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Abstract

Multi-objective optimization is the simultaneous consideration of two or more objective functions that
are completely or partially in conflict with each other. The optimality of such optimizations is largely
defined through the Pareto optimality. Multiple objective integer linear programs (MOILP) are special
cases of multiple criteria decision making problems. Numerous algorithms have been designed to solve
MOILP and multiple objective mixed integer linear programs. However, MOILP have not received
the algorithmic attention that continuous problems have. This paper uses the data envelopment
analysis (DEA) technique to find a well-dispersed non-dominated vectors of multiple objective mixed
integer linear programming (MOMILP) problem with bounded or unbounded feasible region, while
the previous methods consider only problems with bounded feasible region. To this end, it uses the
L1−norm and the modified slack-based measure (MSBM) model. The proposed method does not
need the filtering procedures and it ranks the elements of well-dispersed non-dominated vectors of
MOMILP problem. The proposed algorithm is illustrated by using two numerical examples.

Keywords : Well-dispersed non-dominated vectors; DEA; L1−norm; MOMILP; Non-dominated vec-
tors.
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1 Introduction

S
ince the most real-life problems include con-
flicting objectives, multiple objective opti-

mization provides a means for obtaining more re-
alistic models [1, 2, 8]. Multiple objective mixed
integer linear programming (MOMILP) problem
is an important research area as many practical
situations require discrete representations by in-
teger variables and many decision makers have
to deal with several objectives [16]. Some note-
worthy practical environments where the MOILP
problems find their applications are supply chain
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design, logistics planning, scheduling and finan-
cial planning.

Numerous algorithms have been designed to
solve MOILP [5, 10, 11, 13, 14, 16] and MOMILPs
[9, 13]. Sylva and Crema’s [13] proposed an al-
gorithm to find well-dispersed subsets of non-
dominated vectors for MOMILP with bounded
feasible region. But, in some cases feasible region
of a MOMILP problem is unbounded. Therefore,
a MOMILP problem can have infinite objective
values [15]. These cases have not been consid-
ered in [11] and [13].

Data envelopment analysis (DEA), provides a
nonparametric methodology for evaluating the ef-
ficiency of each of a set of comparable Decision
Making Units (DMUs), relative to one another.
Charnes et al. [4], CCR model, proposed the
DEA technique, which allows any DMU to select
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their most favorable weights while requiring the
resulting ratios of the sum of weighted outputs
to the sum of weighted inputs of all DMUs to be
less than or equal to a constant value. After intro-
ducing the first model in DEA, the CCR model
by Charnes et al. [4], Banker et al. [3] devel-
oped the DEA technique by providing the BCC
model. Nowadays DEA has allocated a wide va-
riety of research in Operations Research to itself.
For instance, Jahanshahlo et al. [7] used DEA
technique to find efficient solutions of a 0-1 multi
objective programming problem.

In this paper, we use the modified slack-based
measure (MSBM) model [12] as a DEA tech-
nique and L1−norm to propose an algorithm to
find a well-dispersed non-dominated vectors of
MOMILP problem with bounded and unbounded
feasible regions. The density of the well-dispersed
of non-dominated vector can be determined by
using decision maker opinions.

The paper is organized as follows. Section
2 presents a brief background about MOMILP
problem. Section 3 introduces the proposed
method to find the well-dispersed subsets of non-
dominated vectors MOMILP problem. Illustra-
tion with two numerical examples are given in
Section 4. Finally, the concluding results are pre-
sented.

