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Abstract

In this paper, first we develop the duality concept for g-Bessel sequences and Bessel fusion sequences
in Hilbert spaces. We obtain some results about dual, pseudo-dual and approximate dual of frames
and fusion frames. We also expand every g-Bessel sequence to a frame by summing some elements.
We define the restricted isometry property for g-frames and generalize some results from (B. G.
Bodmann et al, Fusion frames and the restricted isometry property, Num. Func. Anal. Optim. 33
(2012) 770-790) to g-frame situation. Finally we study the stability of g-frames under erasure of
operators.
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1 Introduction

L
et H,K be two separable Hilbert spaces and
{Wi}i∈I be a sequence of closed subspaces of

K, where I is a subset of Z. For any frame {fi}i∈I
there exists at least one dual frame, i.e., a frame
{gi}i∈I for which

f =
∑
i∈I

< f, gi > fi ∀f ∈ H.

If {fi}i∈I is a Bessel sequence with bound B < 1,
how can we find two sequences {gi}i∈I and {pi}i∈I
such that {fi+gi}i∈I and {pi}i∈I are dual frames,
i.e., such that

f =
∑
i∈I

< f, pi > (fi + gi)

=
∑
i∈I

< f, fi + gi > pi,
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for all f ∈ H. In this paper we obtain some the
more general results of the type (1). Let L(H,Wi)
be the collection of all bounded linear operators
from H intoWi. Recall that a family of operators
Λ = {Λi ∈ L(H,Wi) : i ∈ I} is said to be
a generalized frame, or simply a g-frame for H
with respect to {Wi}i∈I if there exist constants
0 < C ≤ D <∞ such that

C∥f∥2≤
∑
i∈I

∥Λif∥2≤ D∥f∥2 ∀f ∈ H. (1.1)

The constants C andD are called g-frame bounds
and supi∈I Λi is called the multiplicity of the g-
frame. We call Λ a tight g-frame if C = D and it
is a Parseval g-frame if C = D = 1. Λ is called a
ε-g-frame forH if C = 1

1+ε andD = 1+ε for some
ε > 0. If the right-hand side of (1.1) holds, then
Λ is said a g-Bessel sequence for H with respect
to {Wi}i∈I . The representation space associated
with a g-Bessel sequence Λ = {Λi}i∈I is defined
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by

(
∑
i∈I

⊕Wi)ℓ2 ={
{gi}i∈I |gi ∈Wi,

∑
i∈I

∥gi∥2<∞
}
.

The synthesis operator of Λ is defined by

TΛ :
(∑

i∈I
⊕Wi

)
ℓ2

→ H

TΛ({gi}i∈I) =
∑
i∈I

Λ∗
i gi.

The adjoint operator of TΛ, which is called the
analysis operator also obtain as follows

T ∗
Λ : H →

(∑
i∈I

⊕Wi

)
ℓ2

T ∗
Λf = {Λif}i∈I .

By composing TΛ with its adjoint T ∗
Λ, we obtain

the fusion frame operator

SΛ : H → H

SΛf = TΛT
∗
Λf =

∑
i∈I

Λ∗
iΛif,

which is a bounded, self-adjoint, positive and in-
vertible operator and CIH ≤ SΛ ≤ DIH. The
canonical dual g-frame for {Λi}i∈I is defined by
{Λ̃i}i∈I with Λ̃i = ΛiS

−1
Λ , which is also a g-frame

forH with g-frame bounds 1
D and 1

C , respectively.
Also we have

f =
∑
i∈I

Λ∗
i Λ̃if =

∑
i∈I

Λ̃∗
iΛif ∀f ∈ H.

For more details about the theory and applica-
tions of frames we refer the readers to [1, 8, 9,
10, 11] and for fusion frames to [2, 4, 5, 7], about
g-frames to [3, 12, 13].

The paper is organized as follows: Section 2,
contains an extension of g-Bessel sequences to
dual g-frames. In this Section, we consider the
dual, pseudo-dual and approximate dual frames,
fusion frames and we obtain several characteri-
zations of all this dual frames. In Section 3, we
generalize the restricted isometry property to the
g-frame situation. In Section 4, we study the con-
ditions which under removing some element from
a g-frame, again we obtain another g-frame.

2 Dual, approximate dual and
pseudo-dual of g-frames

Let Λ = {Λi}i∈I and Γ = {Γi}i∈I be g-Bessel
sequences for H with synthesis operators TΛ and
TΓ respectively. Then we say that Λ and Γ are
dual g-frames for H if TΛT

∗
Γ = IH or TΓT

∗
Λ = IH.

In the following we show that any pair of g-
Bessel sequences can be extended to pair of dual
g-frames. This result, generalizes a result of
Christensen, Oh Kim and Young Kim [9] to the
situation of g-frames.

Theorem 2.1 Let Λ = {Λi}i∈I and Γ = {Γi}i∈I
be two g-Bessel sequences for H with respect
to {Wi}i∈I . Then there exist g-Bessel se-
quences {Ξj}j∈J and {Ωj}j∈J for H with re-
spect to {Vj}j∈J , such that {Λi}i∈I ∪{Ξj}j∈J and
{Γi}i∈I ∪ {Ωj}j∈J form a pair of dual g-frames
for H with respect to {Wi}i∈I ∪ {Vj}j∈J .

