solution of model (3.11), the efficiency score
of DMUj is obtained using the relationship
as (3.7). Hence, the DMUs can be ranked
based on the obtained efficiency scores.

However, when the problem has multiple
optimal solutions, the ranking of the DMUs
will be unstable. To resolve this objection,
a two-phase model has to be solved. The
first phase of model is (3.11) and the second
phase of the model is as follows:

Max min {u1y
(O)
1j +u2y

(O)
2j +u3y3j

v1x1j+v2x2j
|∀j}

s.t. (u1y
(O)
1j + u2y

(O)
2j + u3y3j)

−(v1x1j + v2x2j) + φ∗
j = 0

u1y1j − (v1x
(1)
1j + v2x

(1)
2j ) + φ∗

1j = 0

u2y2j − (v1x
(2)
1j + v2x

(2)
2j ) + φ∗

2j = 0

u3y3j − (v1x
(3)
1j + v2x

(3)
2j

+u1y
(I)
1j + u2y

(I)
2j ) + φ∗

3j = 0

j = 1, 2, · · · , J
u1, u2, u3, v1, v2 ≥ ε∗

(3.12)

The multi-objective model (3.12) is trans-
ferred to the model (3.13) by introducing
the below variable

λ = min{u1y
(O)
1j +u2y

(O)
2j +u3y3j

v1x1j+v2x2j
|∀j}

Max λ

s.t.
u1y

(O)
1j +u2y

(O)
2j +u3y3j

v1x1j+v2x2j
≥ λ

(u1y
(O)
1j + u2y

(O)
2j + u3y3j)

−(v1x1j + v2x2j) + φ∗
j = 0 ∀j

u1y1j − (v1x
(1)
1j + v2x

(1)
2j )φ

∗
1j = 0 ∀j

u2y2j − (v1x
(2)
1j + v2x

(2)
2j )φ

∗
2j = 0 ∀j

u3y3j − (v1x
(3)
1j + v2x

(3)
2j

+u1y
(I)
1j + u2y

(I)
2j )φ∗

3j = 0 ∀j
u1, u2, u3, v1, v2, λ ≥ ε∗

(3.13)

The efficiency scores is obtained by sub-
stituting the presented model results in
equation (3.7). Using obtained scores
DMUs are ranked, and the challenge of zero
weights is eliminated.

4 Numerical example

To demonstrate performance of the
proposed models, the models are investi-
gated considering two examples of Kao in
[9] and [12]. The first is a simple example
including five decision-making units A, B,
C, D, E, with three intermediate divisions
as its structure is shown in the Figure 1.
The second example is a case study intro-
duced by Kao about Twenty four Non-life
insurance companies in Taiwan. He con-
sidered these companies as decision making
units (system), each consisting two inter-
mediate divisions.

Example 4.1. Consider five decision-
making units A, B, C, D, E, each consist-
ing three Divisions. The structure of each
decision-making unit is shown in Figure 1.
The inputs/outputs of all the systems are
listed in Table 1.

According to the data shown in Table 1,
implementing Toloo’s model, the overall
assurance value will be equal to ε∗∗ =
0.0344828.
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Table 1: Input/output data of Kao example
in the Year 2009.

DMU P X1 X2 y
(o)
1 y

(I)
1 y

(o)
2 y

(I)
2 y3

A 11 14 2 - 2 - 1
1 3 5 2 2 - - -
2 4 3 - - 2 1 -
3 4 6 - 2 - 1 1

B 7 7 1 - 1 - 1
1 2 3 1 1 - - -
2 2 1 - - 1 1 -
3 3 3 - 1 - 1 1

C 11 14 1 - 1 - 2
1 3 4 1 1 - - -
2 5 3 - - 1 1 -
3 3 7 - 1 - 1 2

D 14 14 2 - 3 - 1
1 4 6 2 1 - - -
2 5 5 - - 3 1 -
3 5 3 - 1 - 1 1

E 14 15 3 - 2 - 3
1 5 6 3 1 - - -
2 5 4 - - 2 2 -
3 4 5 - 1 - 2 3

Thus, the overall assurance interval is
(0,0.0344828]. Table 2 shows the values for
the traditional CCR model, and Kao model
(3.9) in two modes, without value and with
overall assurance value, and CSW model.

Table 2: Comparing 5 DMU system perfor-
mances independently calculated through ordi-
nary model CCR, Kao model and the model
presented here.

