
Available online at http://ijim.srbiau.ac.ir/

Int. J. Industrial Mathematics (ISSN 2008-5621)

Vol. 7, No. 1, 2015 Article ID IJIM-00479, 9 pages

Research Article

On the convergence speed of artificial neural networks in the solving

of linear systems

A. Jafarian ∗†

————————————————————————————————–

Abstract

Artificial neural networks have the advantages such as learning, adaptation, fault-tolerance, paral-
lelism and generalization. This paper is a scrutiny on the application of diverse learning methods
in speed of convergence in neural networks. For this aim, first we introduce a perceptron method
based on artificial neural networks which has been applied for solving a non-singular system of lin-
ear equations. Next two famous learning techniques namely, the steepest descent and quasi-Newton
methods are employed to adjust connection weights of the neural net. The main aim of this study is
to compare ability and efficacy of the techniques in speed of convergence of the present neural net.
Finally, we illustrate our results on some numerical examples with computer simulations.

Keywords : System of linear equations; Quasi-Newton method; Steepest descent method; Cost function;
Learning algorithm.

—————————————————————————————————–

1 Introduction

A
s a matter of fact, it might be said that
numerical solutions of almost all practical

engineering and applied science problems rou-
tinely require solution of a linear system prob-
lem. Hence various methods for solving this prob-
lem have been proposed. One indirect scheme is
using artificial neural network approach. Neu-
ral networks (NNs) are nonlinear mapping struc-
tures based on the function of the human brain.
The study of brain-style computation has its
roots over 50 years ago in the work of McCul-
loch and Pitts (1943) [4] and slightly later in
Hebbos famous Organization of Behavior (1949)
[3]. The next work in artificial intelligence was
torn between those who believed that intelli-
gent systems could best be built on comput-

∗Corresponding author. Jafarian5594@yahoo.com
†Department of Mathematics, Urmia Branch, Islamic

Azad University, Urmia, Iran.

ers modeled after brains, and those like Minsky
and Papert (1969) [5] who believed that intel-
ligence was fundamentally symbol processing of
the kind readily modelled on the von Neumann
computer. For a variety of reasons, the symbol-
processing approach became the dominant theme
in artificial intelligence. Hopfield (1985) provided
the mathematical foundation for understanding
the dynamics of an important class of networks.
Rumelhart and McClelland (1986) introduced the
back-propagation learning algorithm for complex,
multi-layer networks and thereby provided an an-
swer to one of the most severe criticisms of the
original perceptron work [2]. Neural nets are
powerful tools for modelling, specially when the
underlying data relationship is unknown. There
are several types of architecture of neural net-
works. The two most widely used NN are the
feed-forward and feed-back neural nets. Multi-
layer feed-forward neural network or multi-layer
perceptron is very popular and is used more than
other neural network type for a wide variety of

35

http://ijim.srbiau.ac.ir/

36 A. Jafarian, /IJIM Vol. 7, No. 1 (2015) 35-43

tasks.
In this paper, we first introduce a type of archi-
tecture of NN which has been offered to find ap-
proximate solution of the linear system AX = B
arise in a wide variety of applications. We discuss
methods only for non-singular linear systems in
this study. The considered perceptron NN is a
two-layer feed-forward networks with n neurons
in input layer and one neuron in output layer.
For the given neural net, the n × n coefficients
matrix A and the n-vector B are considered as
training patterns. Outputs from the NN which
are also a real number, is numerically calculated
for real weights and real inputs and then are com-
pared with target output. Next a cost function
is defined that measures the difference between
the target output and corresponding calculated
output. Then the suggested neural net by using
the steepest descent and quasi-Newton methods
that are two well known learning techniques, ad-
justs the real connection weights to any desired
degree of accuracy, respectively. Finally, amount
of influence for each techniques in speed of con-
vergence are compared together. This paper is
organized as follows. First in Section 2, the ba-
sic definitions used of linear systems are briefly
presented. Section 3 describes how to apply the
given techniques for approximating solution of
the linear system. Also the present techniques
are compared in this section. Finally, some ex-
amples are collected in Section 4.