Proof. Assume that {Φj}j∈J and {Ψj}j∈J are
any pair of dual g-frames for H with respect to
{Vj}j∈J and let Θ = IH − TΓT

∗
Λ. Then for any

f ∈ H we have

f = Θf + TΓT
∗
Λf

=
∑
j∈J

Ψ∗
jΦjΘf +

∑
i∈I

Γ∗
iΛif.

If we set Ξj = ΦjΘ and Ωj = Ψj for all j ∈ J .
Then {Λi}i∈I∪{Ξj}j∈J and {Γi}i∈I∪{Ωj}j∈J are
dual g-frames for H with respect to {Wi}i∈I ∪
{Vj}j∈J .

Theorem 2.2 Let F be a Bessel sequence for H
with Bessel bound B < 1 and let E be Parseval
frame for H. Then there exists a Bessel sequence
G for H such that F+E and G+E are dual frames.

Let F = {fi}i∈I and E = {ei}i∈I . Since B < 1,
IH + TFT

∗
E is an invertible operator in L(H). If

we define

Θ = −(IH + TFT
∗
E )

−1TFT
∗
E

and gi = Θ∗ei for all i ∈ I. Then G = {gi}i∈I is a
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Bessel sequence for H and for all f ∈ H we have

f = (IH + TFT
∗
E )Θf + TET

∗
E f + TFT

∗
E f

= TET
∗
EΘf + TET

∗
E f + TFT

∗
EΘf + TFT

∗
E f

=
∑
i∈I

< Θf, ei > ei +
∑
i∈I

< f, ei > ei

+
∑
i∈I

< Θf, ei > fi +
∑
i∈I

< f, ei > fi

=
∑
i∈I

< f, gi + ei > (fi + ei),

which this finishes the proof. The following corol-
laries are generalizations of Theorem 2.2 to the
g-frames situation. We leave the proofs to inter-
ested readers.

Corollary 2.1 Let Λ = {Λi}i∈I be a g-Bessel
sequence for H with respect to {Wi}i∈I with g-
Bessel bound B < 1. Then there exists g-Bessel
sequence {Γi}i∈I for H with respect to {Wi}i∈I ,
such that {Ξi + Λi}i∈I and {Ξi + Γi}i∈I are dual
g-frames for H with respect to {Wi}i∈I , where
{Ξi}i∈I is a Parseval g-frame for H with respect
to {Wi}i∈I .

Corollary 2.2 For every g-Bessel sequence Λ =
{Λi}i∈I with Bessel bound B < 1 and each
Parseval g-frame Ξ = {Ξi}i∈I for H with re-
spect to {Wi}i∈I , there exists g-Bessel sequence
{Γi}i∈I for H with respect to {Wi}i∈I such that
{Λi+Ξi}i∈I and {Γi}i∈I are dual g-frames for H
with respect to {Wi}i∈I .

Corollary 2.3 For every g-Bessel sequence
{Λi}i∈I for H with respect to {Wi}i∈I there exist
g-Bessel sequence {Γi}i∈I and a tight g-frame
{Ξi}i∈I for H with respect to {Wi}i∈I such that
{Λi + Ξi}i∈I and {Γi}i∈I are dual g-frames for
H with respect to {Wi}i∈I .

Let W = {Wi}i∈I be a sequence of closed sub-
spaces in H, and let A = {αi}i∈I be a family of
weights, i.e., αi > 0 for all i ∈ I. A sequence
Wα = {(Wi, αi)}i∈I is a fusion frame, if there ex-
ist real numbers 0 < C ≤ D < ∞ such that for
all f ∈ H:

C∥f∥2≤
∑
i∈I

α2
i ∥πWi(f)∥2≤ D∥f∥2, (2.2)

where πWi is the orthogonal projection from H
onto Wi. The constant C,D are called the fu-
sion frame bounds. If the right-hand inequal-
ity of (2.2) holds, then we say that Wα is a

Bessel fusion sequence with Bessel fusion bound
D. Moreover if Fi = {fij}j∈Ji is a frame for
Wi for all i ∈ I. Then W = {(Wi, αi,Fi)}i∈I
is called a fusion frame system for H. The con-
stants A,B are called the local frame bounds if
they are the common frame bounds for the local
frame Fi = {fij}j∈Ji for all i ∈ I. A collection of
dual frames Gi = {gij}j∈Ji , i ∈ I associated with
the local frames is called local dual frames. By
Theorem 3.2 from [7], if W = {(Wi, αi,Fi)}i∈I
is a fusion frame system for H with fusion frame
bounds C,D and local frame bounds A,B, then
F = {αifij}i∈I,j∈Ji is a frame for H with frame
bounds AC and BD. Also if F = {αifij}i∈I,j∈Ji
is a frame for H with frame bounds C and D,
then W = {(Wi, αi,Fi)}i∈I is a fusion frame sys-
tem for H with fusion frame bounds C

B and D
A .

Definition 2.1 Let Wα = {(Wi, αi)}i∈I and
Zβ = {(Zi, βi)}i∈I be Bessel fusion sequences for
H with synthesis operators TWα and TZβ

respec-
tively. Then

(i) Wα,Zβ are dual fusion frames for H if
TWαT

∗
Zβ

= IH or TZαT
∗
Wβ

= IH.

