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Abstract 

In this paper, we investigate a model for the COVID-19 coronavirus for Impact of 

transportation in Tehran. We introduce simple compartmental, Kermack-McKendrick-type 

epidemic models with homogeneously and heterogeneously-mixed populations, an endemic 

model for assessing the potential population-level impact of a hypothetical COVID-19 for 

Impact of transportation. 
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1. Introduction 

A novel coronavirus (nCoV), named as ‘‘2019-nCoV’’, is causing the deadliest pandemic in 

late 2019 and early 2020, defined as the coronavirus disease 2019 (COVID-19) by the World 

Health Organization (WHO). It is also known as severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2). The first cases occurred in early December, 2019, had been 

reported in China. 

To date, many countries and regions have been locked-down and applied strict social 

distancing measures to stop the virus propagation. From a strategic and healthcare 

management perspective, the propagation pattern of the disease and the prediction of its 

spread over time is of great importance, to save lives and to minimize the social and economic 

consequences of the disease. Within the scientific community, the problem of interest has 

been studied in various communities including mathematical epidemiology [1], biological 

systems modeling [2-5], signal processing [6-8] and control engineering [9]. Epidemiological 

mathematical models have been developed to help policy makers to take the right decisions. 

A first tentative mathematical model of this pandemic (see [10]), based on the Be-CoDiS 

model. For information of this model, see [11-15]. 

We explore the effectiveness of several additional strategies for the mitigation and 

suppression of Covid-19 spread in Iran, such as implementing Quarantine, social distancing 

and early diagnostic interventions. 

The clinical spectrum of COVID-19 infection is broad, ranging from no symptoms to severe 

pneumonia. Approximately half of the COVID-19 patients (40–50) present in one study did 

not show any symptoms [16, 17]. Other patients developed fever, body aches, nausea, or 

diarrhea [18] typically 2 to 14 days after exposure to the virus. During the initial phase of 

COVID-19 in China (10–23 January 2020), only 14percent of total, to a community spread in 

China. Later, on 23 January, the Chinese government implemented a total lockdown of Wuhan 

City, which prevented further community spread [19-26]. 

In this study, we develop a model of COVID-19 transmission dynamics. We employed a 

mathematical model with five epidemiological compartments (susceptible, carried, infected, 

recovered, and unreported). It includes origin and destination data on various modes of 

transportation, including cars, buses and subways. The incubation and recovery rates were 

assumed to be the same in the two areas. Using the estimated model parameters, we carried 

out a patch-specific sensitivity analysis. Furthermore, we investigated the impacts of various 

intervention strategies on the patch-specific transmission dynamics, including limiting 

traveling between the two regions, implementing social distancing, and early diagnosis. This 

paper is organized as follows. In Section 2, we present a data description followed by a SEUR 

model with a mobility matrix and discuss the basic reproduction number. We have carried out 

parameter estimation and sensitivity analysis in Section 3. Numerical simulations under 

various mitigation scenarios have been investigated in Section 4. The paper concludes with a 

discussion of results and conclusions in Sections 5. 

 

2. The Model Description 

The model variables and parameter definitions represented are given as follows: 
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Variable Description 

𝑆(𝑡)  Number of susceptible populations at time 𝑡 

𝐸(𝑡)  Number of asymptomatic infectious at time 𝑡 

𝑅𝐼(𝑡)  Number of reported cases at time 𝑡 i.e., symptomatic infectious with sever symptoms 

at time 𝑡 

𝑈𝐼(𝑡)  Number of unreported cases 

𝐼(𝑡) = 𝑅𝐼(𝑡) + 𝑈𝐼(𝑡)  

𝑅(𝑡)  Number of dead cases 

Parameter Description 

𝛼  Early detection and diagnostic rate per day. 

𝛾  Recavery rate. 

𝐵  Transmission coefficient for the carrier subgroup. 

𝑝  The proportion of undetected infectious individuals. 

𝑚12  The number of people traveling from patch 1 to patch 2 per day. 

𝑚21  The number of people traveling from patch 2 to patch 1 per day. 

𝑘 Progression rate from 𝑆 to 𝐼 per day. 

𝑓 Progression rate from 𝐸 to 𝐼 per day. 

