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Abstract

Introduction of Human Development Index (HDI) by UNDP in early 1990 followed a surge in use of
non-parametric and parametric indices for measurement and comparison of countries performance in
development, globalization, competition, well-being and etc. The HDI is a composite index of three
indicators. Its components are to reflect three major dimensions of human development: longevity,
knowledge and access to resources represented by GDP per capita, educational attainment and life
expectancy. In recent years additional gender and poverty aspects are included. A known example of
the non-parametric index is the HDI, while Principal Components Analysis (PCA) and Factor Analysis
(FA) are among the parametric counterparts. The indices differ mainly in respect to weighting the
indicators in their aggregation. The non-parametric index assumes the weights, while the parametric
approach estimates them. In this research, it is aimed to purpose a new weighting approach to
non-parametric indices when they are used simultaneous with principal components analysis.

Keywords : Principal Components Analysis; Non-Parametric Indicators; Composite Indices; Weighting
Schemes.

—————————————————————————————————–

1 Introduction

P
CA is a statistical technique that linearly
transforms an original set of variables into

a substantially smaller set of uncorrelated vari-
ables that represents most of the information in
the original set of variables. Its goal is to re-
duce the dimensionality of the original data set.
A small set of uncorrelated variables (factors or
components) is much easier to understand and
use in further analysis than a large set of corre-
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lated variables. The idea was originally conceived
by Pearson [13] and later independently devel-
oped by Hotelling [8]. The advantage in reducing
the dimensions is ranking the units of comparison
in a unique way avoiding contradictions in units
performance ranking.

The goal of PCA is similar to FA in that both
techniques try to explain part of the variation
in a set of observed variables on the basis of
a few underlying dimensions. However, there
are important differences between the two tech-
niques. Briefly, PCA has no underlying statistical
model of the observed variables on the basis of the
maximum variance properties of principal compo-
nents. Factor analysis, on the other hand, has an
underlying statistical model that partitions the
total variance into common and unique variance
and focuses on explaining the common variance,
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rather than the total variance, in the observed
variables on the basis of a relatively few underly-
ing factors. PCA is also similar to other multi-
variate procedures such as discriminant analysis
and canonical correlation analysis in that they all
involve linear combinations of correlated variables
whose variable weights in the linear combination
are derived on the basis of maximizing some sta-
tistical property. It has been seen that princi-
pal components maximize the variance accounted
for in the original variables. Linear discriminant
function analysis, focusing on differences among
groups, determines the weights for a linear com-
posite that maximizes the between group relative
to within group variance on that linear composite.
Canonical correlation analysis, focusing on the re-
lationships between two variables sets, derives a
linear composite from each variable set such that
the correlation between the two derived compos-
ites is maximized. For a detailed explanation see
Basilevsky [3].

2 Review of the Literature

In several studies, common factor analysis (CFA)
and PCA are used in either the computation of an
index or to reduce several variables into fewer di-
mensions. While some researchers prefer the CFA
approach, a majority prefer the PCA method.
For instance using several indications of economic
integration and international interaction, Ander-
sen and Herbertsson [1] used a multivariate factor
analysis technique to compute an openness index
based on trade for 23 OECD countries using sev-
eral indications of economic integration and in-
ternational integration. Analyzing the relation-
ship between economic factors, such as income
inequality and poverty, Heshmati [5] used PCA
to addressing the measurement of two indices of
globalization and their impacts on poverty rate
and income inequality reductions. Heshmati and
Oh [6] compared two indices: the Lisbon Devel-
opment Strategy Index and another index cal-
culated by the PCA method. They found that
despite differences in ranking countries between
those two indices, the United States surpassed
almost all EU-member states. Also, Heshmati et
al [7] estimated two forms of parametric index
using PCA. The first model used a pool of all
indicators without classification of the indicators
by type of well-being, while the second model es-

timated first the sub-components separately and
then used the share of variance explained by each
principal component to compute the weighted av-
erage of each component and their aggregation
into an index of overall child well-being in high
income countries. The method has the advantage
that it utilizes all information about well-being
embedded in the indicators. As mentioned above,
the PCA is preferred by majority of researchers
than the CFA. The CFA can be used to sepa-
rate variance into two uncorrelated components.
Therefore for those computing indices that relay
on the common similarity over components, the
PCA method might be better alternative than
the CFA technique. Lim and Nguyen [12] com-
pared the weighting schemes in traditional, prin-
cipal component and dynamic factor approaches
to summarizing information from a number of
component variables. They determined that, the
traditional way has been to select a set of vari-
ables and then to sum them into one overall in-
dex using weights that are inversely related to
the variations in the components. Moreover, they
founded that, recent approaches, such as the dy-
namic principal component and the dynamic fac-
tor approaches, use more sophisticated statistical
and econometric techniques to extract the index.
They proposed a simple way to recast the dy-
namic factor index into a weighted average form.

3 Theoretical Foundations

PCA is sometimes used prior to some factor ana-
lytic procedures to determine the dimensionality
of the common factor space. It can also be used
to select a subset of highly relevant variables from
a larger set of variables. That is, rather than sub-
stituting the principal components for the origi-
nal variables we can select a set of variables that
have high correlations with the principal compo-
nents. PCA is also used in regression analysis
to address multicollinearity problems (i.e., impre-
cise regression parameter estimates due to highly
correlated explanatory variables with confounded
effects). The technique is also useful in display-
ing multivariate data graphically so that, for ex-
ample, outlying or atypical observations can be
detected. This is based on the facts that the
principal components represent the variation in
the original variables and there are considerably
fewer graphical displays of the principal compo-



M. Rahimpoor et al. /IJIM Vol. 9, No. 1 (2017) 59-73 61

Table 1: Pearson correlation matrix of infrastructure components (n=31).