(ii) Wα,Zβ are approximate dual fusion frames
for H if ∥IH − TWαT

∗
Zβ

∥< 1 or ∥IH −
TZαT

∗
Wβ

∥< 1.

(iii) Wα,Zβ are called pseudo-dual fusion frames
for H if TWαT

∗
Zβ

or TZαT
∗
Wβ

is a bijection on
H.

Theorem 2.3 For each i ∈ I let αi > 0
and Ji = Ji1 ∪ Ji2 be a partition of Ji and
let W = {(Wi, αi, {fij}j∈Ji1)}i∈I and Z =
{(Zi, βi, {gij}j∈Ji2)}i∈I be two fusion frame sys-
tem for H. Define

uij =

{
1√
2
fij j ∈ Ji1

1√
2
πWi g̃ij j ∈ Ji2

and

vij =

{
1√
2
πZi f̃ij j ∈ Ji1

1√
2
gij j ∈ Ji2

for all i ∈ I, j ∈ Ji. Then the following conditions
are equivalent:

(1) Wα = {(Wi, αi)}i∈I and Zβ = {(Zi, βi)}i∈I
are (dual, pseudo-dual, approximate dual)
fusion frames.
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(2) {αiuij}i∈I,j∈Ji and {βivij}i∈I,j∈Ji are (dual,
pseudo-dual, approximate dual) frames for
H.

Proof. This claim follows immediately from the
fact that for f ∈ H we have

∑
i∈I

∑
j∈Ji

< f, βivij > αiuij

=
∑
i∈I

αiβi
∑
j∈Ji1

< f, vij > uij

+
∑
i∈I

αiβi
∑
j∈Ji2

< f, vij > uij

=
∑
i∈I

αiβi
∑
j∈Ji1

< f,
1√
2
πZi f̃ij >

1√
2
fij

+
∑
i∈I

αiβi
∑
j∈Ji2

< f,
1√
2
gij >

1√
2
πWi g̃ij

=
∑
i∈I

αiβi
2

∑
j∈Ji1

< πZi(f), f̃ij > fij

+
∑
i∈I

αiβi
2
πWi(

∑
j∈Ji2

< f, gij > g̃ij)

=
∑
i∈I

αiβiπWiπZi(f)

Theorem 2.4 Let {(Wi, αi, {fij}j∈Ji)}i∈I be a
fusion frame system and let Zβ = {(Zi, βi)}i∈I be

a fusion Bessel sequence for H. Put gij = πZi(f̃ij)
for all i ∈ I, j ∈ Ji. Then the following conditions
are equivalent:

(1) Wα = {(Wi, αi)}i∈I and Zβ = {(Zi, βi)}i∈I
are (dual, pseudo-dual, approximate dual)
fusion frames.

(2) F = {αifij}i∈I,j∈Ji and G = {βigij}i∈I,j∈Ji
are (dual, pseudo-dual, approximate dual)
frames for H.

Proof. First we prove that G is a Bessel se-
quence for H. Let D be the Bessel fusion bound
of Zβ and A,B be the local frame bounds of
{(Wi, αi, {fij}j∈Ji)}i∈I , then for all f ∈ H we

have ∑
i∈I

∑
j∈Ji

|< f, βigij > |2

=
∑
i∈I

∑
j∈Ji

β2i |< f, πZi(f̃ij) > |2

=
∑
i∈I

β2i
∑
j∈Ji

|< πZi(f), f̃ij > |2

≤
∑
i∈I

β2i
A

∥πWiπZi(f)∥2

≤ 1

A

∑
i∈I

β2i ∥πZi(f)∥2≤
D

A
∥f∥2.

Let TF and TG be the synthesis operators for F
and G respectively. Then for all f ∈ H we obtain

TWαT
∗
Zβ

(f) =
∑
i∈I

αiβiπWiπZi(f)

=
∑
i∈I

αiβi
∑
j∈Ji

< πZi(f), f̃ij > fij

=
∑
i∈I

∑
j∈Ji

< f, βigij > αifij

=TFT
∗
G(f).

This finishes the proof.

Theorem 2.5 Let Wα = {(Wi, αi)}i∈I and
Zβ = {(Zi, βi)}i∈I be Bessel fusion sequences for
H and let T ∈ B(H) be a bounded invertible op-
erator such that T ∗TWi ⊆ Wi , T

∗TZi ⊆ Zi.
Then

(1) Wα and Zβ are (dual, pseudo-dual) fusion
frames if and only if T Wα = {(TWi, αi)}i∈I
and T Zβ = {(TZi, βi)}i∈I are (dual, pseudo-
dual) fusion frame for H.

(2) If Wα and Zβ are approximate dual fusion
frames and ∥T∥∥T−1∥= 1 then T Wα =
{(TWi, αi)}i∈I and T Zβ = {(TZi, βi)}i∈I
are also approximate dual fusion frames for
H.

Proof. (1) Since T is invertible and T ∗TWi ⊆
Wi , T

∗TZi ⊆ Zi hence for all i ∈ I πTWi =
TπWiT

−1 , πTZi = TπZiT
−1. This implies that

TT WαT
∗
T Zβ

= TTWαT
∗
Zβ
T−1, that from this the

claim follows immediately.
(2) We have

∥IdH−TT WαT
∗
T Zβ

∥

=∥TT−1 − TTWαT
∗
Zβ
T−1∥

≤∥IdH − TWαT
∗
Zβ

∥.
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From this the result follows at once.

