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1. Introduction
Let M, be the set of all nxn complex matrices. Toeplitz [1] defined the concept of the

numerical range of A e M | by
W (A):{X*Ax|x eC", x X :1}
:{Tr(Axx*) Ix e C",x X =1}.
For a nonempty set 2( of matricesin M, Lau et al. [2] considered and investigated
W (A)=UW (A)|A e},
Let

J=1,&(-l,,)=diag (1,...,1,—1,...,—1}
S —

r n-r

Clearly, J has r positive and n-r negative eigenvalues. The J-adjoint of A € M, is defined by
[Afab]=[a,JAdb], abecC

or equivalently, A*=JA"J . A matrix A is called J-scalar, J-normal, J-unitary and J-
Hermitian if it satisfies A =mJ (m e C),A*A =AA*, A"A =AA* =1, and A =A%,
respectively. We denote by 1 the group of all J-unitary matrices. If A € M is similar

n?

r,n-r
to a diagonal matrix, then A is said to be diagonalizable. For a matrix C € M, Goldberg and
Straus [3] defined the C-numerical range of A e M by

W, (A)={Tr(CU AU )|U isunitary }.

For the standard basis {E,,,...,E,,} of M, if C =E,,, then W (A)=W (A). For a

nonempty set 2l of matricesin M, Lau et al.[2] introduced W . (Ql) as follows:

W (A)=UW, (A)|A et}

Let J=1,®(-I,,),0<r<n,be a Hermitian involutive, that is, J?=I1 and

n?

J"=J""=J. Bebiano et al. [4] defined J-C-numerical range (or J-C-tracial range) as
W¢ (A)={Tr(CU "AU)|U eM,,U"JU =J },
Where A,C €M (C). For J =1, wehave W/ (A)=W_ (A).

Following Lau et al. [2], we state the following definition.

2
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Definition 1. Let J =1 @(-I,,),0<r<n, and A,C eM  (C). For a nonempty set

21 of matricesin M, we have

W (20)=UWw. (A) A et}

Definition 2. If AeM, is not J-Hermitian, then one may consider the J-Hermitian
decomposition

A =Re’ (A)+ilm’ (A)=A, +iA,,

Where
1
A, =Re’ (A)=§(A+A#)
and
1
A, =Im’ (A)=—-(A-A"

are J-Hermitian. Now, we consider W¢' (A;,A,) as the joint J-C-numerical range of
(A,A,) defined by
w¢ (ALA,) :{(Tr(cu “AU).Tr(CU "AU))IU M, U"IU =] }
Also, we define the joint J-C-numerical range of (A,,...,A,)eM by
WS (A,....A)={(Tr(CUAU),... Tr(CU*AU))|U e M, U"IU =J } c C*.
If meC andC =ml, then W/ (A):{mTr(A)} and

WS (Ao A ={m (Tr(A),..Tr (A))}.

So, we consider C to be not a scalar matrix.

This paper is organized as follows. In Section 2, we survey the elementary properties of
W (20). In Section 3, we give the geometric properties of W () and generalize the

conditions of star-shapeness for that. Finally, in Sections 4, we extend WCJ (22[) to joint J-C-

numerical range and give some properties that can be concluded from WCJ (Ql)

2. Elementary properties of J-C-numerical range

In this section, we give some basic results about J-C-numerical range and then investigate
their generalization.
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Proposition 1. Let A,C € M . then the following properties hold:

a) ForeveryU el W (A)=W/ (U “AU )

r,n-r?

b) Forevery a,b e C,W/ (al +bA)=aTr(Cl)+bW/ (A).
c) W (A7) =W¢ (A)

d) W' (A)=W, ().

e) W/ (A) isaconnected set.

f) If Aand C are J-Hermitian matrices, then W/ (A)cR.

Proof. (a), (b), (c) and (d) immediately follow from definition of J-C-numerical range.
e) As U

U t10C s0 w/ (A) is a connected set in the complex plane.

is connected and WCJ (A) is the range of the continuous map from

r,n-r

f) Forany U e { it follows from [5] that Tr (CU ‘AU ):Tr (CU “AU ).|:|

r,n-r’
Now, we generalize these properties to W ] (Q() where =AM .

Theorem 2. Let C e M is anonscalar matrix and let @=Ac M .

a) ForeveryU el

nrr WehaveW? () =W/ (U 721U ).
b) Forevery a,b eC, if
a2l +bl = {aA +bl | A c21l,
then
WS (aA+bl)=aw (2)+bTr (C)
={aw +bTr (C)|w ew/ (2)}.
c) If A is bounded, then sois W (2).
d) If A is compact, then so is W' (21).