𝑡0 Time at which the epidemic started 

𝑁0 = 𝑁(𝑡0)  

𝑆0 = 𝑆(𝑡0)  

𝐸0 = 𝐸(𝑡0)  

𝑅𝐼0 = 𝑅(𝑡0)  

𝑈𝐼0 = 𝑈(𝑡0)  

We note that  𝑅(𝑡0) = 0. 

The following assumptions would help in the derivation of the model: 

1) There is no emigration from the total population and there is no immigration into the 

population. In fact, the current model is only suitable for countries or territories with a relevant 

number of people infected by COVID-19, where the local spread is very important. 

2) Since there is no clear scientific evidence of the effect of the humidity and the temperature 

on SARS-CoV-2, we have not included these two factors in our model. 

A diagram of an epidemic Model for COvid-19 is considered as follows of our model and will 

be useful in the formulation of model equations. 
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Figure 1: Model of Covid-19 

Based on assumptions and definitions of variables and parameters mentioned above, the 

following system of ordinary equations is obtained. 

The mobility matrix is defined by 𝑀 = (𝑚𝑖𝑗)2×2, as proposed in [4, 15]. The mobility matrix 

captures the movement of individuals between patch 1 and patch 2 and we set 𝑚𝑖𝑗 to be the 

number of people traveling from a patch 𝑖 to a patch 𝑗 per unit time (day) and 𝑚𝑗𝑖 to be the 

number of people traveling from a patch 𝑗 to a patch 𝑖 per unit time (day). In this study, we 

assumed that the number of traveling between two patches is symmetric  (𝑚𝑖𝑗 = 𝑚𝑗𝑖). It is 

also assumed that the traveling occurs instantaneously, so no infection is transmitted during 

the traveling process. It should be noted that the number of people quarantined per day is not 

available in any of the regions. Therefore, we do not consider the amount of quarantined 

people in this system of equations. It is also assumed that the person will go to the hospital 

after the contamination, from which as people reported infected are named as indicated by 𝑅𝑈 

and a group not reporting their illness are indicated by 𝑈𝐼, this group may self-quarantine at 

home or with a coefficient of 𝑚 migrate to another area. In any case, it is assumed that he will 

migrate after recovery. 

In this proposed model, people are susceptible to disease after recovery with a factor of  
(1 − 𝑘)𝛾. 

𝑆′𝑖(𝑡) = −
𝐵𝑖𝐼𝑖

𝑁𝑖
𝑆𝑖 − 𝑚𝑖𝑗

𝑆𝑖

𝑁𝑖
+ 𝑚𝑗𝑖

𝑆𝑗

𝑁𝑗
, (2.1) 

𝐸′𝑖(𝑡) =
𝐵𝑖𝐼𝑖
𝑁𝑖

𝑆𝑖 − 𝑓𝑖𝐸𝑖 + 𝑚𝑗𝑖

𝐸𝑗

𝑁𝑗
− 𝑚𝑖𝑗

𝐸𝑖

𝑁𝑖
+ (1 − 𝑘𝑖)𝛾𝑖𝐼𝑖, 

𝑈𝐼′𝑖(𝑡) = 𝑓𝑖𝑝𝑖𝐸𝑖 − 𝛼𝑖𝑈𝐼𝑖 − 𝛾𝑖𝑈𝐼𝑖 + 𝑚𝑗𝑖

𝑈𝐼𝑗

𝑁𝑗
− 𝑚𝑖𝑗

𝑈𝐼𝑖
𝑁𝑖

, 

𝑅𝐼′𝑖(𝑡) = 𝑓𝑖(1 − 𝑝𝑖)𝐸𝑖 + 𝛼𝑖𝑈𝐼𝑖 − 𝛾𝑖𝑅𝐼𝑖, 
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𝑅′𝑖(𝑡) = 𝑘𝑖𝛾𝑖𝑈𝐼𝑖 + 𝑘𝑖𝛾𝑖𝑅𝐼𝑖 + 𝑚𝑗𝑖

𝑅𝑗

𝑁𝑗
− 𝑚𝑖𝑗

𝑅𝑖

𝑁𝑖
, 

together with 𝑁 = 𝑆 + 𝐸 + 𝑅𝐼 + 𝑈𝐼 + 𝑅. 