1 2 3 4 5 6 7 8

Capacity component:
Industry park 1 1.00
Conducted contracts1 0.60 1.00
Exploited industrial units 0.59 0.98 1.00
Operation license 1 0.66 0.95 0.96 1.00
Workshop units 3 0.36 0.19 0.24 0.35 1.00

Resource component:
Land surface 4 1.00
Infrastructure facilities 0.71 1.00
Water amount 1 0.75 0.65 1.00
Electricity amount1 0.58 0.42 0.62 1.00
Connected to internet1 0.50 0.75 0.25 0.11 1.00
Wastewater refineries1 0.57 0.68 0.48 0.42 0.64 1.00
Fire station1 0.76 0.59 0.43 0.27 0.63 0.60 1.00
Green station1 0.75 0.37 0.52 0.45 0.16 0.39 0.55 1.00

Education component:
Education courses 2 1.00
Industrial tours 2 0.82 1.00

Credit component:
Construction credits 1.00
Business technology credit 1 -.05 1.00
Wastewater refineries credit 1 0.21 0.07 1.00
Infrastructure credit 1 0.72 -.08 0.15 1.00

Assets component:
Capital assets 2 1.00
Total capital assets 2 0.01 1.00

Employment component:
Operation license 2 1.00
Workshop units 5 0.35 1.00

Table 2: Correlation matrix of DII sub-indexes.

Capacity Resource Education Credit Assets Employment DII

Capacity 1.000
Resource 0.888 1.000
Education 0.723 0.809 1.000
Credit 0.394 0.427 0.323 1.000
Assets 0.056 -0.036 -0.210 0.169 1.000
Employment 0.874 0.768 0.727 0.437 0.103 1.000
DII 0.912 0.898 0.794 0.611 0.228 0.902 1.000

nents to visually examine relative to the original
variables. PCA searches for a few uncorrelated
linear combinations of the original variables that
capture most of the information in the original
variables. We construct linear composites rou-

tinely, for example development indexes, qual-
ity of life indices and so on. In most of these
cases, each variable receives an equal weight in
the linear composite. Indices force a p dimen-
sional system into one dimension. For example,
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Table 3: Eigenvalues of correlation matrix, n=31.

Principal Component Eigenvalue Difference Proportion Cumulative

1 10.9472502 7.8728901 0.4760 0.4760
2 3.0743601 1.3720595 0.1337 0.6096
3 1.7023006 0.1858589 0.0740 0.6836
4 1.5164417 0.1858993 0.0659 0.7496
5 1.3305425 0.1703744 0.0578 0.8074
6 1.1601681 0.2428082 0.0504 0.8579
7 0.9173599 0.3771149 0.0399 0.8978
8 0.5402451 0.0235 0.9212

Table 4: Eigenvectors by sub-index, n=31.

Prin1 Prin2 Prin3 Prin4 Prin5 Prin6

Capacity Component:

Industrial park 1 0.2583 0.2087 0.1533 -0.0911 -0.0670 0.0161
Conducted contracts 1 0.2613 -0.2335 0.0303 0.0357 0.1089 -0.0718
Exploited industrial units 9 0.2647 -0.2209 0.0343 0.1093 0.1100 -0.1089
Operation licenses 1 0.2741 -0.1688 0.0227 0.1127 0.1743 -0.0116
Workshop units 3 0.1156 0.2596 -0.3144 0.3565 0.3354 0.0485

Resource component:

Land surface 4 0.2792 -0.1407 -0.0182 -0.0033 -0.0078 0.0555
Infrastructure facilities 9 0.2577 0.1803 0.2002 -0.0783 -0.0802 0.0001
Water amount 1 0.2250 0.0438 -0.0890 -0.3588 -0.1061 0.1575
Electricity amount 1 0.1788 -0.0642 -0.0732 -0.4017 0.3511 0.0776
Connected to internet1 0.1972 0.1216 0.4198 0.2891 -0.0844 0.0504
Wastewater refineries1 0.2187 0.0452 0.2124 -0.1312 -0.0372 -0.1254
Fire station 1 0.2317 -0.1087 0.0674 0.1919 -0.2931 -0.0733
Green spaces 2 0.2192 -0.2152 -0.3523 0.0672 0.0435 -.02934

Education component:

Education courses 2 0.2503 0.0136 -0.2526 0.0998 -0.1651 -0.0114
Industrial tours 2 0.2394 -0.0192 -0.2377 -0.3116 -0.1863 0.0044

Credit component:

Construction credits 9 0.1111 0.4440 0.0252 -0.1699 0.1011 -0.1338
Business technology credits 1 -0.0536 0.0419 0.0525 -0.0188 0.2962 0.7916
Wastewater refineries credit 1 0.1818 -0.0238 0.3668 -0.0813 0.2046 0.1596
Infrastructure credit 1 0.1288 0.4351 -0.1699 -0.2204 -0.1735 0.0128

Assets component:

Capital assets 1 -0.0616 0.1303 0.1091 -0.1129 0.5626 -0.4976
Total capital assets 2 0.0710 0.2990 0.2305 0.2643 -0.0928 0.0437

Employment component:

Operation license 2 0.2750 -0.1576 0.0320 0.1287 0.1486 0.0221
Workshop units 5 0.1474 0.3214 -0.3436 0.3311 0.1109 0.0384
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Table 5: Principal components and their aggregate index.