2 Preliminaries

2.1 MOMILP problem

An MOMILP problem is a special case of multi
objective programming program and can be de-
fined as follows:

{C1W, . . . , CsW}

s.t. AiW ≤ bi, i = 1, . . . ,m

W ≥ 0, wj ∈ Z+, j ∈ J

(2.1)

where Cr = (c1r, . . . , cnr) (r = 1, . . . , s), Ai =
(ai1, . . . , ain) (i = 1, 2, . . . ,m), J ⊆ {1, . . . , n},
Z+ = {0, 1, 2, . . .} and W = (w1, . . . , wn)

T . The
set X, which is defined as follows:

X =
{
W | AiW ≤ bi, i = 1, . . . ,m,

W ≥ 0, wj ∈ Z+, j ∈ J
} (2.2)

is called the set of feasible solutions of problem
(2.1). Corresponding to each W ∈ X the vector

Y is defined as follows [6]:

Y = (y1, · · · , ys)T = (C1W, . . . , CsW )T . (2.3)

Definition 2.1 The vector Y = (y1, . . . , ys)
T

dominates the vector Y o = (yo1, . . . , y
o
s)

T if for
each r(r = 1, . . . , s), yr ≥ yor and there is at
least one l such that yl > yol .

Definition 2.2 Let F = {Y | Y =
(C1W, . . . , CsW )T ,W ∈ X}. F is called the
values space of objective functions in problem
(2.1).

Let gr = CrW
∗
r (r = 1, . . . , s), where W ∗

r is the
optimal solution of the following single objective
mixed integer programming problem:

gr = max CrW
s.t. W ∈ X.

(2.4)

Let X be bounded and g = (g1, . . . , gs)
T =

(C1W
∗
1 , . . . , CsW

∗
s )

T . g is called the ideal vec-
tor of model (2.1) [6]. As can be seen, for
each W ∈ X as a feasible solution of problem
(2.1), the vector g dominates the vector Y =
(C1W, . . . , CsW )T ̸= g.

2.2 MSBM model

The objective values of an MOMILP problem
are physical quantities and they have true zero
points. Hence, we can use the MSBM model with
natural negative/positive data to find the efficient
solutions of an MOMILP problem. Consider n
DMUs (DMUj , j = 1, . . . , n) where DMUj con-
sumes the inputs xj = (x1j . . . , xmj)

T to produce
the outputs yj = (y1j . . . , ysj)

T . Sharp et al. [12]
defined the MSBM model for the case of variable
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returns to scale (VRS) technology as follows:

max ρ∗o =

1+

s∑
r=1

vrs
+
r /p

+
ro

1−

m∑
i=1

wis
−
i /p

−
io

s.t.

n∑
j=1

λjxij + s−i = xio, i = 1, . . . ,m

n∑
j=1

λjyrj − s+r = yro, r = 1, . . . , s

n∑
j=1

λj = 1

λj , s
−
i , s

+
r ≥ 0, j = 1, . . . , n,

i = 1, . . . ,m, r = 1, . . . , s
(2.5)

where
∑s

r=1 vr = 1,
∑m

i=1wi = 1, p+ro =
max

j
{yrj} − yro, r = 1, . . . , s, and p−io = xio −

min
j

{xij}, i = 1, . . . ,m.

Corresponding to each feasible solution of
model (2.1), say Wj , the vector yj is defined
as yj = (y1j , . . . , ysj)

T where, yrj = CrWj =∑n
k=1 crkwk, r = 1, . . . , s. We need the DEA

techniques to determine a well-dispersed subsets
of non-dominated vectors of problem (2.1). To
this end, corresponding to Wj as a feasible so-
lution of model (2.1) we consider a DMU, say
DMUj , with s outputs yj and 1 input. If m = 1
and x1j = 1 for j = 1, . . . , n, then s−1 = 0 and
model (2.5) is converted the following model:

ρ∗ = max ρ = 1 +

s∑
r=1

vrs
+
r /p

+
ro

s.t.
n∑

j=1

λjyrj − s+r = yro, r = 1, . . . , s

n∑
j=1

λj = 1

λj , s
+
r ≥ 0, j = 1, . . . , n, r = 1, . . . , s.

