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Abstract

This paper is concerned with a technique for solving Volterra integral equations in the reproducing
kernel Hilbert space. In contrast with the conventional reproducing kernel method,the Gram-Schmidt
process is omitted here and satisfactory results are obtained. The analytical solution is represented in
the form of series. An iterative method is given to obtain the approximate solution. The convergence
analysis is established theoretically. The applicability of the iterative method is demonstrated by
testing some various examples.
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1 Introduction

I
n the last decades, the reproducing kernel
method (RKM) has been a promising method

which applied more and more for solving vari-
ous problems such as ordinary differential equa-
tions, partial differential equations, differential-
difference equations, integral equations, and so on
(see e.g. [1]-[16] and references therein). Among
many literatures related to RKM for solving var-
ious problems and even among a bunch of exten-
sive works related to RKM for solving integral
equations, we just mention some more interest-
ing problems. An approximate solution of the
Fredholm integral equation of the first kind in
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the reproducing kernel space was presented by
Du and Cui [8, 9], solution of a system of the lin-
ear Volterra integral equations was discussed by
Yang et al. [10], solvability of a class of Volterra
integral equations with weakly singular kernel us-
ing RKM was investigated in [11, 12, 13], Geng
[14] explained how to solve a Fredholm integral
equation of the third kind in the reproducing ker-
nel space, and Ketabchi et al. [7] obtained some
error estimates for solving Volterra integral equa-
tions using RKM. In [7] and some other places,
a general technique for solving Volterra integral
equations was discussed in the reproducing ker-
nel space. This general technique is based on
the Gram-Schmidt (GS) orthogonalization pro-
cess. In this study, we aim to explain how to
construct a reproducing kernel method without
using this process. For this purpose, we consider
the following nonlinear Volterra integral equation

u(x) = F (x, u(x)), (1.1)
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where

F (x, u(x)) = f(x) +

∫ x

0
k(x, ξ)N (u(ξ))dξ,

x ∈ [0, 1], in which functions f and k and the
nonlinear operator N are considered such that
Eq. (1.1) has a unique solution. Furthermore, we
need to assume that F is continuous. The rest
of the paper is organized as follows. In the next
Section, some preliminaries are represented. The
method implementation is discussed in Section 3.
Section 4 is devoted to convergence analysis of the
method. For confirming the theoretical results,
some numerical examples are provided in Section
5. The paper will be closed by a brief conclusion
in the last Section.

2 Preliminaries

In this section, we follow the recent work by Cui
et al. [16] and represent some useful materials.

Definition 2.1 Let H be a Hilbert space of func-
tions f : Ω → R. Denote by < ., . > the in-
ner product and let ∥.∥= √

< ., . > be the induced
norm in H. The function R : Ω × Ω → R is
called a reproducing kernel of H if the followings
are satisfied

(i) Ry(x) = R(x, y) ∈ H,∀y ∈ Ω,

(ii) f(y) =< f(x), Ry(x) >, ∀f ∈ H, for all y ∈
Ω.

Definition 2.2 A Hilbert space H of functions
on a set Ω is called a reproducing kernel Hilbert
space if there exists a reproducing kernel R of H.

Remark 2.1 The existence of the reproducing
kernel of a Hilbert space is due to the Riesz Rep-
resentation Theorem. It is known that the repro-
ducing kernel of a Hilbert space is unique.

Theorem 2.1 [5] The reproducing kernel R of
reproducing kernel Hilbert space H is positive def-
inite.

Definition 2.3 The function space Wm[0, 1] is
defined as follows
Wm[0, 1] = {u|u(m−1) ∈ AC[0, 1], u(m) ∈
L2[0, 1]},
AC[0, 1] is an absolutely continuous function in
[0, 1].

The inner product and norm in Wm[0, 1] are de-
fined respectively by

< u, v >Wm=

=
∑m−1

i=0 u(i)(0)v(i)(0) +
∫ 1
0 u

(m)(x)v(m)(x)dx,
∀u, v ∈Wm[0, 1],

∥u∥Wm=
√
<u, u>Wm , ∀u ∈Wm[0, 1].

In general, the function space Wm[0, 1] is a re-
producing kernel space and its reproducing ker-
nel Rm has the following reproducing property
u(.) =< u(x), Rm(x, .) >Wm , ∀u ∈ Wm[0, 1]. For
m = 1, the function space W1[0, 1] is a reproduc-
ing kernel space and its reproducing kernel is

R(x, y) =

{
1 + x, x ≤ y,
1 + y, x > y.

3 The method implementation

We rewrite Eq. (1.1) as follows

Lu(x) = f(x) +

∫ x

0
k(x, ξ)N (u(ξ))dξ,

where L : W1[0, 1] → W1[0, 1] is an invert-
ible bounded linear operator, N is a nonlin-
ear operator, and f is an arbitrary function in
W1[0, 1].W1[0, 1] is a reproducing kernel space de-
fined according to the highest derivatives involved
in (1.1).We choose a countable set of points
{xi}∞i=1 in the interval [0, 1], and define

ϕi(x) = R(x, xi), ψi(x) = L∗ϕi(x),

where L∗ is the adjoint operator of L.Obviously,
in this paper L is the identity operator and there-
fore ψi(x) = R(x, xi).