Region name Rank Prin1

Esfahan 1 2.899
Razavi Khorasan 2 1.903
Fars 3 1.777
Tehran 4 1.434
Khozestan 5 1.243
Eastern Azarbayejan 6 1.002
Markazi 7 0.555
Yazd 8 0.205
Kerman 9 0.187
Semnan 10 0.110
Western Azarbayejan 11 0.015
Hamedan 12 -0.108
Gilan 13 -0.223
Sistan and Balouchestan 14 -0.308
Charmahal and Bakhtyari 15 -0.317
Golestan 16 -0.338
Qazvin 17 -0.366
Qom 18 -0.414
Zanjan 19 -0.453
Kermanshah 20 -0.534
Ardebil 21 -0.546
Mazandaran 22 -0.606
Kurdistan 23 -0.627
Alborz 24 -0.648
Boushehr 25 -0.829
Hormozgan 26 -0.930
Southern Khorasan 27 -0.985
Kohgilouyeh and Bouyerahmad 28 -1.031
Lorestan 29 -1.059
Northern Khorasan 30 -1.108
Ilam 31 -1.111
Mean 0.000
Std Dev 1.000

a set of p socio-economic status indicators such
as occupational level, educational level and in-
come, which can be characterized as a p dimen-
sional random vector (x1, x2, , xn), can be linearly
transformed by y = a1x1 + a2x2+?+apxp into a
one dimensional index, y. In PCA, the weights
(i.e., a1, a2, ..., ap) are mathematically determined
to maximize the explained variation of the linear
composite or, equivalently, to maximize the sum
of the squared correlations of principal compo-
nent with the original variables. The linear com-
posites (principal components) are ordered with
respect to their variation explanation so that the
first few account for most of the variation present
in the original variables, or equivalently, the first
few principal components together have, over all,
the highest possible squared multiple correlations

with each of original variables. Geometrically, the
first principal component is the line of closest fit
to the n observations in the p dimensional vari-
ables space. It minimizes the sum of the squared
distances of the n observations from the line in
the variable space representing the first princi-
pal component. Distance is defined in a direction
perpendicular to the line. The first two princi-
pal components define a plane of closest fit to
the swarm of points in the p dimensional variable
space. Equivalently, the second principal compo-
nent is a line of closest fit to the residuals from the
first principal component. The first three compo-
nents define a three dimensional plane, called a
hyperplane, of closest fit, and so on. If there are p
variables, then there can be no more than p prin-
cipal components. There can be fewer if there



64 M. Rahimpoor et al. /IJIM Vol. 9, No. 1 (2017) 59-73

Table 6: Mean value of DII and rank number.

Province Capacity Resource Education Credit
Rank Mean Rank Mean Rank Mean Rank Mean

Esfahan 1 0.831 1 0.797 3 0.648 10 0.349
Razavi Khorasan 4 0.534 3 0.581 1 0.890 8 0.431
Khouzestan 5 0.522 7 0.455 6 0.292 1 0.647
East Azarbayejan 2 0.584 6 0.471 12 0.190 4 0.542
Fars 6 0.443 2 0.664 2 0.743 5 0.538
Tehran 3 0.579 4 0.572 5 0.315 23 0.201
Mazandaran 9 0.326 6 0.471 24 0.049 7 0.492
Semnan 8 0.327 10 0.301 10 0.233 12 0.325
Markazi 11 0.280 5 0.490 4 0.319 28 0.120
West Azarbayejan 12 0.268 16 0.231 8 0.265 13 0.302
Yazd 14 0.229 9 0.337 13 0.183 6 0.516
Kerman 10 0.288 8 0.339 15 0.169 20 0.223
Gilan 16 0.206 14 0.247 18 0.096 3 0.560
Golestan 22 0.131 15 0.235 16 0.159 8 0.417
Kermanshah 21 0.149 19 0.167 19 0.117 2 0.638
Hamedan 18 0.186 11 0.260 7 0.279 11 0.332
Qazvin 21 0.146 13 0.250 9 0.261 15 0.277
Sistan and Balouchestan 7 0.333 22 0.136 18 0.122 16 0.270
Kurdistan 13 0.255 24 0.094 20 0.087 19 0.253
Zanjan 17 0.195 17 0.189 14 0.170 18 0.259
North Khorasan 28 0.041 30 0.044 22 0.063 21 0.220
Qom 15 0.227 20 0.151 11 0.205 27 0.130
Boushehr 24 0.069 23 0.127 26 0.031 25 0.148
Ardebil 17 0.195 18 0.177 21 0.075 24 0.186
Charmahal and Bakhtyari 19 0.185 12 0.253 17 0.125 30 0.081
Alborz 20 0.153 21 0.144 23 0.061 31 0.065
Lorestan 27 0.052 29 0.064 30 0.002 22 0.217
South Khorasan 25 0.061 25 0.087 29 0.008 14 0.297
Ilam 29 0.038 27 0.073 28 0.014 17 0.264
Hormozgan 23 0.102 26 0.083 27 0.023 26 0.131
Kohgilouyeh and Bouyerahmad 26 0.056 28 0.067 25 0.040 29 0.097
Mean 0.258 0.276 0.201 0.307
Std Dev 0.190 0.197 0.211 0.167

are linear dependencies among the variables. If
all possible principal components are used, then
they define a space which has the same dimension
as the variable space and, hence, completely ac-
count for the variation in the variables. However,
there is no advantage in retaining all of the prin-
cipal components since we would have as many
components as variables and, thus, would not
have simplified matters. Algebraically, the first
principal component, is a linear combination of
x1, x2, ..., xp, written as:

y1 = a11x1+a12x2+ ...+a1pxp =

p∑
i=1

a1ixi (3.1)

such that the variance of y1 is maximized given
the constraint that the sum of the squared

weights is equal to one (i.e.,
∑p

i=1 a
2
1i = 1).