(2.6)

Model (2.6) is feasible and bounded and it will
be used to obtain the relative efficiency of con-
structed DMUs. In fact, the efficiency of a DMU,
say DMUo, by model (2.6) is as 1/ρ∗o = 1/(1 +∑s

r=1 vrs
+∗
r /p+ro). When s+∗

r = 0, (r = 1, . . . , s),
DMUo is efficient by model (2.6) and vice versa.
Hence, we have the following definition.

Definition 2.3 DMUo is efficient under model

(2.6) (i.e., MSBM-efficient) if and only if 1/ρ∗o =
1, i.e. s+∗

r = 0, r = 1, . . . , s.

The following Theorem states a relationship
between MSBM-efficiency and non-dominated
vector of MOMILP problem.

Theorem 2.1 Let DMUo be efficient by using
model (2.6), then Wo as the corresponding feasi-
ble solution of model (2.1) is an efficient solution
of model (2.1).

Proof: Let 1/ρ∗o = 1 and by contradiction sup-
pose that Wo is not an efficient solution of (2.1).
Therefore, there exists W such that

Cr(W ) ≥ Cr(Wo), r = 1, . . . , s

and the inequality holds strictly for at least one
index. That is, there exists p ∈ {1, . . . , s} such
that Cp(W ) > Cp(Wo), i.e., yop > yop. Hence,
there is a feasible solution of model (2.6), say
(λo = 1, λj = 0, j ̸= o, s+r = 0, r ̸= p, s+p > 0)
such that 1/ρo = 1/(1 + s+p ) < 1. This is a
contradiction.2

We need the dual of model (2.6) as follows to
determine the supporting hyperplane of produc-
tion possibility set (PPS) which has been created
by the constructed DMUs.

max gp =
s∑

r=1

uryro + uo

s.t.

s∑
r=1

uryrj + uo ≤ 0, j = 1, . . . , n

uo free, ur ≥ vr/p
+
ro, r = 1, . . . , s.

(2.7)
Let (u∗, u∗o) = (u∗1, . . . , u

∗
s, u

∗
o) be an optimal

solution of model (2.7). When DMUo is efficient
in model (2.7) u∗Y + u∗o = 0 is the supporting
hyperplane on the PPS constructed by efficient
DMUs. By using p DMUs (i.e., Y1, . . . , Yp) the
PPS is defined as follows [7]:

PPS = {Y | Y ≤
p∑

j=1

λjYj ,

p∑
j=1

λj = 1,

λj ≥ 0, j = 1, . . . , p}.

By using the supporting hyperplanes of the
above PPS the set PPSc is defined as PPSc = Rs-
PPS.
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3 Well-dispersed subsets of
non-dominated vectors for
MOMILP problem

This paper uses the DEA technique to find a well-
dispersed non-dominated vectors of MOMILP
problem with bounded or unbounded feasible re-
gion, while the previous methods [11] consider
only problems with bounded feasible region. To
obtain a well-dispersed subsets of non-dominated
vectors of problem (2.1), a feasible solution, say
W ∈ X, is specified such that g − Y = (g1 −
C1W, . . . , gs −CsW )T is minimized. To this end,
the following MOMILP problem is solved:

min {g1 − C1W, . . . , gs − CsW}
s.t. W ∈ X.

(3.8)

According to gr ≥ CrW (r = 1, . . . , s,W ∈ X)
and by using the L1−norm we have:

min
W∈X

s∑
r=1

|gr − CrW |= min
W∈X

s∑
r=1

(gr − CrW )

=
s∑

r=1

gr + min
W∈X

s∑
r=1

(−CrW )

=

s∑
r=1

gr − max
W∈X

n∑
j=1

s∑
r=1

crjwj .

Hence, to find some efficient solutions of the
MOMILP problem the following mixed linear in-
teger programming problem is solved:

θ∗o = max

s∑
r=1

CrW

s.t. W ∈ X.

(3.9)

Theorem 3.1 The optimal solutions of problem
(3.9) are efficient solutions of model (2.1).