2 Preliminaries

In this section we give a detailed study of
artificial neural networks which are used in the
next sections.

Definition 2.1 Artificial neural systems or neu-
ral networks are physical cellular systems which
can acquire, store and utilize experiential knowl-
edge [8].

Neural networks can be considered as simplified
mathematical models of brain and they function
as parallel distributed computing networks.

Definition 2.2 A feed-forward neural net is a
type of architecture of artificial neural networks
such that allows signals to travel one way only.

In other word the output of any layer does not
affect that same layer or previous layers [1].

2.1 Input-output relation of each unit

We have given a short review on learning of
feed-forward neural networks with real set input
signals and real number weights (FNN) [8].
Consider a two-layer FNN with n input units
and one output unit. When a real input vector
Ap = (ap1, ap2, ..., apn) is presented to our FNN,
then the input-output relation of each unit can
be written as follows:

Input units:
The input neurons make no change in their
inputs. So,

Opj = apj . (2.1)

Output unit:

Yp = f(NetP),

where

NetP =
n∑

j=1

wj .Opj , p, j = 1, 2, ..., n. (2.2)

where ap1, ..., apn are real numbers and wj is real
connection weight (see Fig. 1).

Figure 1: The proposed FNN.

3 Linear system of equations

In this section we concentrate on finding approx-
imate solution for the non-homogeneous system
of n equations in n unknowns in form

a11x1 + ...+ a1nxn = b1
...
ai1x1 + ...+ ainxn = bi
...
an1x1 + ...+ annxn = bn

, (3.3)

A. Jafarian, /IJIM Vol. 7, No. 1 (2015) 35-43 37

where ai,j , bi, xj (for i, j = 1, ..., n) are real
numbers. The matrix form of the present system
is

AX = B,

where

A =

a11 . . . a1n
...

. . .
...

an1 . . . ann

 , X =

x1...
xn

 ,

B =

b1...
bn

 , b ̸= 0.

We assume that, given n× n matrix A and n-
vector B the system is consistent.
Now consider again the two-layer neural network
that has been showed in Fig. 1. Each equation
in system (3.3) can be interpreted as a training
pattern for the present neural net, where the an-
tecedent and the consequence parts of the equa-
tions are the input signals and the desired output
of the neural net, respectively. Consequently, the
training set derived from above system can be
written in the form

{Ap; bp} = {(ap1, ..., apn); bp}, p = 1, ..., n.

3.1 Cost function

Let real quantities wj (for j = 1, ..., n) are ini-
tialized at random values for parameters xj . The
actual output of the FNN can be calculated by
using Eqs. (2.1)-(2.2). Now we want to define
a cost function that measures the difference be-
tween the target output and the corresponding
actual output. The error function for the p − th
training pattern is defined by

ep =
(bp − Yp)

2

2
. (3.4)

The cost function for the input-output pair
{AP ; bp} is obtained as:

e =
n∑

p=1

ep. (3.5)

Theoretically this cost function satisfies the fol-
lowing equation if we use infinite number of train-
ing patterns,

ep −→ 0 ⇐⇒ Yp −→ bp.

3.2 Learning algorithm of the FNN

The main aim of this section is to introduce
how to deduce a learning algorithm to update
the real weights wj (for j = 1, ..., n) . For
this scope in continuance, we suggest two famous
learning techniques namely, the steepest descent
and quasi-Newton methods. By using these tech-
niques two different learning rules are obtained in
which help us to update the connection weights in
the present neural net to any degree of accuracy.