As we shall see, the random variables, xi, can
be either deviation from mean scores or stan-
dardized scores. If the variance of y1 is maxi-
mized, then so is the sum of the squared correla-
tions of y1 with the original variables x1, x2, ..., xp
(i.e.,

∑p
i=1 r

2
yrxi

). PCA finds the optimal
weight vector (a11, a12, ..., a1p) and the associated
variance of y1. The second principal compo-
nent, y2, involves finding a second weight vector
(a21, a22, ..., a2p) such that the variance of

y2 = a21x1+a22x2+ ...+a2pxp =

p∑
i=1

a2ixi (3.2)

is maximized subject to the constraints that it is
uncorrelated with the first principal component
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Continue Table 7

Employment Assets DII
Rank Mean Rank Mean Rank Mean

Esfahan 3 0.542 13 0.126 1 3.293
Razavi Khorasan 1 0.787 17 0.000 2 3.222
Khouzestan 2 0.559 2 0.500 3 2.975
East Azarbayejan 4 0.474 1 0.604 4 2.865
Fars 10 0.175 17 0.000 5 2.562
Tehran 5 0.367 17 0.000 6 2.033
Mazandaran 7 0.241 8 0.227 7 1.806
Semnan 6 0.310 17 0.000 8 1.496
Markazi 8 0.196 14 0.055 9 1.460
West Azarbayejan 16 0.149 7 0.234 10 1.448
Yazd 9 0.181 17 0.000 11 1.447
Kerman 14 0.160 12 0.143 12 0.321
Gilan 17 0.140 15 0.035 13 1.284
Golestan 23 0.081 6 0.249 14 1.272
Kermanshah 20 0.114 17 0.000 15 1.184
Hamedan 24 0.064 17 0.000 16 1.121
Qazvin 19 0.128 17 0.000 17 1.062
Sistan and Balouchestan 13 0.162 17 0.000 18 1.023
Kurdistan 15 0.151 11 0.154 19 0.994
Zanjan 18 0.132 17 0.000 20 0.944
North Khorasan 25 0.038 4 0.488 21 0.893
Qom 11 0.174 17 0.000 22 0.887
Boushehr 26 0.023 3 0.489 23 0.886
Ardebil 12 0.174 15 0.000 24 0.807
Charmahal and Bakhtyari 21 0.107 16 0.007 25 0.758
Alborz 22 0.095 9 0.217 26 0.735
Lorestan 27 0.020 5 0.353 27 0.708
South Khorasan 28 0.014 10 0.193 28 0.661
Ilam 29 0.010 15 0.000 29 0.400
Hormozgan 27 0.020 17 0.000 30 0.360
Kohgilouyeh and Bouyerahmad 29 0.010 17 0.000 31 0.270
Mean 0.131 0.187 1.361
Std Dev 0.182 0.184 0.828

and
∑p

i=1 a
2
2i = 1. These results in y2 having the

next largest sum of squared correlations with the
original variables, or equivalently, the variances
of the principal components get smaller as suc-
cessive principal components are extracted. The
first two principal components together have the
highest possible sum of squared multiple correla-
tions (i.e.,

∑p
i=1R

2
xi.y1,y2 ) with the p variables.

This process can be continued until as many com-
ponents as variables have been calculated. How-
ever, the first few principal components usually
account for most of the variation in the variables
and consequently our interest is focused on these,
although, as we shall subsequently see, small com-
ponents can also provide information about the
structure of the data. The main statistics result-

ing from a PCA are the variable weight factor
a=(a1, a2, ..., ap ) associated with each principal
component and its associated variance. As we
shall see, the pattern of variable weights for a
particular principal component are used to inter-
pret the principal component and the magnitude
of the variances of the principal components pro-
vide an indication of how well they account for
the variability in the data. The relative sizes
of the elements in a variable weight vector as-
sociated with a particular principal component
indicate the relative contribution of the variable
to the variance of the principal contribution, or,
equivalently, the relative amounts of variation ex-
plained in the variables by the principal compo-
nents. We will see that the correlations of the
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variables with a particular principal component
are proportional to the elements of the associated
weight vector. They can be obtained by multiply-
ing all the elements in the weight vector by the
square root of the variance of the associated prin-
cipal component.