Proof: The proof is similar to that of Theorem
2.3 in [6] and is omitted. 2

Let Do = {W ∗
1 , . . . ,W

∗
p } be the set of optimal

solutions of problem (3.9) and Yd = (C1W
∗
d , . . . ,

CsW
∗
d )

T , (d = 1, . . . , p). These solutions are used
to construct the PPS and the constructed PPS
is used to find the other members of the well-
dispersed subset of the non-dominated vectors for
MOMILP problem.

To find another member of the well-
dispersed subset of the non-dominated vec-
tors for MOMILP problem a point, say
Yh = (C1Wh, . . . , CsWh)

T ∈PPSc such that
it has the minimal distance from the ideal point.
In other words, there is a supporting hyperplane
of PPS such that

u∗Yh + u∗h > 0. (3.10)

By using Yh inequality (3.10) is converted to∑s
r=1CrWu∗rh + u∗h > 0. On the other hand, we

need to add the constraint
∑s

r=1CrW ≤ θ∗o − ϕ
to obtain an efficient solution, which its distance
from the ideal point is more than the distance
of previous founded efficient solution/solutions,
where ϕ is a small positive constant and is deter-
mined to obtain a well-dispersed subset of non-
dominated vectors for MOMILP problem. It is
evident, using different ϕ’s we can obtain differ-
ent well-dispersed subsets of non-dominated vec-
tors of MOMILP problem.

According to the above discussion the following
model is considered:

θ∗1 = max

s∑
r=1

CrW

s.t. W ∈ X
s∑

r=1

CrW ≤ θ∗o − ϕ

s∑
r=1

CrWu∗rd + u∗d > −Mtrd,

r = 1, . . . , s, d = 1, . . . , h
s∑

r=1

trd ≤ p− 1, d = 1, . . . , h

trd ∈ {0, 1}, r = 1, . . . , s, d = 1, . . . , h.
(3.11)

When td = 1 the constraint
∑s

r=1CrWu∗rd +
u∗d > −Mtd is redundant and the constraint∑p

r=1 td ≤ p − 1 implies that at least one of the
constraints

∑s
r=1CrWu∗rd + u∗d > −Mtd is not

redundant [7].

Let A1 = {W ∗
p+1, . . . ,W

∗
k } be the set of optimal

solutions of problem (3.9),D1 = D0∪A1 and Yd =
(C1W

∗
d , . . . , CsW

∗
d )

T for d = p+ 1, . . . , k the cor-
responding output vectors. Similarly, after q iter-
ations we set Dq = Dq−1 ∪ Aq = {W ∗

1 , . . . ,W
∗
k }.

Therefore, in general at the (q+1)th iteration the
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following problem is solved:

θ∗q+1 = max

s∑
r=1

CrW

s.t. W ∈ X
s∑

r=1

CrW ≤ θ∗q − ϕ

s∑
r=1

CrWu∗rd + u∗d > −Mtrd,

r = 1, . . . , s, d = 1, . . . , k
s∑

r=1

trd ≤ s− 1, d = 1, . . . , k

trd ∈ {0, 1}, r = 1, . . . , s, d = 1, . . . , k.
(3.12)

Theorem 3.2 The optimal solutions of problem
(3.12) are efficient solutions of model (2.1).

Proof: Let Ŵ ∗ be an optimal solution of model
(3.12) and by contradiction assume that it is not
an efficient solution of model (2.1). Therefore,
there is a feasible solution of model (2.1), say W ′,
such that

CrW
′ ≥ CrŴ

∗, r = 1, . . . , s, ∃ l ∈ {1, . . . , s},
ClW

′ > ClŴ
∗.