We consider these equations with initial conditions 𝑆(𝑡0), 𝐸(𝑡0), 𝑈𝐼(𝑡0), 𝑅𝐼(𝑡0), 𝑅(𝑡0) and 

𝑁(𝑡0) = 0. 

 

3. Analysis of the Model 

The equilibrium of system (2.1) is obtained by setting the right-hand side of the equations to 

be equal to zero. The disease-free equilibrium 𝐸0 is given by  

(
𝑚𝑗𝑖𝑆𝑗𝑁𝑖

𝑚𝑖𝑗𝑁𝑗

,
𝑚𝑗𝑖𝐸𝑗𝑁𝑖

(𝑓𝑖𝑁𝑖 + 𝑚𝑖𝑗)𝑁𝑗

,
(𝑓𝑖𝑝𝑖𝐸𝑖𝑁𝑗 + 𝑚𝑗𝑖𝑈𝐼𝑗)𝑁𝑖

(𝛼𝑖𝑁𝑖 + 𝛾𝑖𝑁𝑖 + 𝑚𝑖𝑗)𝑁𝑗

,
𝑓𝑖(1 − 𝑝𝑖)𝐸𝑖 + 𝛼𝑖𝑈𝐼𝑖

𝛾𝑖

,
(𝑘𝑖𝛾𝑖𝑁𝑗𝐼𝑖 + 𝑚𝑗𝑖𝑅𝑗)𝑁𝑖

𝑚𝑖𝑗𝑁𝑗

). 

Since the basic reproduction number is obtained by evaluating at the disease equilibrium under 

the assumption of the initial stage (i.e., 𝑆𝑖(𝑡) = 𝑁𝑖(𝑡)), so we have the following theorem. 

Theorem 3.1 There is a unique disease-free equilibrium E0 for the model represented by 

system (2.1).  

Proof. This theorem is proved by substituting 𝐸0 into system (2.1). The results show that all 

the derivatives are equal to zero. 

To establish the linear stability of 𝐸0, we use the next generation operator approach on system 

(2.1) to compute the basic reproduction number 𝑅0. This is determined using the approach by 

Van den Driessche and Watmough [16]. For the notation of the matrices F and V, we have 

[
 
 
 
 
 
 
 
 𝑓1 +

𝑚12

𝑁1
−(1 − 𝑘1)𝛾1 −𝑚21𝑁2 0

−𝑓1 𝛾1 +
𝑚12

𝑁1
0 −

𝑚21

𝑁2

−
𝑚12

𝑁1
0 𝑓

2
+

𝑚21

𝑁2
−(1 − 𝑘2)𝛾2

0 −
𝑚12

𝑁1
−𝑓2 𝛾2 +

𝑚21

𝑁2 ]
 
 
 
 
 
 
 
 

 

Evaluating 𝐹 at the disease-free equilibrium, we obtain 

[

0 𝛽1 0 0
0 0 0 0
0 0 0 𝛽2

0 0 0 0

] 

and, thus 

F𝑉−1 =
1

|𝑉|
[

𝛽1𝜈12 𝛽1𝜈22 0 𝛽1𝜈42

0 0 0 0
0 𝛽2𝜈24 𝛽2𝜈34 𝛽2𝜈44

0 0 0 0

] 

The eigenvalues for the matrix 𝐹𝑉−1 are given by  
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F𝑉−1 =
|
|

𝑥 −
𝛽1𝜈12

|𝑉|
−

𝛽1𝜈22

|𝑉|
0 −

𝛽1𝜈42

|𝑉|

0 𝑥 0 0

0 −
𝛽2𝜈24

|𝑉|
𝑥 −

𝛽2𝜈34

|𝑉|
−

𝛽2𝜈44

|𝑉|

0 0 0 𝑥

|
|
 

So  

𝑥 = 0 

𝑥 =
𝛽1𝑣12

|𝑉|
 

𝑥 =
𝛽2𝑣34

|𝑉|
. 

 The spectral radius is given by  

𝑟(𝐹𝑉−1) =
𝛽1𝑣12

|𝑉|
 

 or  

𝑟(𝐹𝑉−1) =
𝛽2𝑣34

|𝑉|
 

 which gives the effective reproduction number as  

𝑅𝑒 =
𝛽1𝑣12

|𝑉|
 

 or  

𝑅𝑒 =
𝛽2𝑣34

|𝑉|
. 