3.2.1 The steepest descent method

In the subsection, a method will be considered
which makes use of the gradient of the function
ep(w1, ..., wn) which is evaluated at the point wj

as:

gj =
∂eP
wj

, j = 1, ..., n. (3.6)

Descent methods all use the basic iterative step

w′ = w − ηBg, (3.7)

where B is a matrix defining a transformation
of the gradient and η is a step length [6]. The
simplest such algorithm the method of steepest
descents, was proposed by Cauchy (1848) for the
solution of systems of nonlinear equations with
B = In. we intend to use this method for updat-
ing the connection weights in the FNN. Conse-
quently, for real parameter wj adjust rule can be
written as follows:

wj(t+ 1) = wj(t) + ∆wj(t). (3.8)

Also we can derive the amount of adjustment for
each parameter wj as follows:

∆wj(t) = −η
∂ep
∂wj

+ α∆wj(t− 1), (3.9)

where t indexes the number of adjustments, η is
the learning rate and α is the momentum term
constant. Thus our problem is to calculate the
derivative

∂ep
∂wj

in (3.9). The derivative can be

calculated from the cost function ep by using the
input-output relations of the FNN. We calculate
this derivative as follows:

∂ep
∂wj

=
∂ep
∂Yp

.
∂Yp

∂Netp
.
∂Netp
∂wj

, j = 1, ..., n.

(3.10)

38 A. Jafarian, /IJIM Vol. 7, No. 1 (2015) 35-43

Consequently,

∂ep
∂wj

= −apj .(bp − Yp), p = 1, ..., n. (3.11)

Finally, weight adjustments are summarized in
the supervised mode as follows:

wj(t+1) = wj(t)+η.apj .(bp−Yp)+α.∆wj(t−1).

(3.12)

The learning stops when the weight vector
(w1, ..., wn) remains unchanged during a complete
training cycle. Now let us assume that input-
output pair {Ap; bp} where Ap = (ap1, ..., apn)

are given as training data. Then the learning
algorithm can be summarized as follows:

Learning algorithm

Step 1: η > 0, α > 0, Emax > 0 are cho-
sen. Then the real vector (w1, ..., wn) are
initialized at random values.
Step 2: Let t := 0 where t is number of iterations
of the learning algorithm. Then the running
error E is set to 0.
Step 3: Let t := t + 1. Repeat the following
procedures for p = 1, ..., n:

i Forward calculation: Calculate the actual
output Yp by presenting the input vector Ap.

ii Back-propagation: Adjust crisp parameter
wj by using the cost function (3.5) and the
adjustment relation (3.12).

Step 4: Cumulative cycle error is computed by
adding the present error to E.
Step 5: The training cycle is completed. For E <
Emax terminate the training session. If E >
Emax then E is set to 0 and we initiate a new
training cycle by going back to Step 3.

3.2.2 The quasi-Newton method

Variable metric algorithms also called quasi-
Newton or matrix iteration algorithms, have
proved to be the most effective class of general-
purpose methods for solving unconstrained min-
imization problems. Their development is con-
tinuing so rapidly, however, that the vast array
of possibilities open to a programmer wishing to
implement such a method is daunting. Here an
attempt will be made to outline the underlying

structure on which such methods are based. This
subsection describes one set of choices of strategy
for approximating solution of the given linear sys-
tem [6].

Definition 3.1 The hessian matrix H associated
with given a continuously differentiable function
F : Rn −→ Rn at the point x = (x1, ..., xn)

T is
defined as:

H(x) = (hij(x))n×n,

where

hij(x) =
∂2f(x)

∂xi∂xj
, i, j = 1, ..., n.

In the quasi-Newton method for the present func-
tion F : Rn −→ Rn and an initial vector x(0) ϵ Rn

at each step t one has to accomplish the following
operations [7]:

i Compute the hessian matrix Ht = H(x(t)).

ii Find a descent direction d(t) as follows:

d(t) = ∇F (x(t)) = [
∂F

∂x1
, ... ,

∂F

∂xn
]T
x=x(t) .

iii Compute the acceleration parameter µt as:

µt =
(d(t))

T
d(t)

(d(t))
T
Ht d(t)

.

iv Update the solution vector x(t) as following:

x(t+1) = x(t) +∆x(t), (3.13)

where

∆x(t) = −µt.d
(t) + α.∆x(t−1).