(3.13)
By multiplying u∗rp in CrW

o ≥ CrW
∗
d (r =

1, 2, · · · , s) and summing them, we will have [7]:

s∑
r=1

u∗rpCrW
o ≥

s∑
r=1

u∗rpCrW
∗
d , p = 1, . . . , l

n∑
j=1

s∑
r=1

u∗rpCrjw
o
j ≥

n∑
j=1

s∑
r=1

u∗rpCrjw
∗
jd,

p = 1, . . . , l
n∑

j=1

s∑
r=1

u∗rpCrjw
o
j > −u∗op − trpM,

p = 1, . . . , l, r = 1, . . . , s.

Also, W o holds in the inequalities∑n
j=1 aijwj ≤ bi, i = 1, 2, . . . ,m. There-

fore, W o is a feasible solution of the
problem (3.12). From (3.13), we have∑s

r=1CrW
o >

∑s
r=1CrW

∗
d (ZWo > ZW ∗

d
)

which is a contradiction. 2

Let Dp−1 = {W ∗
1 , . . . ,W

∗
p−1} be the subset of

the well-dispersed efficient solution of problem
until (p − 1)th iteration and W ∗

p be an optimal
solution of problem (3.11) and A = {W ∗

ik+1
}. To

find the other well-dispersed efficient solution of
problem (2.1), corresponding to W ∗

k+1, we add
the following constraints to problem (3.11):

CrW > CrW
∗
k+1 −Mtrk+1, r = 1, . . . , s

s∑
r=1

trq ≤ s− 1, q = 1, . . . , k

δrq ≥ ε, r = 1, . . . , s, q = 1, . . . , k

where ε is a very small positive real number.
Therefore, the pth iteration’s problem is as fol-
lows:

max

s∑
r=1

CrW

s.t. W ∈ X
s∑

r=1

CrWr ≤ θ∗p−1 − ϕ

CrW ≥ δrq + CrW
∗
q −Mtrq,

r = 1, . . . , s, q = 1, . . . , k, k + 1
s∑

r=1

trq ≤ s− 1, q = 1, . . . , k, k + 1

trq ∈ {0, 1}, r = 1, . . . , s,
q = 1, . . . , k, k + 1
δrq ≥ ε, r = 1, . . . , s,
q = 1, . . . , k, k + 1.

(3.14)

When X is bounded, this process is continued
until problem (3.14) becomes infeasible.

Theorem 3.3 Each optimal solution of problem
(3.14) is an efficient solution for MOMILP prob-
lem.

Proof: The proof is similar to that of Theorem
2.4 in [6] and is omitted. 2

Using the above discussions, in the following
cases an MOMILP problem has well-dispersed
subset of efficient solutions.

1. When X is nonempty and bounded.

2. When X is unbounded and there is no d ̸= 0
such that Aid ≤ 0, i = 1, . . . ,m,Crd ≥
0, r = 1, . . . , s with at least one p(p ∈
{1, . . . , s}) such that Crd > 0 and dj ∈ Z+

for j ∈ J, [15].

Therefore, to find a well-dispersed subsets of
non-dominated vectors for MOMILP problem
with bounded and unbounded feasible regions we
consider the following Algorithm.
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3.1 The proposed Algorithm

Stage 0: Solve the system Aid ≤ 0, i =
1, . . . ,m,Crd ≥ 0, r = 1, . . . , s, with at least
one p(p ∈ {1, 2, . . . , s}) such that Cpd > 0 and
dj ∈ Z+ for j ∈ J . If this system has solution,
then there is no efficient solution for problem (2.1)
and go to stage 3. Otherwise go stag 1,
Stage 1:
Step 1-1: Let k = 0 and solve problems (2.4)
and specify Go = {W ∗

1 , . . . ,W
∗
h}. If Go is empty

go to step 1-2, otherwise let k = h and go to step
1-3,
Step 1-2: Determine the optimal solutions of
problem (3.9) and let Go = {W ∗