 

4. Local Stability of the Disease-Free Equilibrium  

The Jacobian matrix for the system is given by 

J= 

[
 
 
 
 
 
−𝐵𝑖 − 𝑚′ + 𝑚′′ 0 0 0 0

𝐵𝑖 −𝑓𝑖 + 𝑚′′ − 𝑚′ (1 − 𝑘𝑖)𝛾𝑖 (1 − 𝑘𝑖)𝛾𝑖 0

0 𝑓𝑖𝑝𝑖 −𝛼𝑖 − 𝛾𝑖 + 𝑚′′ − 𝑚′ 0 0
0 𝑓𝑖(1 − 𝑝𝑖) 𝛼𝑖 −𝛾𝑖 0

0 0 𝑘𝑖𝛾𝑖 𝑘𝑖𝛾𝑖 𝑚′′ − 𝑚′]
 
 
 
 
 

 

which 𝑚′ =
𝑚𝑖𝑗

𝑁𝑖
 and 𝑚′′ =

𝑚𝑗𝑖

𝑁𝑗
. 

The disease-free equilibrium point 𝐸0 is discussed by examining the above Jacobian matrix 

at the steady point 𝐸0. Now, at the disease-free equilibrium, the Jacobian matrix is given by 

𝐽𝐸0
= 

[
 
 
 
 
 
−𝐵𝑖 − 𝑚′ + 𝑚′′ 0 0 0 0

𝐵𝑖 −𝑓𝑖 + 𝑚′′ − 𝑚′ (1 − 𝑘𝑖)𝛾𝑖 (1 − 𝑘𝑖)𝛾𝑖 0

0 𝑓𝑖𝑝𝑖 −𝛾𝑖 + 𝑚′′ − 𝑚′ 0 0
0 𝑓𝑖(1 − 𝑝𝑖) 0 −𝛾𝑖 0

0 0 𝑘𝑖𝛾𝑖 𝑘𝑖𝛾𝑖 𝑚′′ − 𝑚′]
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For stability of the disease-free equilibrium, it is required that the 𝑡𝑟𝑎𝑐𝑒(𝐽𝐸0
) < 0 and the 

𝑑𝑒𝑡(𝐽𝐸0
) > 0. Thus, from the Jacobian matrix, it is clearly seen that  

𝑡𝑟𝑎𝑐𝑒(𝐽𝐸0
) < 0. 

The determinant of the Jacobian matrix is also given by  

𝑑𝑒𝑡(𝐽𝐸0
) = (𝐵𝑖 + 𝑚′ − 𝑚′′)(𝑓𝑖 + 𝑚′ − 𝑚′′)(𝛾𝑖 + 𝑚′ − 𝑚′′)2 > 0. 

Therefore, the disease-free equilibrium is locally asymptotically stable. This is established 

by the fact that the 𝑡𝑟𝑎𝑐𝑒(𝐽𝐸0
) < 0 and the 𝑑𝑒𝑡(𝐽𝐸0

) > 0. 

 

5. Numerical Simulation 

We illustrate the analytical results of the model by carrying out numerical simulation of the 

models using a set of estimated parameter values obtained from literature. The system is 

simulated using ODE solvers coded in MATLAB programming language. Simulation of the 

covid-19 under treatment intervention and vaccination interventions combined is carried out 

to investigate the impact of the key parameters on the spread of Covid-19 and how their 

influence can be controlled. The population of Tehran by region to be used for 𝑆 values in the 

equation is as follows: 

Table 1: population of Tehran by region 

𝐴𝑟𝑒𝑎 1 2 3 4 5 6 7 

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 493889 692579 330004 917261 856565 250753 312002 

𝐴𝑟𝑒𝑎 8 9 10 11 12 13 14 

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 425044 174115 326885 308176 240909 253054 489101 

𝐴𝑟𝑒𝑎 15 16 17 18 19 20 21 

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 659468 267678 278254 419249 255533 367600 186319 

𝐴𝑟𝑒𝑎 22       

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 175398       

The total population of Tehran province is 8,679,936. 

According to the graph 2, the largest population is present in regions 4 and 5. 