Theorem 2.6 Let Wα = {(Wi, αi)}i∈I be a fu-
sion frame and let Zα = {(Zi, αi)}i∈I be a Bessel
fusion sequence for H. Suppose that T : H −→ H
is a bounded invertible operator such that TWi ⊆
Zi for all i ∈ I. Then Zα = {(Zi, αi)}i∈I and
T Wα = {(TWi, αi)}i∈I are pseudo-dual fusion
frames for H. Moreover if T Wα is a Parseval
fusion frame then Zα and T Wα are dual fusion
frames.

Proof. Since TWi ⊆ Zi hence πTWiπZi =
πZiπTWi = πTWi for all i ∈ I. It follows that
TT WαT

∗
Zα

= TZαT
∗
T Wα

= ST Wα which finishes
the proof.

Definition 2.2 Let {Wi}i∈I and {W̃i}i∈I be
closed subspaces in H and ε > 0. If for every
f ∈ H we have∑

i∈I
α2
i ∥πWi(f)− π

W̃i
(f)∥2≤ ε∥f∥2.

Then we say that {(W̃i, αi)}i∈I is a ε-perturbation
of {(Wi, αi)}i∈I .

Theorem 2.7 Let Wα = {(Wi, αi)}i∈I , Zβ =
{(Zi, βi)}i∈I be Bessel fusion sequences with
Bessel fusion bounds D1, D2 respectively for H.
Let W̃α = {(W̃i, αi)}i∈I be a ε-perturbation of
Wα and εD2 < 1. If Wα and Zβ are dual fusion

frames, then W̃α and Zβ are also approximate
dual fusion frames for H.

Proof. By Proposition 2.4 from [4] W̃α is a
Bessel fusion sequence for H. Now for all f ∈ H
we have

∥f − TW̃⊘
T ∗
Z⊙(f)∥

2

=∥TW⊘T
∗
Z⊙(f)− TW̃⊘

T ∗
Z⊙(f)∥

2

= sup
∥g∥=1

|< TW⊘T
∗
Z⊙(f)− TW̃⊘

T ∗
Z⊙(f), g > |2

≤ sup
∥g∥=1

(∑
i∈I

αiβi∥πWi(f)− π
W̃i

(f)∥∥πZi(g)∥
)2

≤ sup
∥g∥=1

∑
i∈I

α2
i ∥πWi(f)− π

W̃i
(f)∥2

×
∑
i∈I

β2i ∥πZi(g)∥2≤ εD2∥f∥2.

From this the result follows at once.

3 RIP for g-frames

In this section we generalize the restricted isom-
etry property for g-frames. We denote that K is
a Hilbert space and HN is a Hilbert space with
dimension N and {ej}Nj=1 an orthonormal basis
for HN . Moreover, the Hilbert-Schmidt norm of
operator T ∈ L(HN ,K) is defined by

∥T∥2HS=
N∑
j=1

∥Tej∥2.

Proposition 3.1 Let Λ = {Λi}i∈I be a g-frame
for H with respect to {Wi}i∈I with g-frame bounds
A and B and H be finite-dimensional. Then

A ≤
∑

i∈I∥Λi∥2HS

dimH
≤ B.

Proof. Since∑
i∈I

∥Λi∥2HS=
N∑
j=1

< SΛej , ej >

and AIH ≤ SΛ ≤ BIH, we have

AdimH = A

N∑
j=1

∥ej∥2

≤
N∑
j=1

< SΛej , ej >

≤ B
N∑
j=1

∥ej∥2= B dimH.

This yields

AdimH ≤
∑
i∈I

∥Λi∥2HS≤ B dimH.

From this the claim follows immediately.

Theorem 3.1 Let Λ = {Λi}Mi=1 be a g-frame for
HN with respect to {Wi}Mi=1. Then

(i) The optimal g-frame bounds of Λ are the
smallest and biggest eigenvalues of g-frame
operator SΛ.

(ii) If {λi}Ni=1 is a representation of eigenvalues
of SΛ. Then

N∑
j=1

λj =

M∑
i=1

∥Λi∥2HS
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and

λj =
M∑
i=1

∥Λiej∥2,

where {ej}Nj=1 is the orthonormal basis con-
sisting of eigenvectors of SΛ.

Proof. To prove (i), since SΛ is a self-adjoint,
HN has an orthonormal basis include eigenvec-
tors of SΛ. Let {ej}Nj=1 be an orthogonal basis of

HN include of eigenvectors of SΛ. Let {λj}Nj=1 be

eigenvalues of {ej}Nj=1. Then for any f ∈ HN we
have

M∑
i=1

∥Λif∥2=< SΛf, f >

= <

N∑
j=1

< f, ej > SΛej , f >

=
N∑
j=1

< f, ej >< SΛej , f >

=

N∑
j=1

< f, ej >< λjej , f >

=

N∑
j=1

λj |< f, ej > |2.