Theorem 3.1 Let {xi}∞i=1 be dense in the inter-
val [0, 1]. If Eq. (1.1) has a unique solution, then
it can be represented as

u(x) =
∞∑
j=1

ajψj(x), (3.2)

where the coefficients aj are determined by solving
the following semi-infinite system of linear equa-
tions

Ba = F, (3.3)

in which
B = [ψj(xi)], i, j = 1, 2, . . . ,
a = [a1, a2, . . .]

T ,
and
F = [F (x1, u(x1)), F (x2, u(x2)), . . .]

T .
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Proof. Since {xi}∞i=1 is dense in the interval
[0, 1], then ψj(x) is a complete system inW1[0, 1],
see e.g. [16]. So the analytical solution can be
represented as Eq. (3.2). Since

< ψi(x), ψj(x) >w1=
< L∗ϕi(x), ψj(x) >w1=
< ϕi(x), Lψj(x) >w1= Lψj(x)|x=xi= ψj(xi),

and

< u(x), ψj(x) >w1=
< u(x), L∗ϕj(x) >w1=
< Lu(x), ϕj(x) >w1= F (xj , u(xj)),

according to the best approximation in Hilbert
spaces [5], the coefficients aj are determined by
(3.3).
The approximate solution of the problem is the
m-term intercept of the analytical solution which
can be determined by solving a m×m system of
linear equations. We need to construct an itera-
tive method for solving (3.3). For this purpose,
we choose the number of points m, the num-
ber of iterations n and put the initial function
u0,m(x) = 0. Then, the approximate solution of
Eq. (1.1) is defined by

un,m(x) =

m∑
j=1

anj ψj(x) = F (xj , un−1,m(xj)).

(3.4)

Remark 3.1 There exists a unique solution for
equations (3.4) due to the strictly positive defi-
niteness property of the reproducing kernel.

The results of this section can be summarized in
the following algorithm.

Algorithm1.

1. Choose m collocation points in the interval
[0, 1].

2. Set B = [ψj(xi)], i, j = 1, 2, . . . ,m.

3. Choose the number of iterations n.

4. Set i = 0.

5. Set the initial function u0,m(x) = 0.

6. Set i = i+ 1.

7. Set F = [F (xj , ui−1,m(xj))]
T , j = 1, . . . ,m.

8. Solve Ba = F .

9. Set ui,m(x) =
∑m

j=1 a
i
jψj(x).

10. If i < n, then go to step 6, else stop the
algorithm.

The conventional reproducing kernel method
which used the GS orthogonalization process is
represented in the following algorithm [7].

Algorithm2.

1. Choose m collocation points in the domain
set [0, 1].

3. Set ψi(x) = R(x, xi), i = 1, . . . ,m.

4. Set ψ̄i(x) =
∑i

k=1 βikψk(x), i = 1, . . . ,m,
(βik which obtained by the GS process).

5. Choose an initial function u0(x).

6. Set n = 1.

7. Set Bn =
∑n

l=1 βnlF (xl, un−1(xl)).

8. Set un(x) =
∑n

j=1Bjψ̄j(x).

9. If n < m, then set n = n+ 1 and go to step
7, else stop.

Remark 3.2 In comparison with Algorithm 2,
Algorithm 1 needs not to use the GS orthogonal-
ization process but in step 8 of it, we must to solve
a linear system. The coefficient matrix of this
system is positive definite because of the positive
definiteness of the kernel. Therefore, it needs to
decompose matrix B once using the QR decom-
position and to solve a triangular system in step
8.

4 Convergence analysis

In this section, we show that the approximate
solution un,m is converged to the analytical solu-
tion u uniformly. At first, the following lemma is
given.

Lemma 4.1 For a positive constant M , A =
{u| ∥u∥w1≤ M} is a compact set in the space
C[0, 1] provided that ∥u′∥w1≤ c,
where c is a constant.
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Table 1: Results of Algorithms 1 and 2.

Example 5.1 Example 5.2

m Em E5,m Em E5,m

2 2.71828 0.09544 1.00000 0.22222
4 1.33040 0.01045 0.97862 0.02663
8 0.69767 0.00187 0.69761 0.00478
16 0.35213 0.00036 0.40235 0.00103
32 0.17439 0.00005 0.21231 0.00024

Table 2: Results of Algorithms 1 and 2.

Example 5.3 Example 5.4

m Em E5,m Em E5,m

2 1.00000 0.09178 0.84147 0.01545
4 0.88923 0.00904 0.51528 0.00139
8 0.50274 0.00163 0.18976 0.00025
16 0.25626 0.00035 0.07976 0.00005
32 0.12715 0.00008 0.03665 0.00001

Proof. It is enough to show that A is a bounded
and equicontinuous set [5]. Since

∥R(x, y)∥2w1
=

< R(x, y), R(x, y) >w1= R(x, x) < c0,

where c0 is a positive constant, there exists a con-
stant c1 such that

|u(x)|= |< u(y), R(x, y) >w1 |≤
∥u(y)∥w1∥R(x, y)∥w1≤ c1∥u(y)∥w1 .