The available data is related to the number of trips of the population from regions 4 and 5 to 

other regions. By referring to the detailed map of Tehran regions, it can be seen that regions 

4 and 5 are far from each other. 
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Figure 2: Population by region 

Table 2: The number of people traveling from high-risk areas 4 and 5 to other areas 

𝐴𝑟𝑒𝑎𝑠 𝑓𝑖𝑟𝑠𝑡    𝑑𝑎𝑦 𝑠𝑒𝑐𝑎𝑛𝑑    𝑑𝑎𝑦 𝑡ℎ𝑖𝑟𝑑    𝑑𝑎𝑦 𝑓𝑜𝑟𝑡ℎ    𝑑𝑎𝑦 𝑓𝑖𝑓𝑡ℎ    𝑑𝑎𝑦 𝑠𝑖𝑥𝑡ℎ    𝑑𝑎𝑦 𝑠𝑒𝑣𝑒𝑛𝑡ℎ    𝑑𝑎𝑦 

1 325478 342751 327941 329741 332457 172541 62471 

2 482147 491547 473214 482415 471541 215471 85142 

3 215471 225471 217458 208471 211451 121247 45127 

4 75412 82413 77415 71452 76541 25847 13541 

5 62458 69741 65214 68941 58741 28641 14521 

6 550145 621547 590514 541258 587146 261471 57961 

7 201451 220145 215412 216321 219541 121451 25641 

8 295214 310412 305412 296324 291654 155412 45214 

9 125471 131541 135412 125471 128791 65841 12541 

10 221458 225412 215474 215641 203415 171451 26541 

11 210154 215412 206541 209741 208471 126547 21654 

12 156471 165487 162458 148751 156541 63251 8215 

13 154154 175416 156147 148745 149871 73651 10584 

14 352145 368541 354125 342157 351547 141578 45714 

15 442514 475142 421547 429847 445821 154781 65412 

16 179841 185461 181457 178415 171541 62541 12654 

17 187541 205414 188654 187415 191451 25471 6541 

18 251474 292874 277451 266451 282541 71541 25654 

19 178451 182541 162451 175415 136415 45871 18791 

20 245874 255874 251457 226541 219541 62417 22541 

21 120245 125478 123458 118954 119654 42365 11547 

22 120541 123654 118541 119654 112961 54126 16594 



IJDEA Vol.4, No.2, (2016).737-749  

N. Eghbali, et al./ IJIM Vol.16, No.2, (2024), 109-125 

 

117 
 

 

Figure 3: Migration from high-risk zones 4 and 5 to zone 1 per day 

As you can see in the diagram of table 4, on non-holiday days, the average number of people 

who commute between these regions 4 and 5 and region 1 is very close to each other, so the 

average value can be used to estimate the number of infected cases and this issue can be 

extended to the rest of the region as well. In table 3, the average values for 𝑚𝑖𝑗 can be seen. 

 

Table 3: Continued table  

 

Areas  8th day   9th day   10th day   11th day   12th day   13th day   14th day  

 1   335478   341521   326541   331547   329874   161457   61254  

 2   475412   495784   471654   479851   473651   206541   76321  

 3   215641   224514   218412   2105414   212654   115472   41521  

 4   74512   84512   79841   73651   75621   26351   12541  

 5   63514   68754   63254   67841   59841   27854   13254  

 6   562154   635214   583254   574516   596541   226541   52147  

 7   205414   221054   214547   215474   221547   120365   26541  

 8   298541   312541   309841   299847   285414   142351   41236  

 9   127854   129651   132541   124987   127841   63514   16541  

 10   225414   228541   216541   210654   209541   155624   23651  

 11   206541   211654   202541   207841   210361   121654   19874  

 12   152641   161547   165841   152147   152457   58623   7846  

 13   158741   159874   152641   149741   151247   68751   11547  

 14   346581   262451   351247   345871   349874   124154   41265  

 15  458741   462541   459412   445871   443251   145214   61541  

 16   180321   189541   182547   186251   175412   57981   11651  

 17   189541   198254   189541   185412   192541   26584   7541  

 18   255641   271541   278415   265412   278951   75412   27261  

 19   181451   183541   178541   171541   163251   49874   25412  

 20   249874   254874   248751   229841   225461   58951   18741  

 21   116541   122365   121457   115241   119654   39541   12541  

 22   116541   119841   121541   117451   119651   51241   15471  
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Table 4: The average values of the number of trips 𝑚𝑖𝑗 on non-holiday days from areas 4 

and 5 to other areas of Tehran 

𝐴𝑟𝑒𝑎 1 2 3 6 7 

𝑇ℎ𝑒    𝑎𝑣𝑒𝑟𝑎𝑔𝑒    𝑣𝑎𝑙𝑢𝑒𝑠    𝑜𝑓    𝑡ℎ𝑒    𝑛𝑢𝑚𝑏𝑒𝑟      𝑜𝑓    𝑡𝑟𝑖𝑝𝑠 332332.9 479721.6 216008.4 584228.9 215090.6 