DMU E-CCR E-CCRε EN-CCR EN ε EN-CSW
A 1.0000 0.9266 0.5227 0.4744 04667
B 0.8980 0.8832 0.5952 0.5895 0.5833
C 0.8485 0.7377 0.5682 0.5209 0.5133
D 1.0000 1.0000 0.4821 0.4706 0.4702
E 1.0000 1.0000 0.8000 0.7931 0.7931

As it is shown in the table 2, applying
a common set of the weights, DMUA and
DMUD rankings are replaced comparing
with the rank obtained from Kao network
structure efficiency scores . And this re-
placement is due to applying the common
weights for evaluating the units. Further-
more, considering calculation of epsilon us-
ing Toloos model, values are obtained for
CCR efficiencies and network model are
slightly different from Kaos solution [?].
For instance, in Kao CCR model, DMUA

efficiency value is 1 regarded as an efficient
unit. But, with using the epsilon obtained
equal to 0.9266, it is considered as an inef-
ficient unit.

As Table 2 shows, using ε assurance value
in CCR model, Unit A is converted from ef-
ficient state to inefficient state, and the effi-
ciency scores of units C,and B are dropped.
In addition, using the assurance value ε in
NDEA-CCR model, the efficiency scores of
all the units are reduced; though, ranking
of the units are still constant.
The Weights obtained from Kao’s model
and CSW proposed model are given in Ta-
ble 3.

Table 3: The weights of the five DMUs calcu-
lated independently via Kaos model, and CSW
proposed model

DMU v1 v2 w1 w2 u3

A 0.0470 0.0345 0.0784 0.0643 0.1891
B 0.0345 0.1085 0.1613 0.0888 0.3395
C 0.0470 0.0345 0.0784 0.0643 0.1891
D 0.0369 0.0345 0.0708 0.0542 0.1665
E 0.0345 0.0345 0.0690 0.0517 0.1609

CSW 0.0345 0.0345 0.0690 0.0517 0.1609

In the above table, Rows 2 to 6 are the
weights obtained from Kao network struc-
ture model and the last row is the common
set of the weights obtained using set of
common weight model. The efficiency
of stages and divisions of 5 evaluation
units considering Kao models and common
weight set are presented in the following
table.

Table 4: Efficiency scores processes and stages
calculated from the Kaos network model

DMU P.eff.Kao S.eff.Kao
E1 E2 E3 ES1 ES2

A 1.0000 0.6613 0.3070 0.9013 0.5264
B 0.8188 1.0000 0.5003 0.9286 0.6348
C 0.5618 0.3796 0.7204 0.6677 0.7801
D 0.5990 0.6069 0.4029 0.7174 0.6561
E 0.7273 0.6667 1.0000 0.7931 1.0000

Now, the models applied for the data of 23
insurance companies in Taiwan. The data
are related to Kao 2008 [9].
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Table 5: Efficiency scores processes and stages
calculated from the CSW proposed model

DMU P.eff.CSW S.eff.CSW
E1 E2 E3 ES1 ES2

A 1.0000 0.6429 0.3011 0.9000 0.5185
B 0.8000 1.0000 0.4912 0.9286 0.6282
C 0.5714 0.3750 0.6914 0.6800 0.7549
D 0.6000 0.6000 0.4058 0.7143 0.6583
E 0.7273 0.6667 1.0000 0.7931 1.0000

Example 4.2. Consider the example
of 24 Taiwanese insurance companies ex-
tracted from Kao and Hwang paper 2.4 in
which the structure of each is similar to
Figure 3. Inputs/outputs of the insurance
companies are listed in Table 3.

..

1

. 2.X1, X2. X2.

X1

.

Z
1 , Z
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Y1

.
Y2

.

Y1, Y2

Figure 3: Network structure of the insurance
operation system.

Table 6: Input/output table of Kao, case
study: Taiwanese insurance companies in 2008.