Now from

λmin ≤ λi ≤ λmax, (1 ≤ i ≤ N)

we obtain

λmin∥f∥2≤
M∑
i=1

∥Λif∥2≤ λmax∥f∥2.

To prove (ii) we have:

N∑
j=1

λj =

N∑
j=1

< λjej , ej >

=
N∑
j=1

< SΛej , ej >=
N∑
j=1

M∑
i=1

∥Λiej∥2

=

M∑
i=1

N∑
j=1

∥Λiej∥2=
M∑
i=1

∥Λi∥2HS .

We also have

λj =< λjej , ej >=< SΛej , ej >

=

M∑
i=1

∥Λiej∥2.

Corollary 3.1 Let {Λi}Mi=1 be an A-tight g-
frame for HN with respect to {Wi}Mi=1 and
∥Λi∥HS= 1 for all 1 ≤ i ≤M . Then A = M

N .

Proof. This is a direct result from Proposition
3.1.

Definition 3.1 Let Λi ∈ L(H,Wi) for all i ∈ I.
Then

(i) {Λi}i∈I is called an orthonormal g-system
for H with respect to {Wi}i∈I , if ΛiΛ

∗
jgj =

δijgj for all i, j ∈ I, gj ∈Wj.

(ii) If H = {Λ∗
i (Wi)}i∈I , then we say that

{Λi}i∈I is g-complete.

(iii) We say that {Λi}i∈I is a g-orthonormal basis
for H with respect to {Wi}i∈I , if it is a g-
orthonormal g-complete system for H with
respect to {Wj}j∈J .

(iv) {Λi}i∈I is called a g-Riesz basis for H with
respect to {Wi}i∈I , if {Λi}i∈I is g-complete
and there exist real numbers 0 < A ≤ B <∞
such that:

A
∑
j∈J

∥gj∥2≤∥
∑
j∈J

Λ∗
jgj∥

2

≤B
∑
j∈J

||gj ||2,

for all finite subset J ⊂ I and gj ∈ Wj.
Moreover, {Λi}i∈I is called an ε-g-Riesz ba-
sis for H, if A = 1

1+ε and B = 1 + ε for
some ε > 0. Also {Λi}i∈I is an ε-g-Riesz
sequence if {Λi}i∈I is an ε-g-Riesz basis for
{Λ∗

i (Wi)}i∈I .

The next proposition is similar to a result of Bod-
mann, Cahill and Casazza [6] to the situation of
g-frames.

Proposition 3.2 Let {Λi}i∈I be an ε-g-Riesz se-
quence for H with respect to {Wi}i∈I and let
{Ij}Lj=1 be a partition of I. Then

1

1 + ε

L∑
j=1

∥
∑
k∈Ij

Λ∗
kgjk∥

2 ≤
L∑

j=1

∑
k∈Ij

∥gjk∥2

≤(1 + ε)
L∑

j=1

∥
∑
k∈Ij

Λ∗
kgjk∥

2,
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for every 1 ≤ j ≤ L and any sequence {gjk}k∈Ij ∈
(
∑

k∈Ij ⊕Wk)ℓ2. Also

1

(1 + ε)2

L∑
j=1

∥
∑
k∈Ij

Λ∗
kgjk∥

2 ≤
∥∥∥ L∑

j=1

∑
k∈Ij

Λ∗
kgjk

∥∥∥2
≤(1 + ε)2

L∑
j=1

∥
∑
k∈Ij

Λ∗
kgjk∥

2.

Proof. Let 1 ≤ j ≤ L and {gjk}k∈Ij ∈
(
∑

k∈Ij ⊕Wk)ℓ2

1

1 + ε

L∑
j=1

∥
∑
k∈Ij

Λ∗
kgjk∥

2

≤ 1

1 + ε

L∑
j=1

(1 + ε)
∑
k∈Ij

∥gjk∥2

=

L∑
j=1

∑
k∈Ij

∥gjk∥2≤
L∑

j=1

(1 + ε)∥
∑
k∈Ij

Λ∗
kgjk∥

2

=(1 + ε)

L∑
j=1

∥
∑
k∈Ij

Λ∗
kgjk∥

2.

This yields

1

(1 + ε)2

L∑
j=1

∥
∑
k∈Ij

Λ∗
kgjk∥

2

≤ 1

1 + ε

L∑
j=1

∑
k∈Ij

∥gjk∥2≤
∥∥∥ L∑

j=1

∑
k∈Ij

Λ∗
kgjk

∥∥∥2
≤(1 + ε)

L∑
j=1

∑
k∈Ij

∥gjk∥2

≤(1 + ε)2
L∑

j=1

∥
∑
k∈Ij

Λ∗
kgjk∥

2.

It is known that if {Λi}i∈I is a g-Riesz basis for
H with respect to {Wi}i∈I with g-Riesz constants
A and B, then {Λi}i∈I is a g-frame for H with
respect to {Wi}i∈I with same bounds A and B.
The next lemma is analogous to Lemma 3.3 in [6]
to the situation of g-frames.

Lemma 3.1 Let Λ = {Λi}i∈I be an ε-g-Riesz ba-
sis for H with respect to {Wi}i∈I . Then for all
n ∈ N

1

(1 + ε)n
I

H ≤ Sn
Λ ≤ (1 + ϵ)nIHand

1

(1 + ε)n
IH ≤ S−n

Λ ≤ (1 + ϵ)nIH.