1 , . . . ,W
∗
β} as op-

timal solutions set of model (3.9) and let β = k,
Step 1-3: Determine an optimal solution of
problem (3.11) and let A = {W ∗

k+1},
Step 1-4: If A is not empty, let G1 = Go ∪ A
and go to stage 2. Otherwise, stop, Go is a well-
dispersed subset of efficient solutions of (2.1),
Stage 2:
Step 2-1: Determine an optimal solution of
problem (3.14), say W ∗

k+1 and let B = {W ∗
k+1},

Step 2-2: If B is not empty, let Gk+1 = Gk ∪B
and go to stage 2. Otherwise, stop, the set Gk is
the well-dispersed subset of efficient solutions of
(2.1),
Stage 3: End.

IfW ∗
p andW ∗

p+1 are the two well-dispersed non-
dominated vectors of MOMILP which have been
obtained in pth and (p + 1)th iterations, respec-
tively, then the distance of Yp is less than Yp+1

from g by using L1 norm and so the rank of W ∗
p

is higher than W ∗
p+1. Hence, the elements of the

well-dispersed subsets of non-dominated vectors
of MOMILP problem are ranked by using the pro-
posed algorithm.

4 Examples

The proposed algorithm is illustrated for
MOMILP problems with bounded and un-
bounded feasible regions.

Example 4.1 Consider the following
MOMILP problem:

max w1 + w2

max 4w1 + 3w2

s.t. −3w1 + 2w2 ≤ 6
−6w1 + 10w2 ≤ 60
w1, w2 ∈ Z+.

It can be seen, there is d =
(
d1
d2

)
such that Aid ≤

0, i = 1, 2, Crd > 0, r = 1, 2, d1 ≤ 0 and d2 ∈ Z+,
where A1 = (−3, 2), A2 = (−6, 10), C1 = (1, 1)
and C2 = (4, 3). That is, the feasible region is
unbounded and the objective functions can be-
come infinite together. Therefore, there is not
any efficient solution for this problem.

Example 4.2 Consider the following
MOMILP problem:

max −2w1 + w2

max w1 − 3w2

s.t. −4w1 + w2 ≤ 4
−9w1 + 5w2 ≤ 45
w1 ≥ 0, w2 ∈ Z+.

(4.15)

There is d, say d =
(
d1
d2

)
=
(
1
1

)
, such that Aid ≤

0, i = 1, 2, d1 ≥ 0, d2 ∈ Z+ where A1 = (−4, 1)
and A2 = (−9, 5). That is, feasible region of
this problem is unbounded. But, there is no
recession direction such that, Crd ≥ 0, r =
1, 2, ∃p ∈ {1, 2}, Cpd > 0, d1 ≥ 0, d2 ∈ Z+, where
A1 = (−1, 1), A2 = (−4, 6), C1 = (−2, 1) and
C2 = (1,−3). Therefore, this problem has effi-
cient solution.
Stage1, Step 1-1: Consider the following single
objective integer programming problems:

max −2w1 + w2

s.t. −4w1 + w2 ≤ 4
−9w1 + 5w2 ≤ 45
w1 ≥ 0, w2 ∈ Z+

(4.16)

and

max w1 − 3w2

s.t. −4w1 + w2 ≤ 4
−9w1 + 5w2 ≤ 45
w1 ≥ 0, w2 ∈ Z+.

(4.17)

W ∗
1 = (2.25, 13)T is optimal solution of the prob-

lem (4.16) and Y 1 = (8.5,−36.75)T is its ob-
jectives values vector. But, optimal value of
the problem (4.17) is infinite and this problem
doesn’t has optimal solution. Therefore, Go =
{(2.25, 13)T }.
Step 1-2: The corresponding problem of Go is
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as follows:

max −w1 − 2w2

s.t. −4w1 + w2 ≤ 4
−9w1 + 5w2 ≤ 45

−2w1 + w2 − δ1 + 100t11 ≥ 8.5
w1 − 3w2 − δ2 + 100t12 ≥ −36.75

t11 + t12 ≤ 1
t11, t12 ∈ {0, 1}, w1 ≥ 0, w2 ∈ Z+

δ1, δ2 ≥ ε.
(4.18)