𝐴𝑟𝑒𝑎 8 9 10 11 12 

𝑇ℎ𝑒    𝑎𝑣𝑒𝑟𝑎𝑔𝑒    𝑣𝑎𝑙𝑢𝑒𝑠    𝑜𝑓    𝑡ℎ𝑒    𝑛𝑢𝑚𝑏𝑒𝑟      𝑜𝑓    𝑡𝑟𝑖𝑝𝑠 300520 128956 217209.1 208925.7 157434.1 

𝐴𝑟𝑒𝑎 13 14 15 16 17 

𝑇ℎ𝑒    𝑎𝑣𝑒𝑟𝑎𝑔𝑒    𝑣𝑎𝑙𝑢𝑒𝑠    𝑜𝑓    𝑡ℎ𝑒    𝑛𝑢𝑚𝑏𝑒𝑟      𝑜𝑓    𝑡𝑟𝑖𝑝𝑠 155657.7 342453.9 448468.7 181078.7 191576.4 

𝐴𝑟𝑒𝑎 18 19 20 21 22 

𝑇ℎ𝑒    𝑎𝑣𝑒𝑟𝑎𝑔𝑒    𝑣𝑎𝑙𝑢𝑒𝑠    𝑜𝑓    𝑡ℎ𝑒    𝑛𝑢𝑚𝑏𝑒𝑟      𝑜𝑓    𝑡𝑟𝑖𝑝𝑠 272075.1 171359.8 240808.8 120304.7 119037.6 

Here according to the studies done [13] suppose that 𝛾𝑖 =
1

14
 and 𝑓𝑖 =

1

7
. It is also assumed 

that 𝛾𝑖 and 𝑓𝑖 are equal for 𝑖 = 1,2, . . . ,22. 

We make the same assumption for the rest of the parameters. The value of 𝑝𝑖 can be also be 

used from [23]. The value of 𝑘𝑖 is also used in [24], which can be estimated using the available 

data. We can estimate the 𝐵𝑖 value of the transfer rate. 

To estimate the parameters using this model, we need the number of infected cases in each 

region, see Table 5. 

Table 5: The number of reported infected people under treatment in Tehran city 

𝑓𝑖𝑟𝑠𝑡    𝑑𝑎𝑦 𝑠𝑒𝑐𝑜𝑛𝑑    𝑑𝑎𝑦 𝑡ℎ𝑖𝑟𝑑    𝑑𝑎𝑦 𝑓𝑜𝑟𝑡ℎ    𝑑𝑎𝑦 𝑓𝑖𝑓𝑡ℎ    𝑑𝑎𝑦 

2020/10/31 2020/11/1 2020/11/2 2020/11/3 2020/11/4 

325 332 331 336 337 

𝑠𝑖𝑥𝑡ℎ    𝑑𝑎𝑦 𝑠𝑒𝑣𝑒𝑛𝑡ℎ    𝑑𝑎𝑦 𝑒𝑖𝑔ℎ𝑡ℎ    𝑑𝑎𝑦 𝑛𝑖𝑛𝑒𝑡ℎ    𝑑𝑎𝑦 𝑡𝑒𝑛𝑡ℎ    𝑑𝑎𝑦 

2020/11/5 2020/11/6 2020/11/7 2020/11/8 2020/11/9 

336 341 342 345 349 

𝑒𝑙𝑒𝑣𝑒𝑛𝑡ℎ    𝑑𝑎𝑦 𝑡𝑤𝑒𝑙𝑣𝑒𝑡ℎ    𝑑𝑎𝑦 𝑡ℎ𝑖𝑒𝑟𝑡𝑒𝑒𝑛𝑡ℎ    𝑑𝑎𝑦 𝑓𝑜𝑢𝑟𝑡𝑒𝑒𝑛𝑡ℎ    𝑑𝑎𝑦  

2020/11/10 2020/11/11 2020/11/12 2020/11/13  

354 361 359 364  

The number of diseases for Tehran province is in table 4 and can be modified by a single 

model. So, we can write this model as in the bellowing form. Also, we estimate parameters in 

this model. 