In continuance, we want to utilize the quasi-
Newton method for updating the connection
weight wj . Let us rewrite the cost function (3.5)
as follows:

e =
n∑

j=1

1

2
(bj −

n∑
i=1

(aji.wi))
2 =

1

2

n∑
j=1

(bj −
n∑

i=1

(aji.wi))
2 =

1

2

n∑
j=1

{b2j − 2bj .(

n∑
i=1

aji.wi) + (

n∑
i=1

aji.wi)
2} =

A. Jafarian, /IJIM Vol. 7, No. 1 (2015) 35-43 39

1

2

n∑
j=1

b2j −
n∑

j=1

n∑
i=1

(bj .aji.wi) +
1

2

n∑
j=1

(

n∑
i=1

aji.wi)
2

=
1

2

n∑
j=1

b2j − [
n∑

j=1

(bj .aj1), . . . ,
n∑

j=1

(bj .ajn)]

w1
...
wn

+
1

2

[
w1, . . . , wn

]

∑n
j=1 a

2
j1 . . .

∑n
j=1 aj1ajn∑n

j=1 aj2aj1 . . .
∑n

j=1 aj2ajn
...

. . .
...∑n

j=1 ajnaj1 . . .
∑n

j=1 a
2
jn

w1

w2
...
wn

 .

For simplify, the cost function e can be summa-
rized as following:

e = C −BTW +
1

2
W TQW, (3.14)

where

Q = (qij)n×n, qij = qji =

n∑
k=1

aki.akj ,

C =
1

2

n∑
j=1

b2j ,

BT = [
n∑

j=1

(bj .aj1), . . . ,
n∑

j=1

(bj .ajn)],

W T =
[
w1, . . . , wn

]
.

Clearly, the descent direction ∇e is calculated as:

∇e = [
∂e

∂w1
, . . . ,

∂e

∂wn
] = QW −B.

In addition, it is easy to show that ∇2e =
∇(∇e) =

∂2e
∂w2

1

∂2e
∂w1∂w2

. . . ∂2e
∂w1∂wn

∂2e
∂w2∂w1

∂2e
∂w2

2
. . . ∂2e

∂w2∂wn

...
...

. . .
...

∂2e
∂wn∂w1

∂2e
∂wn∂w2

. . . ∂2e
∂w2

n

 = Q.

In particular, having fixed a descent direction
∇e(W (t)), we can determine the optimal value

of the acceleration parameter µt that appears in
Eq. (3.13), in such a way as to find the point
where the function e, restricted to the direction
∇e(W (t)), is minimized. Setting to zero the di-
rectional derivative, we get:

d

dµt
e(W (t)+µt.∆W (t)) =

−(∇e(W (t)))T∇e(W (t))

+ µt.(∇e(W (t)))TQ ∇e(W (t)) = 0,

from which the following expression for µt is ob-
tained:

µt =
(∇e(W (t)))T∇e(W (t))

(∇e(W (t)))TQ ∇e(W (t))
.

After substituting these results in Eq. (3.13) we
obtain:

W (t+1) = W (t) +∆W (t), (3.15)

where

∆W (t) = −µt.∇e(W (t)) + α.∆W (t−1).

Notice that, the linear system (3.3) may have no
solution. In this case there is no hope to make
the error measure close to zero.

Learning algorithm

Step 1: α > 0 and Emax > 0 are chosen.
Then the real vector W = (w1, ..., wn) are
initialized at random values.
Step 2: Let t := 0 where t is number of iterations
of the learning algorithm.
Step 3: Take t := t + 1. Then the running error
E is set to 0.
Step 4: Compute the acceleration parameter µt

and e(W).
Step 5: The weights vector W is updated by
using Eq. (3.15).
Step 6: The training cycle is completed. For
E < Emax terminate the training session. If
E > Emax then a new training cycle by going
back to Step 3.