Proof. Since {Λi}i∈I is an ε-g-Riesz basis for
H with respect to {Wi}i∈I , so this family is a g-
frame for H with bounds 1

1+ε , 1 + ε respectively.

Hence 1
1+ε ≤ ∥SΛ∥≤ (1 + ε) and 1

1+ε ≤ ∥S−1
Λ ∥≤

(1 + ε). On the other hand for any f ∈ H and
n ∈ N we have ∥S−1

Λ ∥−n∥f∥≤ ∥Sn
Λf∥≤ ∥SΛ∥n∥f∥.

From this we have ∥S−1
Λ ∥−nIH ≤ Sn

Λ ≤ ∥SΛ∥nIH.
Consequently

1

(1 + ε)n
IH ≤ ∥S−1

Λ ∥−nIH ≤ Sn
Λ

≤ ∥SΛ∥nIH ≤ (1 + ε)nIH.

This shows that 1
(1+ε)n I

H ≤ Sn
Λ ≤ (1+ε)nIH and so 1

(1+ε)n IH ≤ S−n
Λ ≤

(1 + ε)nIH.

Proposition 3.3 Let {Λi}i∈I be an ε-g-Riesz se-
quence for H with respect to {Wi}i∈I . Then

|< f, g > |≤ 2ε+ ε2,

for all partition {I1, I2} of I and f ∈
{Λ∗

i (Wi)}i∈I1 , g ∈ {Λ∗
i (Wi)}i∈I2 with ∥f∥= ∥g∥=

1.

Proof. Let F1 ⊆ I1, F2 ⊆ I2 be arbitrary fi-
nite subsets, gi ∈ Wi(i ∈ F1

∪
F2) and φ =∑

i∈F1
Λ∗
i gi and ψ =

∑
i∈F2

Λ∗
i gi with conditions

||φ||= ||ψ||= 1. Then for any |λ|= 1 we have

(< φ, λψ >) =
2(< φ, λψ >) + 2

2
− 1

=
∥φ+ λψ∥2

2
− 1 ≤ (1 + ε)

2

∑
i∈F1∪F2

∥gi∥2−1

=
(1 + ε)

2

( ∑
i∈F1

∥gi∥2+
∑
i∈F2

∥gi∥2
)
− 1

≤ (1 + ε)2

2
(∥φ∥2+∥ψ∥2)− 1 = 2ε+ ε2.

This yields

|< φ,ψ > |= max
|λ|=1

< φ, λψ >≤ 2ε+ ε2,

which implies that |< f, g > |≤ 2ϵ+ ϵ2.

Definition 3.2 For every 1 ≤ i ≤ M , let Λi ∈
L(HN ,Wi). Then we say that the family {Λi}Mi=1

has the restricted isometry property with constant
0 < ε < 1 for sets of size s ≤ N , if for every
I ⊆ {1, 2, ...,M} with |I|≤ s, the family {Λi}i∈I
is an ε-g-Riesz sequence for HN with respect to
{Wi}i∈I .
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The next theorem is a generalization of Theorem
4.2 in [6] to the g-frames situation.

Theorem 3.2 Let {Λi}Mi=1 be a tight g-frame for
HN with respect to {Wi}Mi=1 with the restricted
isometry property with constant 0 < ε < 1 for
sets of size s ≤ N . Suppose that {Ij}Lj=1 is an
arbitrary partition of {1, 2, ...,M} with |Ij |≤ s.
Define Vj = {Λ∗

i (Wi)}i∈Ij for all 1 ≤ j ≤ L,
then {Vj}Lj=1 is a fusion frame for HN with fusion

frame bounds
∑M

i=1∥Λi∥2HS
(1+ε)N ,

(1+ε)
∑M

i=1∥Λi∥2HS
N and

1

1 + ε

∑
i∈Ij

∥Λif∥2≤ ∥πVjf∥2

≤(1 + ε)
∑
i∈Ij

∥Λif∥2.

Proof. By the hypothesis {Λi}i∈Ij is a g-frame
for Vj with respect to {Wi}i∈Ij for all 1 ≤ j ≤ L
with g-frame bounds 1

1+ε , 1 + ε respectively. Let

Sj be g-frame operator of {Λi}i∈Ij and {ei}Ni=1 be
the orthonormal basis of eigenvectors of Sj with
eigenvalues {λi}Ni=1, then λi = 0 for all |Ij |< i ≤
N and 1

1+ε ≤ λ1 ≤ λ2 ≤ · · · ≤ λ|Ij | ≤ 1 + ε.

Since {ei}
|Ij |
i=1 is an orthonormal basis for Vj , hence

πVjf =
∑|Ij |

i=1 < f, ei > ei, for any f ∈ HN . Now
we have

Sjf = Sj(

N∑
i=1

< f, ei > ei)

=
N∑
i=1

< f, ei > Sjei =

|Ij |∑
i=1

< f, ei > λiei

which implies that

< Sjf, f >=

|Ij |∑
i=1

λi|< f, ei > |2.