For any u ∈ A , we have |u(x)|≤ c1M Hence A is
a bounded set in the space C[0, 1]. On the other
hand,

|u′(x)|= |< u(y), ∂R(x,y)
∂x >w1 |≤

∥u(y)∥w1∥
∂R(x,y)

∂x ∥w1≤
c2∥u(y)∥w1≤ c2M

Then for any u ∈ A and ϵ > 0, we have
|u(x+ h)− u(x)|≤ |u′(η)||h|≤ c2M |h|
where η ∈ [x, x + h]. So, there exists δ = ϵ

c2M
such that for |h|< δ, we get |u(x+ h)− u(x)|< ϵ
Hence A is an equicontinuous set in the space
C[0, 1].

Theorem 4.1 If L is an invertible bounded
linear operator and F (x, u(x)) is a nonlin-
ear bounded operator, it can be deduced that
{un,m(x)}∞n=1 is the bounded sequence of func-
tions in w1[0, 1].

Proof. We can write

∥un,m(x)∥2w1

=< un,m(x), un,m(x) >w1

=<
∑m

j=1 ajψj(x),
∑m

l=1 alψl(x) >w1

=
∑m

j=1 aj < ψj(x),
∑m

l=1 alψl(x) >w1

=
∑m

j=1 aj < ϕj(x),
∑m

l=1 alψl(x) >w1

=
∑m

j=1 aj(
∑m

l=1 alψl(xj))

= aTBa,

where
a = [aj ], j = 1, 2, . . . ,m.
Now, since
B = [ψj(xi)], i, j = 1, 2, . . . ,m,
is a positive definite matrix then we have a =
B−1F and the assumed assumptions imply that
∥un,m(x)∥w1≤M,
where M is a constant.

Theorem 4.2 Assume that {xi}∞i=1 is dense in
[0, 1] and the assumptions of Theorem 4.1 and
Lemma 4.1 hold. Then the approximate solution
un,m is converged to the analytical solution u.

Proof. For j = 1, 2, . . . ,m and n = 1, 2, . . ., we
have Lun,m(xj) = F (xj , un−1,m(xj)).
According to Lemma 4.1, there exists a conver-
gent subsequence {unl,m(x)}∞l=1 of {un,m(x)}∞n=1

such that unl,m(x) → un,m(x), uniformly as l →
∞, m → ∞. Then for j = 1, 2, . . . ,m and
n = 1, 2, . . ., we derive

Lunl,m(xj) = F (xj , unl−1,m(xj)). (4.5)
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Since the operators L and F are both continuous
(according to the structure of L and assumption
on F ), after taking limit from both sides of (4.5),
it can be inferred that u is the analytical solu-
tion of Eq. (1.1). So unl,m(x) is the approximate
solution of Eq. (1.1).

5 Examples

In this section, we compare results of both Algo-
rithms in solving four various problems using the
following norms

∥u− un,m∥∞≃ En,m = max
1≤i≤m

|u(xi)− un,m(xi)|,

∥u− um∥∞≃ Em = max
1≤i≤m

|u(xi)− um(xi)|,

where un,m and um are approximate solutions ob-
tained by Algorithms 1 and 2, respectively and u
is the exact solution. The results of Tables 1, 2
(for n = 5) confirm the superiority of Algorithm
1.

Example 5.1 If k(x, ξ) = x2ξ, f(x) = exp(x)−
x2 + x2 exp(x) − x3 exp(x) and N (u(x)) = u(x),
then the Volterra integral equation (1.1) has the
following exact solution u(x) = exp(x).

Example 5.2 If k(x, ξ) = x
7
2 ξ, f(x) = x

7
2− 2

11x
9

and N (u(x)) = u(x), then the Volterra integral
equation (1.1) has the following exact solution

u(x) = x
7
2 .

Example 5.3 If k(x, ξ) = x2ξ, f(x) = 1
2x

2 +
1
2x

2 cos(x2) and N (u(x)) = sin(u(x)), then the
Volterra integral equation (1.1) has the following
exact solution u(x) = x2.

Example 5.4 If k(x, ξ) = sin(x − ξ), f(x) =
sin(x) + 2

3 cos(x)−
1
6 cos(2x)−

1
2 and N (u(x)) =

u(x)2, then the Volterra integral equation (1.1)
has the following exact solution u(x) = sin(x).

6 Conclusion

In this work, we proposed an iterative algorithm
for solving nonlinear volterra integral equations
on the basis of the reproducing kernel Hilbert
space without using the Gram-Schmidt orthog-
onalization process.The results of some numeri-
cal examples show that the present method could
be an accurate and reliable analytical-numerical

technique.Examples presented here belong to dif-
ferent categories such as linear or nonlinear prob-
lem with smooth or none-smooth kernel and so-
lution.Nevertheless, our results only apply to the
given examples; this, of course, does not mean
that it holds in general.The advantage of the ap-
proach is that the method can be easily imple-
mented. It seems that the method can be also
applied for solving other nonlinear integral equa-
tions.
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