DMU X1 X2 Z1 Z2 Y1 Y2
DMU1 1178744 673512 7451757 856735 984143 681687
DMU2 1381822 1352755 10020274 1812894 1228502 834754
DMU3 1177994 592790 4776548 560244 293613 658428
DMU4 601320 594259 3174851 371863 248709 177331
DMU5 6699063 3531614 37392862 1753794 7851229 3925272
DMU6 2627707 668363 9747908 952326 1713598 415058
DMU7 1942833 1443100 10685457 643412 2239593 439039
DMU8 3789001 1873530 17267266 1134600 3899530 622868
DMU9 1567746 950432 11473162 546337 1043778 264098
DMU10 1303249 1298470 8210389 504528 1697941 554806
DMU11 1962448 672414 7222378 643178 1486014 18259
DMU12 2592790 650952 9434406 1118489 1574191 909295
DMU13 2609941 1368802 13921464 811343 3609236 223047
DMU14 1396002 988888 7396396 465509 1401200 332283
DMU15 2184944 651063 10422297 749893 3355197 555482
DMU16 1211716 415071 5606013 402881 854054 197947
DMU17 1453797 1085019 7695461 342489 3144484 371984
DMU18 757515 547997 3631484 995620 692731 163927
DMU19 159422 182338 1141950 483291 519121 46857
DMU20 145442 53518 316829 131920 355624 26537
DMU21 84171 26224 225888 40542 51950 6491
DMU22 15993 10502 52063 14574 82141 4181
DMU23 54693 28408 245910 49864 0.1 18980
DMU24 163297 235094 476419 644816 142370 16976

Implementing Toloo model using the data
in Table 3 results on the overall assurance
interval ε∗∗ = 1.04573e−8. Thus, the over-
all assurance interval is (0, 1.04573e− 8].
Kao implementation results are listed in
Tables 4and 5 in the following two states:
1. Without any value;
2. With overall assurance value

In this table, the second, third, fourth and
sixth columns are the results of implement-
ing traditional CCR − ε models without
overall assurance value, traditional CCR−ε
with overall assurance value, network with-
out an overall assurance value, and network
with the overall assurance value obtained
from model NDEA-PZ, respectively. The
fifth and seventh columns are units rank-
ings in network models without overall as-
surance value and with overall assurance
value respectively.

Table 7: Comparing the efficiencies of 24
insurance companies in Taiwan independently
calculated through ordinary CCR model and
Kao model.

DMU E-CCR E-CCR-ε EN-Kao R-Kao
DMU1 0.984 0.978 0.996 4
DMU2 1.000 1.000 1.000 1.5
DMU3 0.988 0.970 0.936 5
DMU4 0.488 0.488 0.488 11
DMU5 1.000 1.000 0.979 3
DMU6 0.594 0.588 0.390 15
DMU7 0.470 0.467 0.374 17
DMU8 0.415 0.415 0.295 20
DMU9 0.327 0.327 0.280 22
DMU10 0.781 0.772 0.705 9
DMU11 0.283 0.277 0.283 21
DMU12 1.000 1.000 0.714 8
DMU13 0.353 0.351 0.337 18
DMU14 0.470 0.468 0.394 14
DMU15 0.979 0.972 0.737 7
DMU16 0.472 0.472 0.321 19
DMU17 0.635 0.633 0.427 13
DMU18 0.427 0.426 0.385 16
DMU19 0.822 0.821 0.487 12
DMU20 0.935 0.934 0.850 6
DMU21 0.333 0.333 0.268 23
DMU22 1.000 1.000 1.000 1.5
DMU23 0.599 0.598 0.580 10
DMU24 0.257 0.256 0.172 24

According to results of the tables 7 and 8,
it is observed that DMU2, DMU5,DMU12

andDMU22 have the efficiency equal to one
in CCR basic model. however in Kao net-
work model, just DMU22 has the efficiency
equal to one.

In addition, in CSW model, there is no
unit with efficiency value equal to one. The
rank of DMU15 in Model CSW was pro-
moted significantly compared to the Kao
two network models and CCR. DMU24 in
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Table 8: Comparing the efficiencies of 24
insurance companies in Taiwan independently
calculated through the model presented here.

DMU EN-ε EN-CSW-ε R-EN-CSW-ε
DMU1 0.913 0.477 5
DMU2 0.805 0.301 9
DMU3 0.894 0.473 6
DMU4 0.450 0.145 22
DMU5 0.599 0.546 2
DMU6 0.403 0.332 8
DMU7 0.325 0.193 17
DMU8 0.293 0.221 15
DMU9 0.262 0.161 21
DMU10 0.582 0.237 13
DMU11 0.266 0.098 23
DMU12 0.711 0.618 1
DMU13 0.320 0.175 19
DMU14 0.362 0.200 16
DMU15 0.729 0.530 3
DMU16 0.320 0.269 11
DMU17 0.420 0.266 12
DMU18 0.345 0.178 18
DMU19 0.480 0.232 14
DMU20 0.848 0.461 7
DMU21 0.268 0.174 20
DMU22 1.000 0.493 4
DMU23 0.579 0.273 10
DMU24 0.167 0.057 24

basic CCR, network Models, and CSW pre-
sented Model have the lowest efficiency and
ranking.
The common weights obtained by solving
CSW Model are as follows:

Table 9: The weights of the 24 DMUs calcu-
lated via CSW proposed model.

v1 v2 w1 w2 u1 u2
2.3334e-7 1.046e-8 1.046e-8 1.046e-8 1.046e-8 1.0346e-7

The efficiency of divisions and stages of Ex-
ample 24 in life insurance Company in Tai-
wan are investigated in Tables 10 and 11:

According to 2.4, the total efficiency is
equal to multiplication of efficiencies of the
two stages.
EO = EI

O × EII
O

However, the above relationship is not true
for Kaos results. For example, in Table
6, Kao [12] relationship is not applied for
DMU6. Because the total efficiency is
equal to 0.390, while, the product of effi-
ciency of stages is 0.736 × 0.324 = 0.238.

Table 10: Efficiency scores processes and
stages of the 24DMUs calculated from the Kaos
network model .

DMU Process Eff. Of Kao Stage Eff. Of Kao
1 2 I II

DMU1 0.618 0.971 0.940 0.972
DMU2 0.433 0.981 0.821 0.981
DMU3 0.426 0.971 0.921 0.971
DMU4 0.306 0.501 0.896 0.503
DMU5 0.596 0.883 0.667 0.898
DMU6 0.736 0.322 0.743 0.543
DMU7 0.421 0.386 0.805 0.404
DMU8 0.479 0.275 0.500 0.586
DMU9 0.616 0.278 0.915 0.287
DMU10 0.359 0.716 0.806 0.722
DMU11 0.354 0.018 0.367 0.725
DMU12 1.000 0.694 1.000 0.711
DMU13 0.464 0.127 0.479 0.669
DMU14 0.420 0.408 0.866 0.418
DMU15 1.000 0.394 1.000 0.729
DMU16 0.621 0.287 0.626 0.512
DMU17 0.503 0.440 0.786 0.535
DMU18 0.481 0.366 0.931 0.371
DMU19 0.538 0.485 0.966 0.497
DMU20 0.851 0.442 0.851 0.996
DMU21 0.451 0.208 0.451 0.593
DMU22 1.000 0.501 1.000 1.000
DMU23 0.800 0.585 0.991 0.585
DMU24 0.241 0.173 0.958 0.174

Table 11: Efficiency scores processes and
stages of the 24DMUs calculated from the CSW
presented model here.

DMU Process Eff. Of CSW Stage Eff. Of CSW
1 2 I II

DMU1 0.618 0.711 0.646 0.738
DMU2 0.433 0.625 0.458 0.657
DMU3 0.426 1.000 0.473 1.000
DMU4 0.286 0.423 0.317 0.456
DMU5 0.596 0.847 0.628 0.869
DMU6 0.832 0.308 0.858 0.387
DMU7 0.421 0.327 0.454 0.424
DMU8 0.533 0.278 0.572 0.386
DMU9 0.616 0.192 0.642 0.250
DMU10 0.359 0.548 0.387 0.613
DMU11 0.623 0.018 0.667 0.147
DMU12 0.835 0.684 0.860 0.718
DMU13 0.601 0.127 0.632 0.278
DMU14 0.420 0.355 0.454 0.440
DMU15 1.000 0.411 1.000 0.530
DMU16 0.741 0.271 0.771 0.348
DMU17 0.462 0.388 0.492 0.540
DMU18 0.435 0.301 0.468 0.381
DMU19 0.527 0.260 0.545 0.427
DMU20 0.674 0.442 0.709 0.651
DMU21 0.544 0.183 0.601 0.289
DMU22 0.635 0.501 0.658 0.750
DMU23 0.467 0.536 0.509 0.536
DMU24 0.241 0.131 0.264 0.217

This is considered as an objection to Kaos
results.

5 Conclusion

it is observed that there is no need for
DMU to have the full efficiency in network
structure. Most methods are applied only
for obtaining the efficient units which
cannot be used for ranking. Hence, the
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suggested modle of the common weights
can be used for ranking of the units with
network structure. The obtained efficiency
scores in the common weight model is re-
duced compared to Kao model; and DMUs
ranking may changed. Further research,
ranking of the units under evaluation with
network structures when the efficiency
scores are equal, is suggested.
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