Thus we have

1

1 + ε

∑
i∈Ij

∥Λif∥2=
1

1 + ε
< Sjf, f >

=
∑
i∈Ij

λi
1 + ε

|< f, ei > |2≤ ∥πVj∥2

≤
∑
i∈Ij

λi(1 + ε)|< f, ei > |2

=(1 + ε) < Sjf, f >= (1 + ε)
∑
i∈Ij

∥Λif∥2.

It follows that

1

1 + ε

L∑
j=1

∑
i∈Ij

∥Λif∥2≤
L∑

j=1

∥πVjf∥2

≤(1 + ε)

L∑
j=1

∑
i∈Ij

∥Λif∥2.

Now by Proposition 3.1 we have∑M
i=1∥Λi∥2HS

(1 + ε)N
∥f∥2≤

L∑
i=1

∥πVjf∥2

≤
(1 + ε)

∑M
i=1∥Λi∥2HS

N
∥f∥2.

Corollary 3.2 Under the assumptions of Theo-
rem 3.2 if

{1, 2, · · · , L} ⊆ {1, 2, · · · ,M}

and there exists a family {Jj}Lj=1 such that∑L
j=1|Jj |≤ s and Jj ⊆ Ij for all 1 ≤ j ≤ L.

Then

1

(1 + ε)2

L∑
j=1

∥
∑
i∈Jj

Λ∗
i gi∥2≤

∥∥∥ L∑
j=1

∑
i∈Jj

Λ∗
i gi

∥∥∥2
≤(1 + ε)2

L∑
j=1

∥
∑
i∈Jj

Λ∗
i gi∥2.

Proof. This follows from the Proposition 3.2.
The following theorem will give another method
for obtaining a fusion frame from an unit norm
tight frame for HN without having the restricted
isometry property. Another form of this result
can be found in [6] Theorem 4.2.

Theorem 3.3 Let {fi}Mi=1 be an unit norm tight
frame of vectors for HN and let {Ij}Lj=1 be a parti-
tion of {1, 2, · · · ,M}. Define Wj = {fi}i∈Ij , then
the family {Wj}Lj=1 is a fusion frame for HN with

fusion frame bounds AM
N and BM

N where

A =
L

min
j=1

dimWj

min
k=1

1

λjk
, B =

L
max
j=1

dimWj
max
k=1

1

λjk

and {λjk}
dimWj

k=1 is the family of eigenvalues of
frame operator associated to {fi}i∈Ij .

Proof. Let Sj be the frame operator associated
to {fi}i∈Ij and let {ejk}Nk=1 be the orthonormal
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basis for HN of eigenvectors of Sj with eigenval-
ues {λjk}Nk=1. Then λjk = 0 for any dimWj <

k ≤ N and {ejk}
dimWj

k=1 is a orthonormal basis for
Wj . Thus

< Sjf, f >=

dimWj∑
k=1

λjk|< f, ek > |2.

Now for any f ∈ HN we have

min
1≤k≤dimWj

1

λjk

∑
i∈Ij

|< f, fi > |2

= min
1≤k≤dimWj

1

λjk
< Sjf, f >

=

dimWj∑
k=1

λjk
max1≤k≤dimWj

λjk
|< f, ejk > |2

≤∥πWj∥2

≤
dimWj∑
k=1

λjk
min1≤k≤dimWj

λjk
|< f, ejk > |2

= max
1≤k≤dimWj

1

λjk
< Sjf, f >

= max
1≤k≤dimWj

1

λjk

∑
i∈Ij

|< f, fi > |2.

This yields

L∑
j=1

∑
i∈Ij

min
1≤k≤dimWj

1

λjk
|< f, fi > |2

≤
L∑

j=1

∥πWjf∥2

≤
L∑

j=1

∑
i∈Ij

max
1≤k≤dimWj

1

λjk
|< f, fi > |2.

Put

A =
L

min
j=1

dimWj

min
k=1

1

λjk
, B =

L
max
j=1

dimWj
max
k=1

1

λjk
.

Then

AM

N
∥f∥2≤

L∑
j=1

∥πWjf∥2≤
BM

N
∥f∥2.

The next corollary generalizes Theorem 3.3 to the
g-frames situation which the proof leave to inter-
ested readers.

Corollary 3.3 Let {Λi}Mi=1 be a tight g-frame for
HN with respect to {Wi}Mi=1 and let {Ij}Lj=1 be a
partition of {1, 2, · · · ,M}. Define

Vj = {Λ∗
i (Wi)}i∈Ij .

Then the family {Vj}Lj=1 is a fusion frame for HN

with fusion frame bounds

A
∑M

i=1∥Λi∥2HS

N
and

B
∑M

i=1∥Λi∥2HS

N
,

where

A =
L

min
j=1

dimVj

min
k=1

1

λjk
, B =

L
max
j=1

dimVj
max
k=1

1

λjk

and {λjk}
dimVj

k=1 is the family of eigenvalues of g-
frame operator associated to {Λi}i∈Ij .

4 Stability of g-frames

Our purpose of this section is to study the con-
ditions which under removing some element from
a g-frame, again we obtain another g-frame. The
next theorem gives an erasure result of g-frames
so that Theorem 4.3 obtained in [5] is a special
case of it.