4 Expand a New Weighting
System

For the non-parametric index, Authors purpose a
new weighting system based on empirical results
of the research that due to availability of only
cross-sectional data, such more advanced theoret-
ical origins of weighting system are not explained
here. The index is based on normalization of indi-
vidual indicators and subsequent aggregation us-
ing weighting system as follows:

INDEXi =
J∑

j=1

ωj(
M∑

m=1

ωm(
XjmiX

min
jm

Xmax
jm Xmin

jm

)) (4.3)

where i indicate main decision variables; m and
j are within and between major component vari-
ables; ωm are the weights attached to each con-
tributing X-variable within a component; ωj are
weights attached to each of the main component;
and min and max are minimum and maximum
values of respective indicators across main deci-
sion variables. This index serves as a benchmark
and is similar to the commonly used HDI in-
dex. The non-parametric and parametric indices
are computed/estimated using SAS 1 software.
SAS is a statistical software package with strong
data management capabilities used in many fields
of research. Those with an understanding of
statistics at the level of multiple-regression anal-
ysis can use this software. This group includes
professional analysts who use statistical pack-
ages almost every day as well as epidemiologist,
econometricians, statisticians, economists, engi-
neers, physicians, sociologists, agronomists, fi-
nancial analysts, and others engaged in research
or data analysis. To maintain the rationality and
objectivity of PCA technique, some tests and cri-
teria are usually conducted to determine the per-
centage of each variable as denoted by each fac-
tor. Eigenvalue is the most common measure-
ment technique used in this dimension reduction
approach. Only principal components with an

1Statistical Analysis System (software)

eigenvalue larger than 1.0 are considered. Eigen-
vectors signs indicates their effects and a coeffi-
cient of greater than ±0.30 are considered as con-
tributor indicators to the principal components.

5 Sensitivity Analysis

A closely related but perhaps a more general
question to ask is how sensitive is a PCA to
changes in the variances of the components?
That is, given a change in some eigenvalues, how
much change can be expected in the correspond-
ing correlation loadings? Let ν = ν(c) be a func-
tion of c to be maximized, and let ν̄ = ν(c̄ be
the maximum of the function achieved at c = c̄.
Consider a small departure ν̄ν = e from the max-
imum. Then {c|ν̄ − ν ≤ e} defines values of c in
the arbitrary small region about ν̄, the ”indif-
ference region with boundary e.” Using a Taylor
series expansion we obtain the second-order ap-
proximation

ν ≃ ν̄ + gT r+
1

2
rTHr (5.4)

Where
r = c− c̄
g = gradient vector of ν(c) evaluated at c = c̄
H = Hessian matrix of ν(c) of second derivatives
evaluated at c = c̄
And where H is negative (semi) definite at c = c̄.
Since at the maximum g = 0, the region e about
ν̄ can be approximated by (Krzanowski,[11])∣∣rTHr

∣∣ ≤ e (5.5)

Let A = −H so that A is positive (semi) def-
inite. Then

∣∣rTAr
∣∣ = 2e is the equation of a

p-dimensional ellipsoid, which defines a region
of the coefficient space within which differences
r = c− c̄ result of at most e in the criterion func-
tion ν. It follows that the maximum change (per-
turbation) that can be induced in the coefficients
without decreasing ν̄ by more than e is the maxi-
mum of rT r subject to the constraint rTAr = 2e.
Differentiating the lagrange expression

ϕ = rT r− (rTAr− 2e) (5.6)

and setting to zero yields

(A−1 − λI)r = 0 (5.7)

The appropriate value of r = c − ¯textbfc is
thus the eigenvector corresponding to the largest
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eigenvalue ofA−1 (smallest eigenvalue of A), nor-
malized such that rTAr = 2e. This is the same
as finding the component c whose angle θ with c̄
(in p-dimensional space) is maximum, but where
variance is no more than e of that of c̄. Using
above approximation Krzanowski [11] developes a
sensitivity analysis for PCA. Let S be the sample
covariance (correlation matrix). Then the func-
tion to be maximized is

ν = cTSc− l(cTc− 1) (5.8)

So that the maximum is achieved at c̄ = c1,
the eigenvector which corresponds to the largest
eigenvalue l = l1 = cT1 Sc1. Now, at the max-
imum the Hessian matrix of second derivatives
of ν is 2S − l1I, where l1 > l2 > ... > lp are
eigenvalues of S with corresponding eigenvectors
c1, c2, ..., cp. The eigenvalues of H are there-
fore 2(li − l1) with corresponding eigenvectors
c1, c2, ..., cp, and smallest eigenvalue of A = −H
is therefore 2(li − l1) with eigenvector c2. The
maximum perturbation that can be applied to
c1 while ensuring that the variance of resulting
component is within e of l1 therefore depends on
r = kc2, where

k = ± e

(li − l2)
1
2

(5.9)

The principal component that is ”maximally e
different” from c1 is then given by

c = c1 + r = c1 ± c2[
e

l1 − l2
]
1
2 (5.10)

and imposing the normalization of cTc = 1 we
have

c(1) =

{
c1 ± c2

[ e
l1−l2

]
1
2

1 + e(l1 − l2)

} 1
2

(5.11)

The component that differs maximally from c1
but whose variance is at most e less than that of
c1. Since li ̸= l2 with unit probability the com-
ponent c(1) is defined for all sample covariance
matrices S. The cosine of the angle θ between
c(1) and c1 is then

cos θ = [1 + e(l1 − l2)]
1
2 (5.12)

Above equation can be generalized to any jth or
(j+1)th eigenvalue. Another difficulty that can
cause estimation problems and upset multivari-
ate normality is when a portion of data is missing.