4 Examples

It is probably not an overstatement that linear
systems problem arise in almost all practical ap-
plications. This section presents two examples of

40 A. Jafarian, /IJIM Vol. 7, No. 1 (2015) 35-43

the linear systems to show the behavior and prop-
erties of the techniques and also illustrates differ-
ence speeds of convergence between the present
techniques for the present neural net. For each
example, the computed values of the approximate
solution are calculated over a number of iterations
and also the cost function is plotted.

Example 4.1 Consider the following linear
system of equations

4x1 + 3x2 + 2x3 + x4 = 4
−x1 + x2 + 2x3 + x4 = −3
2x1 + x2 − 2x3 + x4 = 4
x1 + x2 + x3 − x4 = 2

,

where xi ϵ R (for i = 1, ..., 4) with the exact vec-
tor solution (x1, x2, x3, x4) = (1, 1,−1,−1). The
training starts by W = (2, 0, 0,−2), η = 1

15 and
α = 1

15 . In this example, we apply the proposed
techniques to approximate solution of the present
system.

Tables 1 and 2 show the approximated solutions
over a number of iterations for the steepest de-
scent and quasi-Newton methods, respectively.
Fig. 3 shows the difference between the cost func-
tions over the number of iterations. Figs. 4 and 5
show the convergence property of the computed
values of the connection weights for the steepest
descent and quasi-Newton methods, respectively.

0 20 40 60 80 100 120 140 160
0

1

2

3

4

5

6

7

8

9

10

Number of iterations

Th
e

co
st

fu
nc

tio
ns

The steepest descent method
The quasiNewton method

15 30

0.02

0.18

Figure 2: The cost functions obtained from the
steepest descent and quasi-Newton methods for Ex-
ample 4.1 over the number of iterations.

Example 4.2 Analysis of a processing plant
consisting of interconnected reactors
Consider a chemical processing plant consisting of
six interconnected chemical reactors with differ-
ent mass flow rates of a component of a mixture
into and out of the reactors. We are interested in

0 20 40 60 80 100 120 140 160
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Number of iterations

w
1

w
2

w
3

w
4

120 150

1

1.01

122 150
−1

−0.994

Figure 3: Convergence of the approximated solu-
tion obtained from the steepest descent method for
Example 4.1.

4 9 14 19 24 29

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Number of iterations

w

1
w

2
w

3
w

4

20 30

0.9

1

1.1

20 30

−1

−0.96

Figure 4: Convergence of the approximated solu-
tion obtained from the quasi-Newton method for Ex-
ample 4.1.

knowing the concentration of the mixture at dif-
ferent reactors. The example here is given in [6].
Application of conservation of mass to all these
reactors results in a linear system of equations
as follows, consisting of five equations in five un-
knowns. The solution of the system will be tell
us the concentration of the component at each of
these reactors. Consider first a reactor with two
flows coming in and one flow going out (see figure
5).

Figure 5: Plant layout consisting of interconnected
reactors for Example 4.2.

A. Jafarian, /IJIM Vol. 7, No. 1 (2015) 35-43 41

Table 1: The approximated solutions with error analysis obtained from the steepest descent method for
Example 4.1.

t W = (w1, w2, w3, w4) e

1 (1.75 -0.13 -0.63 -1.71) 9.9321
2 (1.84 0.09 -0.59 -1.39) 3.0692
3 (1.61 0.06 -0.74 -1.23) 3.0422
4 (1.63 0.20 -0.67 -1.06) 1.0972
...

...
...

150 (1.00 0.99 -0.99 -0.99) 0.000010
151 (1.00 0.99 -0.99 -0.99) 0.000009

Table 2: The approximated solution with error analysis obtained from the quasi-Newton method for Example
4.1.

t W = (w1, w2, w3, w4) e

1 (1.72 -0.19 -0.31 -1.88) 6.5000
2 (1.85 -0.01 -0.45 -1.56) 3.6462
3 (1.67 -0.06 -0.56 -1.42) 2.2016
4 (1.69 0.06 -0.55 -1.22) 1.4710
...

...
...