W ∗
2 = (0, 0)T is optimal solution of the problem

(4.18) and Y 2 = (0, 0)T is the corresponding ob-
jectives values vector. Therefore, A = {(0, 0)T }.
Step 1-3: G1 = A ∪Go = {(2.25, 13)T , (0, 0)T }

Stage 2, Iteration 1

Step 2-1: To obtain a set of efficient solu-
tions with a appropriate density we let ϕ = 0.5
(the value of ϕ can be obtained by using decision
maker opinions) and to obtain a member of
well-dispersed subset of efficient solutions the
corresponding problem is as follows:

max −w1 − 2w2

s.t. −4w1 + w2 ≤ 4

−9w1 + 5w2 ≤ 45
−w1 − 2w2 ≤ −0.5

−2w1 + w2 − δ1 + 100t11 ≥ 8.5
w1 − 3w2 − δ2 + 100t12 ≥ −36.75

t11 + t21 ≤ 1
−2w1 + w2 − δ3 + 100t21 ≥ 0

w1 − 3w2 − δ4 + 100t22 ≥ 0
t21 + t22 ≤ 1

t11, t12, t21, t22,∈ {0, 1}
w1 ≥ 0, w2 ∈ Z+, δ1, δ2, δ3, δ4 ≥ ε.

(4.19)

W ∗
3 = (0.5, 0)T is optimal solution of the prob-

lem (4.19) and Y 3 = (−1, 0.5)T is its objectives
values vector. Hence, B = {(0.5, 0)T }.
Iteration 2

Step 2-1: The corresponding problem of

G1 is as follows:

max −w1 − 2w2

s.t. −4w1 + w2 ≤ 4
−9w1 + 5w2 ≤ 45
−w1 − 2w2 ≤ −1
−2w1 + w2 − δ1 + 100t11 ≥ 8.5
w1 − 3w2 − δ2 + 100t12 ≥ −36.75
t11 + t21 ≤ 1
−2w1 + w2 − δ3 + 100t21 ≥ 0
w1 − 3w2 − δ4 + 100t22 ≥ 0
t12 + t22 ≤ 1
−2w1 + w2 − δ5 + 100t31 ≥ −1
w1 − 3w2 − δ6 + 100t32 ≥ 0.5
t13 + t23 ≤ 1
t11, t12, t21, t22, t31, t32 ∈ {0, 1}
w1 ≥ 0, w2 ∈ Z+

δ1, δ2, δ3, δ4, δ5, δ6 ≥ ε.
(4.20)

W ∗
4 = (0, 1)T is an optimal solution of prob-

lem (4.20) and Y 4 = (1,−3)T is its objectives
values vector. Therefor, B = {(0, 1)T }. Using
the other single objective integer problems we
find that for each n ∈ Z+,W ∗ = (0, n)T is an
efficient solution of the problem (4.15). Hence,
the number of efficient solution of this prob-
lem is infinite and the proposed approach finds
a well-dispersed subset of efficient solutions as
{(2.25, 13)T , (0, 0)T , (0.5, 0)T , (0, 1)T , (0, 2)T }.

5 Conclusion

This paper used the DEA technique and pro-
posed an algorithm to find a well-dispersed sub-
sets of non-dominated vectors of MOMILP prob-
lems with bounded and unbounded feasible re-
gions, while the previous methods [11] consider
only problems with bounded feasible region. In
each iteration of the proposed algorithm, at least
one well-dispersed efficient solution of MOMILP
problem is found.

The elements of the well-dispersed subsets of
non-dominated vectors of MOMILP problem are
ranked by using the proposed algorithm, so it
does not need filtering procedures. The proposed
method illustrated by two numerical examples.
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