The simplest solution to the problem is to delete
sample points for which at least one variable is
missing, if most of the data are intact. The ”list-
wise” deletion of observations however can cause
further difficulties. First, a large part of the data
can be discarded even if many variables have but
a single missing observation. Second, the retained
part of the data may no longer represent a ran-
dom simple if the missing values are missing sys-
tematically. Third, discarding data may result
in a non-normal sample, even though the parent
population is multivariate normal. Of course, for
some data sets deleting sample points is out of the
question, for example, skeletal remains of old and
rare species. An alternative approach is to use the
available data to estimate missing observations.
For example medians can be used to estimate
the missing values. The problem with such an
approach is its inefficiency, particularly in factor
analysis where the major sources of information
is ignored- the high intercorrelations that typi-
cally exist in a data matrix which is to be factor
analyzed. Two types of multivariate missing data
estimators can be used, even in situations where
a larger portion of the data is missing: multivari-
ate regression and iterative (weighted) PCA. For
a review of missing data estimators see Anderson
et al., [2]. Generally, for a given data matrix not
all sample points will have data missing. Assume
thatm individuals have complete records that are
arranged as the first m rows of Y, and (n - m)
individuals have missing data points in the last (n
- m) rows. If an observation is missing, it can be
estimated using a regression equation computed
from the complete portion of the sample. With-
out loss of generality, assume that the ith individ-
ual has a missing observation on the jth variable.
The dependent variable in this case is Yj and we
have the estimate

ŷij = β̂0 +

j−1∑
k=1

β̂kyik +

p∑
k=j+1

β̂kyik (5.13)

Since the method does not utilize all of the sam-
ple information when estimating regression equa-
tions, a more general approach is to use the entire
data matrix when estimating the regression equa-
tion. Another procedure which can be used is the
PC model itself; that is, PCs and the missing data
can be estimated simultaneously. Let Iy = (wij)
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denote the (n× p) indicator matrix where

wij =


0 ifxij is observed

1 ifxij is not observed
(5.14)

Also let J be the (n × p) matrix whose elements
are ones and let ⊗ denote the direct product of
two matrices. Then Y can be expressed as

Y = [(I− Iy)⊗Y] + [Iy ⊗Y] (5.15)

Where

Y(k) = (I− Iy)⊗X (5.16)

Y(u) = Iy ⊗Y (5.17)

are the known and unknown parts, respectively.
The procedure is equivalent to replacing the un-
known values by zeros. Let Y(k) = Z(r)P

T
(r)+efor

some 1 ≤ r < p. Then new estimates for miss-

ing values are given by Ŷ
(k)

= Z(r)P
T
(r). The

process is continued until satisfactory estimates
are obtained. Iterative least squares algorithms
have also been proposed by Wiberg [15]. A bet-
ter procedure is probably to replace the missing
entries with the variable means and iterate un-
til stable estimates are obtained for some suit-
able value of k (see Woodbory and Hickey, 1963).
Also, the variables can be weighted to reflect dif-
ferential accuracy due to an unequal number of
missing observations. The advantage of the it-
erative method is that it allows the estimation
of missing values in situ, that is, within the PC
model itself. The regression and PC estimation
procedures do not require the assumption of nor-
mality. The pattern of eigenvalues and their as-
sociated vectors depends on pattern of correla-
tions. For well-defined correlational structures
(e.g., variables falling into clearly defined clusters
with high correlations within clusters and low cor-
relations between clusters), the pattern of eigen-
values indicates the number of principal compo-
nents to retain, and those that are retained are
easily interpreted from the eigenvectors. If the
pattern of correlations has no well-defined struc-
ture, then this lack of structure will be reflected in
the principal components. They will be difficult
to interpret. In the hypothetical case in which
the correlations within a cluster are exactly equal
and the correlations between clusters are exactly
zero, there is a principal component associated
with each cluster whose eigenvalues is 1+ (pi1)ρi

where pi is the number of variables in the ith clus-
ter of variables and ρi is the common correlation
among the variables in the ith cluster. There are
pi1 remaining eigenvalues associated with the ith
cluster, each one equal to 1ρi.

6 Empirical Example

Authors tested mentioned weighting system us-
ing simultaneous with PCA for a case study. In
this study, the status of industrial infrastructure
among Iranian provinces and distribution of in-
dustrial firms by important characteristics like
capacity, resource, education, credit, employment
and capital assets was investigated. In the men-
tioned study industrial infrastructures were cate-
gorized into six main dimensions: capacity com-
ponent, resource component, education compo-
nent, credit component, employment component
and assets component. Data availability deter-
mined the number of components and composi-
tion of their underlying indicators. Also a com-
posite DII2 for provinces with available ranks in
mentioned components is calculated to show the
position of each province. The capacity compo-
nent sub-index is a composite of (indicators/ and
their labels:

• Industrial parks (approved, in assignment,
having land, registered)/ Indpar1, Indpar2,
Indpar3, Indpar4

• Concluded contracts (Number, Transferred
lands)/ Concont1, Concont2

• Exploited industrial units (food, loom, cellu-
lose, chemical, non-metal, metal, electronic,
services)/ Expindun1, Expindun2, Expin-
dun3, Expindun4, Expindun5, Expindun6,
Expindun7, Expindun8

• Operational licenses (Number of issued) /
Oplic1

• Workshop units (Number, under construc-
tion, completed, exploited) / Worun1,
Worun2, Worun3, Worun4

The resource component sub-index is computed
next, for the computation the following indicators
is used:

2Development Infrastructure Index
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• Land surface (occupational, registered, op-
erational, industrial)/ Lasu1, Lasu2, Lasu3,
Lasu4

• Infrastructure facilities, having facilities (wa-
ter, electricity, gas and telephone)/ In-
frafac1, Infrafac2, Infrafac3, Infrafac4

• Water amount (provided, shortage)/
Watam1, Watam2

• Electricity amount (provided, shortage)/ El-
cam1, Elcam2

• Connected to internet (dial up, optical
fiber)/ Conint1, Conint2

• Wastewater refineries (exploited, under con-
struction, under designing)/ Wasref1, Was-
ref2, Wasref3