𝑆′(𝑡) = −
𝐵𝐼

𝑁
𝑆,                (5.1) 

𝐸′(𝑡) =
𝐵𝐼

𝑁
𝑆 − 𝑓𝐸 + (1 − 𝑘)𝛾𝐼, 

𝑈𝐼′(𝑡) = 𝑓𝑝𝐸 − 𝛾𝑈𝐼, 

𝑅𝐼′(𝑡) = 𝑓(1 − 𝑝)𝐸 − 𝛾𝑅𝐼, 

𝑅(𝑡) = 𝑘𝛾𝑈𝐼 + 𝑘𝛾𝑅𝐼. 
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Figure 4: The number of infected cases in Tehran by region from 2020/10/31 to 2020/11/13 

To estimate the parameters of the system of equations (5.1) using the data in table 4, we use 

the least squares method. It is necessary to mention that the total number of infected cases 

reported in 22 regions in Tehran is more than hospitalized cases, as shown in figure 5: 

 

Figure 5: Comparison of the number of people under treatment and infected cases in Tehran 

since 2020/10/31 to 2020/11/13 

In this paper, it is very important to pay attention to the difference between dates of figure 5. 

Also, the type of quarantine and the number of people in quarantine are not available, so it is 

not possible to be sure that all infected people reported have quarantined themselves at home, 

but we are sure that the hospitalized people are in hospital quarantine and there is no 

possibility of spreading the disease from them to others. In order to better estimate the 

parameters, according to the modeling of the problem with the system of equations (2.1) with 

the assumption that the unreported people have the possibility of spreading the disease to 

others, we will consider the reported people who are not hospitalized as unreported people. 
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Using the data of table 4, the parameters of the equations (5.1) will be as described in table 6. 

 Table 6: Parameters of differential equations (5.1) (single regional model of Tehran province) 

𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟    𝑛𝑎𝑚𝑒 𝛾 𝑓 𝐵(𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑) 𝑝(𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑) 𝑘(𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑) 

𝑣𝑎𝑙𝑢𝑒 
1

14
 

1

7
 0.241 0.9 0.09 

Using the estimated parameters, it can be seen that the reported infected cases are very close 

to the estimated dates obtained from the system of equations of Tehran’s single-zone model 

for polluted cases. 

 

Figure 6: Comparison of the reported infected cases of Tehran city and the estimated 

infected cases from the equation (5.1) 

Note that, the initial values are considered as follows, it should be noted that 𝐸0 is the number 

of employed people in Tehran, which according to the reports of the Iranian Statistics Center, 

the 0.3 of the population of Tehran are employed. Also, the number of unreported infected 

people is twice the number of reported infected people. 

𝑆0 = 9423703, 

𝐸0 = 0.3𝑆0, 

𝑅𝐼0 = 325, 

𝑈𝐼0 = 700. 

The number of infected cases in area 4 and 5 can be seen in Table 7. 

Table 7: The number of infected cases in area 4 and 5 of 2020/10/31 to 2020/11/13 

 𝑓𝑖𝑟𝑠𝑡    𝑑𝑎𝑦 𝑠𝑒𝑐𝑜𝑛𝑑    𝑑𝑎𝑦 𝑡ℎ𝑖𝑟𝑑    𝑑𝑎𝑦 𝑓𝑜𝑟𝑡ℎ    𝑑𝑎𝑦 𝑓𝑖𝑓𝑡ℎ    𝑑𝑎𝑦 

𝑎𝑟𝑒𝑎    4 40 42 45 49 52 

𝑎𝑟𝑒𝑎    5 36 38 41 44 47 

 𝑠𝑖𝑥𝑡ℎ    𝑑𝑎𝑦 𝑠𝑒𝑣𝑒𝑛𝑡ℎ    𝑑𝑎𝑦 𝑒𝑖𝑔ℎ𝑡ℎ    𝑑𝑎𝑦 𝑛𝑖𝑛𝑒𝑡ℎ    𝑑𝑎𝑦 𝑡𝑒𝑛𝑡ℎ    𝑑𝑎𝑦 

𝑎𝑟𝑒𝑎    4 53 57 65 66 68 
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𝑎𝑟𝑒𝑎    5 50 53 63 65 69 