29 (1.00 0.99 -0.99 -0.99) 0.000026
30 (1.00 0.99 -0.99 -0.99) 0.000008

Application of the steady-state conversion of
mass for a component in the mixture gives m1 +
m2 = m3. Noting that mi = Qi.Ci, where
mi = mass flow rate the component at the inlet

and outlet section i, i = 1, 2, 3 in mg/min.
Qi = volumetric flow rate the section i, i =

1, 2, 3 in/m3/min.
Ci = density or concentration at the section

i, i = 1, 2, 3 in mg/m3.
Now we conclude that

Q1C1 +Q2C2 = Q3C3. (4.16)

For given inlet flow rates and concentrations, the
outlet concentration C3 can be found from above
equation, this outlet concentration also
represent the homogeneous concentration inside
the reactor. Refer now to Fig. 6, where we
consider the plant consisting of six reactors. We
have the following equations (a derivation of each
of these equations is similar to that of Eq. (4.16)):

For reactor 1:

6C1 − C3 = 72.

For reactor 2:

3C1 − 3C2 = 0.

For reactor 3:

−C2 + 11C3 = 160.

For reactor 4:

C2 − 11C4 + 2C5 + 8C6 = 0.

For reactor 5:

3C1 + C2 − 4C5 = 0.

For reactor 6:

10C3 − 10C6 = 0.

Above equations can be written in matrix form
as:

6 0 −1 0 0 0
3 −3 0 0 0 0
0 −1 11 0 0 0
0 1 0 −11 2 8
3 1 0 0 −4 0
0 0 10 0 0 −10

C1

C2

C3

C4

C5

C6

 =

72
0

160
0
0
0

 .

In this case the training starts byW = (5, 5, 5, 5),

42 A. Jafarian, /IJIM Vol. 7, No. 1 (2015) 35-43

Table 3: The approximated solutions with error analysis obtained from the steepest descent method for
Example 4.2

t W = (w1, w2, w3, w4, w5) e

1 (7.38 4.03 5.07 4.90 5.29 17.35) 15.05
2 (8.40 2.19 9.40 16.00 3.911 17.25) 13.94
3 (9.14 2.42 19.53 12.97 5.00 16.09) 7.41
4 (10.09 3.57 16.10 12.92 5.63 13.87) 2.14
...

...
...

165 (14.64 14.64 15.87 15.54 14.64 15.87) 0.001

Table 4: The approximated solutions with error analysis obtained from the steepest descent method for
Example 4.2

t W = (w1, w2, w3, w4, w5) e

1 (6.33 4.47 10.52 5.00 5.00 5.00) 71.50
2 (7.78 4.26 10.21 4.96 5.08 8.33) 37.64
3 (8.69 3.95 12.15 6.59 4.95 8.23) 25.14
4 (9.42 3.92 11.62 7.08 5.11 10.25) 19.43
...

...
...

169 (14.64 14.64 15.87 15.54 14.64 15.87) 0.008

Figure 6: The outlet concentration C3.

η = 1
100 and α = 1

100 . Similarly, Tables 3 and 4
show the approximated solutions over a number
of iterations for the steepest descent and quasi-
Newton methods, respectively. Fig. 7 shows
the difference between the cost functions over the
number of iterations. Figs. 8 and 9 show the con-
vergence property of the computed values of the
connection weights for the steepest descent and
quasi-Newton methods, respectively.

5 Conclusion

This paper first surveyed the application of neu-
ral networks to a system of linear equations and
also demonstrated how neural networks have been
used to find the unique solution of the present
problem. Hence an architecture of feed-forward

0 20 40 60 80 100 120 140 160
0

2000

4000

6000

8000

10000

12000

14000

16000

Number of iterations

Th
e

co
st

 fu
nc

tio
ns

The steepest descent method

The quasi−Newton method

60 100

5

30

Figure 7: The cost functions obtained from the
steepest descent and quasi-Newton methods for Ex-
ample 4.2 over the number of iterations.