• Fire station (number, machinery)/ First1,
First2

• Green spaces (Number of planted trees, sur-
face of greens paces, surface of industrial gar-
dens)/ Grespa1, Grespa2, Grespa3

The educational component is the third sub-
index. The indicators are:

• Educational courses (courses, participants,
hours)/ Educor1, Educor2, Educor3

• Industrial tours (tours, members, average)/
Indtour1, Indtour2, Indtour3

The next component is credit. It is computed
based on following indicators:

• Construction credits (amount, approved, as-
signed, attracted)/ Concred1, Concred2,
Concred3, Concred4

• Business technology credit (approved, as-
signed)/ Bustecred1, Bustecred2

• Wastewater refineries credit (approved, allo-
cated)/ Wasrefcred1, Wasredcred2

• Industrial parks and districts infrastructure
credits (approved, assigned)/ Infracred1, In-
fracred2

The fifth component is employment component.
The sub-index is a composite of

• Employment of issued operation licenses/
Oplic2

• Employment of workshop units/ Worun5

The last component is assets. For the computa-
tion the following indicators is used:

• Capital assets of industry and mine sector
(assigned, approved, share, change)/ capas
(1,2,3 and 4)

• Total capital assets (approved, assigned,
change)/ tlcapas (1,2,3)

For the non-parametric index, the index is based
on normalization of individual indicators and sub-
sequent aggregation using an proposed weighting
system as follows:

INDEXi =

J∑
j=1

ωj(

M∑
m=1

ωm(
XjmiX

min
jm

Xmax
jm Xmin

jm

))

(6.18)
where i indicate province; m and j are within and
between major component variables; ωm are the
weights attached to each contributing X -variable
within a component; ωj are weights attached to
each of the main component; and min and max
are minimum and maximum values of respective
indicators across provinces. This index serves as
a benchmark and is similar to the commonly used
HDI index. For our study, use of sub-indices and
a composite of Development Infrastructure Index
(DII) could help provinces to evaluate their sta-
tus of industrial infrastructure. Also, it will ben-
efit from information on the isolated effects of in-
dustrial infrastructure on industrial and economic
development. The six development infrastructure
sub-indexes are separately calculated using the
non-parametric PCA approach and aggregated to
form the composite DII index. The PCA compute
the same aggregate index parametrically, How-
ever, PCA does not allow decomposition of the
overall index into its underlying components, un-
less they are estimated individually, but an ag-
gregation is not possible without assuming some
weights:

Development Infrastructure Index (DII) =

6∑
i=1

Indiexic (6.19)

Where indiexic is the rank of the province c
via a sub-index i.
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7 Results

Correlation coefficients among various variables
in each group are reported in Table 1 (See Ap-
pendix). Such as mentioned in previous sections,
when PCA is used, high correlations among vari-
ables within a component of the index is consid-
ered a valid measure because unlike traditional
regression analysis care the method is not subject
to multicollinearity or autocorrelation problems.
For capacity component correlations between Ex-
ploited industrial units and Concluded contracts
1 was high (0.985), correlations between Oper-
ation license 1 and Concluded contracts 1 also
found high (0.954). Similarly, correlations be-
tween Exploited industrial units and Operation
licenses 1 was high (0.964). It is worth to men-
tion that these groups are formed for the non-
parametric index where the researchers determine
the index components and their composition and
weights. In the PCA approach the outcome is
determined by the indicators actual relationship.
Connected to internet 1 and Electricity amount
1, Green spaces 2 and Connected to internet 1 are
less correlated in comparison with others (0.113
and 0.160 respectively) in the resource compo-
nent group. Business technology credits 1 and
Construction credits have a negative correlation
(-0.050) in the credit group. Similarly Infras-
tructure credits 1 and Business technology cred-
its 1 have a negative correlation (-0.087). The
rest of the variables within each group showed
a positive correlation. The variation ranged be-
tween 0.88Also correlation coefficients among the
six sub-indexes are presented in Table 2 reports
correlation matrix, which signals a most of corre-
lation coefficients are positive. The values are dif-
ferent, however, indicating that the various sub-
indexes taken into account highlight different as-
pects of the overall index Development Infras-
tructure Index (DII). For instance, the correla-
tion of DII with capacity and resource is 0.912
and 0.898, respectively. Except assets, the corre-
lations of other sub-indexes are high with DII.

As mentioned in the previous section, the PCA
approach uses an eigenvalue test to check the por-
tion of variance that each factor explains. Hence,
the eigenvalue and its variance proportion are ex-
plained in Table 3. According to the rule de-
scribed in the previous sections any PC with
eigenvalue less than 1 contains less information
than one of the original variables and so is not

worth retaining. If the data set contains groups
of variables having large within-group correla-
tions, but small between group correlations, then
there is one PC associated with each group whose
eigenvalue is > 1, whereas any other PCs associ-
ated with the group have eigenvalues < 1. Thus,
the rule will generally retain one, and only one,
PC associated with each group such group of vari-
ables, which seems to be a reasonable course of
action for data of this type. Another criterion for
choosing PCs, is to select a cumulative percent-
age of total variation which one desires that the
selected PCs contribute. It is defined by ”per-
centage of variation” accounted for the first m
PCs. PCs are chosen to have the largest possible
variance, and the variance of the kth PC is lk.
Furthermore,