 𝑒𝑙𝑒𝑣𝑒𝑛𝑡ℎ    𝑑𝑎𝑦 𝑡𝑤𝑒𝑙𝑣𝑒𝑡ℎ    𝑑𝑎𝑦 𝑡ℎ𝑖𝑒𝑟𝑡𝑒𝑒𝑛𝑡ℎ    𝑑𝑎𝑦 𝑓𝑜𝑢𝑟𝑡𝑒𝑒𝑛𝑡ℎ    𝑑𝑎𝑦  

𝑎𝑟𝑒𝑎    4 69 65 72 75  

𝑎𝑟𝑒𝑎    5 68 64 69 71  

𝑠𝑢𝑚 76 80 86 93 99 

𝑠𝑢𝑚 103 110 128 131 137 

𝑠𝑢𝑚 137 129 141 146  

Infected cases of area 1 and 2 of 2020/10/31 to 2020/11/13 are as following table 8: 

Table 8: Infected cases of area 1 and 2 of 2020/10/31 to 2020/11/13 

 𝑓𝑖𝑟𝑠𝑡    𝑑𝑎𝑦 𝑠𝑒𝑐𝑜𝑛𝑑    𝑑𝑎𝑦 𝑡ℎ𝑖𝑟𝑑    𝑑𝑎𝑦 𝑓𝑜𝑟𝑡ℎ    𝑑𝑎𝑦 𝑓𝑖𝑓𝑡ℎ    𝑑𝑎𝑦 

𝑎𝑟𝑒𝑎    1 22 23 27 30 32 

𝑎𝑟𝑒𝑎    2 31 33 37 39 42 

 𝑠𝑖𝑥𝑡ℎ    𝑑𝑎𝑦 𝑠𝑒𝑣𝑒𝑛𝑡ℎ    𝑑𝑎𝑦 𝑒𝑖𝑔ℎ𝑡ℎ    𝑑𝑎𝑦 𝑛𝑖𝑛𝑡ℎ    𝑑𝑎𝑦 𝑡𝑒𝑛𝑡ℎ    𝑑𝑎𝑦 

𝑎𝑟𝑒𝑎    1 35 37 31 32 35 

𝑎𝑟𝑒𝑎    2 45 47 51 52 55 

 𝑒𝑙𝑒𝑣𝑒𝑛𝑡ℎ    𝑑𝑎𝑦 𝑡𝑤𝑒𝑙𝑓𝑡ℎ    𝑑𝑎𝑦 𝑡ℎ𝑖𝑟𝑡𝑒𝑒𝑛𝑡ℎ    𝑑𝑎𝑦 𝑓𝑜𝑟𝑡ℎ𝑒𝑒𝑛𝑡ℎ    𝑑𝑎𝑦  

𝑎𝑟𝑒𝑎    1 37 36 37 40  

𝑎𝑟𝑒𝑎    2 54 56 59 61  

Using the parameters of table 5, we solve the system of equations (2.1) for regions 4 and 5 to 

region 1 and vice versa. The only remaining and unknown parameter in this system is 

parameter 𝛼, which we estimate using the least squares method and data from tables 6, 7 and 

table 3. As expected, this value is very small and has a value equal to 𝛼 = 71𝑒 − 8. 

The results for the estimated contaminated cases and the actual data are shown in Figure 7. 

 
Figure 7: a) The blue line is the estimated data for regions 4 and 5 and the red line is the actual data 

b) The blue line is the estimated data for region 1 and the red line is the actual data 
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Also, using these parameters, the system has been solved for region 2, and the results can be 

seen in Figure 8. 

 

Figure 8: a) The blue line is the estimated infected cases of regions 4 and 5 and the red line is the 

actual infected cases b) The blue line is the estimation of infected cases of region 2 and the red line is 

the actual infected cases 

This work can be done for all regions and the impact of traveling from regions 4 and 5 to other 

regions on Corona days should be investigated.
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