neural networks has been considered to approx-
imate solution of the linear system. Presented
neural net in this study was a numerical method
for calculating unknowns in the given system.
Then two famous learning techniques namely, the
steepest descent and quasi- Newton methods were
presented to adjust the connection weights of the
neural network. It is clear that to get the best
approximating solution of the problem, number
of iterations must be chosen large enough. The
analyzed examples illustrated the ability and re-
liability of the techniques. As showed the process
of adjustments of the steepest descent and quasi-
Newton methods are same. But in the steepest
descent technique the connection weight wj is ad-

A. Jafarian, /IJIM Vol. 7, No. 1 (2015) 35-43 43

0 20 40 60 80 100 120 140 160
2

4

6

8

10

12

14

16

18

20

Number of iterations

w

1
w

2
w

3
w

4
w

5
w

6

60 80

14.5

16

Figure 8: Convergence of the approximated solu-
tion obtained from the steepest descent method for
Example 4.2.

0 20 40 60 80 100 120 140 160
2

4

6

8

10

12

14

16

Number of iterations

data1 data2 data3 data4 data5 data6

100 140

14.5

16

Figure 9: Convergence of the approximated solu-
tion obtained from the quasi-Newton method for Ex-
ample 4.2.

justed for each given learning pattern {Ap; bp}.
In other words, in solving the linear system of
the form An×nXn×1 = Bn×1, in each learning
stage the connection weights wj (for j = 1, ..., n)
are adjusted n times. However the quasi-Newton
technique updates the given wights in each learn-
ing stage only one time. Moreover, in the steep-
est descent method the learning rate η is given
by user. This means that the learning rate has
same constant value in each learning stage. But
a basic problem in this rule is that, by choosing
an unsuitable value for η the convergence speed
is changed and also the method dont converge
to the desired solution. If η catch a small value
then the number of iterations go to the high. If
the learning rate catch a large value then the cal-
culated solution vacillate environs of the actual
solution and never converges to the solution. But
in the quasi-Newton method the acceleration pa-
rameter µt is obtained separate values in in each
learning stage. It make that the parameter µt

takes the best value in each stage. obtained solu-
tions in comparison with exact solutions admit a
remarkable accuracy.

Acknowledgment

This paper is based on the Master’s project at the
Department of Mathematics, Urmia Branch Is-
lamic Azad University of Iran, under graduate re-
search fellowship and fundamental research grant
scheme.

References

[1] J. E. Dayhoff, Neural Network Architectures:
An Introduction, Van Nostrand Reinhold.
New York 1990.

[2] R. Fuller, Neural Fuzzy Systems, Abo
Akademi University 1995.

[3] D. O. Hebb, The Organization of Behavior,
Wiley. New York 1949.

[4] W. S. McCulloch, W. A. Pitts, A logical cal-
culus of the ideas imminent in nervous activ-
ity, Bull. Math. Biophys 5 (1943) 115-133.

[5] M. Minsky, S. Papert, Perceptrons, MIT
Press. Cambridge. Mass. 1969.

[6] N. C. Nash, Compact Numerical Meth-
ods for Computers: Linear Algebra and
Function Minimisation-Second Edition, New
York 1990.

[7] A. Quarteroni, R. Sacco, F. Saleri, Numer-
ical Mathematics, Springer press. New York
2000.

[8] J.M. Zurada, Introduction to Artificial Neu-
ral Systems, West Publishing Company. New
York 1992.

Ahmad Jafarian was born in 1978
in Tehran, Iran. He received B.
Sc (1997) in Applied mathematics
and M.Sc. in applied mathemat-
ics from Islamic Azad University
Lahi-jan Branh to Lahijan, Fer-
dowsi University of Mashhad re-

spectively. He is a Assistant Prof. in the depart-
ment of mathematics at Islamic Azad University,
Urmia Branch, roumieh, in Iran. His current in-
terest is in artificial intelligence, solving nonlinear
problem and fuzzy mathematics.

	Introduction
	 Preliminaries
	Input-output relation of each unit

	Linear system of equations
	Cost function
	Learning algorithm of the FNN
	The steepest descent method
	The quasi-Newton method

	 Examples
	Conclusion