∑p
k=1 lk is the sum of the variances

of the PCs. The obvious definition of ”percentage
of variation” accounted for by the first m PCs”
is therefore

tm =
100

p

m∑
k=1

lk (7.20)

in the case of a correlation matrix. Choosing a
cut-off t* somewhere between 70% and 90% and
retaining m PCs, where m is the smallest inte-
ger for which tm > t∗, preserves in the first m
PCs most of the information. Such as obvious
in Table 3, for our case, according to eigenvalue
criteria and cumulative percentage of total vari-
ation, the first six PCs retain. The mentioned
criterions are alternatives to PCA that sacrifice
some variance in order to enhance simplicity. A
different approach to improving interpretability
is to find the PCs, as usual, but then to approx-
imate them. Green [4] investigates a different of
rounding in PCA. Instead of looking at the direct
impact on the PCs, he looks at the proportions
of variance accounted for in each individual vari-
able by the first m PCs, and examines by how
much these proportions are reduced by rounding.
He concludes that changes due to rounding are
small, even for quite severe rounding, and recom-
mends to the nearest 0.1 or even 0.2, as this will
increase interpretability with little effect on other
aspects of the analysis. To see the portion of the
total variance each component explains in each
group, one can look at the eigenvector values pre-
sented in Table 4 Such as mentioned above, from
this point in the analysis of the results, the first
factor (prin1) is used as the key index of each
of those six groups. For values of other factors,
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see appendix1. Principal components and their
aggregate index in the province level have shown
in the Table 5. According to above mentioned
criterions provinces ranked based on prin1. For
values of other factors in the province level, see
appendix 1. The main result of calculations is
reported in Table 6.

8 Summary and Conclusion

Such as mentioned in the previous sections, PCA
can be useful in selecting a subset of variables to
represent the total set of variables. This is im-
portant in the cases where certain indicators are
crucial for more than one component in the PCA.
If the correlations among the variables are high,
or if there are clusters of variables with high in-
tercorrelations, then, in many instances, we can
represent the variation in the total set of variables
by a much smaller subset of variables. There are a
number of strategies for selecting a subset of vari-
ables using PCA. They are summarized in more
detailed by Jolliffe [9]. The first step is to de-
cide how many variables to select. One approach
is to use Jolliffe’s criteria of λ = 0.70 to deter-
mine which principal component to retain. Then
one variable can be selected to represent each of
the retained principal components. The variable
that has the highest eigenvector or weight on a
principal component would be selected to repre-
sent that component, provided it has not been
chosen to represent a larger variance principal
component. In that case, the variable with the
next largest eigenvector would be chosen. The
procedure would start with the largest principal
component and proceed to the smallest retained
component. Another approach is to use the dis-
carded principal components to discard variables.
We would start with the smallest discarded com-
ponent and delete the variable with the largest
weight or eigenvector on that component. Then
the variable with the largest eigenvector on the
second smallest component would be discarded.
This procedure continues up through the largest
discarded component. The rationale for delet-
ing variables with high weights on small compo-
nents is that small components reflect redundan-
cies among the variables with high weights. An-
other way to look at is that components with
small variances are unimportant and therefore
variables that load highly on them are likewise

unimportant. The rule described in this section
is constructed for use with correlation matrices,
and is a criteria for the size of eigenvalues and
eigenvectors, although it can be adapted for some
types of covariance matrices. The idea behind the
rule is that if all elements of x are independent,
then principal components are the same as the
original variables and all have unit variances in
the case of a correlation matrix. Thus any PC
with eigenvalue less than 1 contains less infor-
mation than one of the original variables and so
is not worth retaining. The rule, in its simplest
form, is sometimes called Kaiser’s rule (Kaiser,
[10]) and retains only those PCs whose eigenval-
ues exceed 1. If the data set contains groups
of variables having large within-group correla-
tions, but small between group correlations, then
there is one PC associated with each group whose
eigenvalue is ¿ 1, whereas any other PCs associ-
ated with the group have eigenvalues ¡ 1. Thus,
the rule will generally retain one, and only one,
PC associated with each group such group of vari-
ables, which seems to be a reasonable course of
action for data of this type. As well as these
intuitive justifications Kaiser [10] put forward a
number of other reasons for a cut-off at 1. It must
be noted, however, that most of these reasons are
pertinent to factor analysis, rather than PCA, al-
though Kaiser refers to PCs in discussing one of
them. It can be argued that a cut-off at 1 retains
too few variables. Consider a variable which, in
a population, is more-or-less independent of vari-
ables. In a sample, such a variable will have small
coefficients in (p 1) of the PCs but will dominate
one of the PCs, whose eigenvalue will be close
to 1 when using the correlation matrix. As the
variable provides independent information from
the other variables it would be unwise to delete
it. However, deletion will occur if Kaiser’s rule is
used, and if, due to eigenvalue < 1. It is there-
fore advisable therefor to choose a cut-off lower
than 1. For PCA based on a correlation matrix,
Velicer [14] suggested that the partial correlations
between the p variables, given the values of the
first m PCs, may be used to determine how many
PCs to retain. The criterion proposed is the av-
erage of the squared partial correlations

V =

p∑
i=1,i ̸=j

p∑
j=1

(r∗ij)
2

p(p− 1)
(8.21)
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Where r∗ij is the partial correlation between the
ith and j th variables, given the first m PCs. The
statistic r∗ij is defined as the correlation between
the residuals from the linear regression of the ith
variable on the first m PCs, and the residuals
from the corresponding regression of the j th vari-
able on the m PCs. It therefore measures the
strength of the linear relationship between the
ith and j th variables after removing the common
effect of the first m PCs.
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