Theorem 4.1 Let Λ = {Λi}i∈I be a g-frame for
H with respect to {Wi}i∈I with g-frame bounds
A and B and let J ⊂ I. Then {Λi}i∈I−J is
a g-frame for H with respect to {Wi}i∈I−J with
bounds

A2

B
∥(IH −

∑
i∈J

S−1
Λ Λ∗

iΛi)
−1∥−2 and B,

if and only if IH −
∑

i∈J S
−1
Λ Λ∗

iΛi be a bounded
invertible operator on H.

Proof. For any f ∈ H we have

f =
∑
i∈I

S−1
Λ Λ∗

iΛif

=
∑
i∈J

S−1
Λ Λ∗

iΛif +
∑

i∈I−J

S−1
Λ Λ∗

iΛif.

Thus

IH −
∑
i∈J

S−1
Λ Λ∗

iΛi =
∑

i∈I−J

S−1
Λ Λ∗

iΛi.
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Moreover we have

∥(IH −
∑
i∈J

S−1
Λ Λ∗

iΛi)f∥

=
∥∥∥ ∑
i∈I−J

S−1
Λ Λ∗

iΛif
∥∥∥

= sup
∥g∥=1

| <
∑

i∈I−J

S−1
Λ Λ∗

iΛif, g > |

= sup
∥g∥=1

|
∑

i∈I−J

< Λif,ΛiS
−1
Λ g > |

≤ sup
∥g∥=1

∑
i∈I−J

∥Λif∥∥ΛiS
−1
Λ g∥

≤ sup
∥g∥=1

(
∑

i∈I−J

∥Λif∥2)
1
2 (

∑
i∈I−J

∥ΛiS
−1
Λ g∥2)

1
2

≤ sup
∥g∥=1

√
B∥S−1

Λ g∥(
∑

i∈I−J

∥Λif∥2)
1
2

≤
√
B

A
(
∑

i∈I−J

∥Λif∥2)
1
2 .

Now if IH −
∑

i∈J S
−1
Λ Λ∗

iΛi is invertible on H.
Then

A2

B
∥(IH −

∑
i∈J

S−1
Λ Λ∗

iΛi)
−1∥−2∥f∥2

≤A
2

B
∥(IH −

∑
i∈J

S−1
Λ Λ∗

iΛi)f∥2

≤
∑

i∈I−J

∥Λif∥2.

On the other hand, since Λ is a g-frame hence
{Λi}i∈I−J is a g-Bessel sequence. It follows that
{Λi}i∈I−J is a g-frame. Conversively, suppose
that {Λi}i∈I−J is a g-frame for H with respect to
{Wi}i∈I−J , with g-frame bounds A and B. We
first show that IH −

∑
i∈J S

−1
Λ Λ∗

iΛi is injective.
Let

(IH −
∑
i∈J

S−1
Λ Λ∗

iΛi)f = 0 ⇒

S−1
Λ

( ∑
i∈I−J

Λ∗
iΛif

)
=

∑
i∈I−J

S−1
Λ Λ∗

iΛif = 0

hence
∑

i∈I−J Λ
∗
iΛif = 0. It follows that

A∥f∥2 ≤
∑

i∈I−J

∥Λif∥2

=
∑

i∈I−J

< Λif,Λif >

=<
∑

i∈I−J

Λ∗
iΛif, f >= 0

which implies that f = 0. Also, if (IH −∑
i∈J S

−1
Λ Λ∗

iΛi)
∗f = 0 then

∑
i∈I−J Λ

∗
iΛiS

−1
Λ f =

0 and therefore S−1
Λ f = 0, it follows that f = 0.

This finishes the proof.

Corollary 4.1 Let {Λi}i∈I be a g-frame for H
with respect to {Wi}i∈I and let J ⊂ I. If there
exists 0 ̸= f0 ∈ H such that

∑
i∈J S

−1
Λ Λ∗

iΛif0 =
f0. Then {Λi}i∈I−J is not a g-frame for H.

Proof. If there exists 0 ̸= f0 ∈
H such that

∑
i∈J S

−1
Λ Λ∗

iΛif0 = f0, then∑
i∈I−J S

−1
Λ Λ∗

iΛif0 = 0, hence
∑

i∈I−J Λ
∗
iΛif0 =

0. It follows that∑
i∈I−J

∥Λif0∥2 =
∑

i∈I−J

< Λif0,Λif0 >

=<
∑

i∈I−J

S−1
Λ Λ∗

iΛif0, f0 >= 0

Therefore {Λi}i∈I−J is not a g-frame.

Corollary 4.2 Let {Λi}i∈I be a A-tight g-frame
for H with respect to {Wi}i∈I and let J ⊂ I. If
there exists 0 ̸= f0 ∈ H such that

∑
i∈J Λ

∗
iΛif0 =

Af0, then {Λi}i∈I−J is not a g-frame for H.

5 Conclusion

In this paper, we proved that the sum of any
Bessel sequence with Bessel bound less than one
with a Parseval frame is a frame and computed
its obtimal bounds. We also showed that a Bessel
sequence is an inner summand of a frame and
changed every Bessel sequence to a dual frame by
summing it with any Parseval frame. Moreover,
we proved that any pair of g-Bessel sequences can
be extended to pair of dual g-frames. This result,
generalizes a result of Christensen, Oh Kim and
Young Kim in [9] to the situation of g-frames.
We defined the restricted isometry property for
g-frames and generalized some results from [6] to
g-frames.
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