Proof. (a) and (b) follows from Proposition 1(a) and (b), respectively.
c) If 2 is bounded, then there is B >0 such that for every A e M, we have
|A[ < B. Hence,
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rrr (cu~Au )\ <nlc||a|<nlc]B.
Therefore, W' (2() is bounded.

d) Since 2 is compact, so is bounded and closed. Hence, WCJ (Q[) is also bounded,
from (c). To prove that W.' (2A) is closed, we suppose that {Tr (CU SAU, )|i =1, 2}

is a sequence inW ¢ (1) convergingtow e C, where A, e and U, e &l for each i.

Because 2 is compact, there is a subsequence {Aki | k :1,2,...} of {Ai i =1,2,...}
converging to A, € 2. Furthermore, We can consider a subsequence {Uki | k :1,2,...} of

{U;li =12,..} converging to U,. Therefore, {Tr(CUk‘ilAkiUki)|k:1,2,...} is
converged to

Tr(CU,'AU, ) =w, eW. (21).
Thus, W' () is closed, forcing W' () is compact.o

Part (a) of the following example shows that the converse of (c) and (d) of the above theorem
is not true in general.

Example 1. a) Let C eM,  is a nonscalar matrix whose trace is zero and let
A ={ml|m eC}. ThenW. ()={0} is compact and bounded, but 2 is not bounded.

b) Let

A :{diag (0,a+lgj|a > O}u{diag (0,0)}.
Then 2 is closed, but
W (20)={a+ib|a,b >0,ab <1} L{0}
is not closed.

Remark 1. a) For every B < C, if Tr(C )#0 and

at:{Tr”z—(':)meB},

thenW . (21) = B. Therefore, the geometrical shape of W' (2() may be quite arbitrary.

b) IFC =ml and m eC, thenW. (2)={mTr (A)|A e}.



A. Janfada, et al./ 1JIM Vol.16, No.3, (2024), 1-19

In both cases, we see that we do not have information about the matrices in 2 and the
geometrical properties of WcJ (22[) but the following theorem provides conditions for the

simultaneous description of the geometric properties of WCJ (Ql) and the matrices in 2 .

Theorem 3. Let C e M is a nonscalar matric and let & =2 < M . Then the following
conditions hold:

a) WS (A)={m}, meCifandonlyif A={Il [ITr(C)=m}.
b) ThesetW. () isa subset of astraight-line L if and only if the following conditions
hold:
i) Ac<{ll)leCITr(C)eL}.

i) C =diag(c,,...,c,)eR"with the ¢;J; pairwise distinct, where J; denote the ith
diagonal element of J, i =1,...,nand A is a set of J-Hermitian matrices.

Proof. Condition (a) follows from the fact that
WS (2)={m} < A=II,ITr(C)=m.

b) Forevery Ae®l and | eC, let A=Il and ITr(C)eL. Then obviously the
result follows from the definition of W' (A ). Conversely, let the set W' (2() is a subset of

a straight line L. If 2 < {II [l € C}, then clearly ng{ll [l eC,ITr(C)e L} and (i) is
proved.

Now, let 20 contains a nonscalar matrix A. Then (ii) follows from [4, Theorem 5.3].0

We denote by aj (A) the sets of the eigenvalues of A with eigenvectors v such that

v 'Jv =£1. We note that a J-Hermitian matrix A is J-unitarily diagonalizable if and only if
every eigenvalue of A belongs either to oy (A) or to o (A). In other word, o; (A)

(respectively, oy (A)) consists of r(respectively, n-r) eigenvalues. Let A be a J-Hermitian
matrix and let

a,....a, €o; (A), a,>-->a,
a..a, €05 (A),  a,>-->a,
CreesCp €05 (C), c,>->cC,,
Crr-nCr€0y(C), € y2--2c.

The eigenvalues of A are called to not interlace if either a, >a, , or a, >a,. If this condition
does not hold, then we say that the eigenvalues of A are interlace.

Bebiano et al. [6] showed that if either the eigenvalues of A or C interlace and
6
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a #a,, a #a,,, C, #C,, C, #C

n? r r+l?

then W¢' (A) is the whole real line.

Now, due to this notation, we have the following proposition to identify 2( and WCJ (Q[)

Proposition 4. Let A = M. Then W/ () < R if and only if

a) C =diag (c,,...,.c,)eR" withthe c;J; pairwise distinct for i =1,...,n and 2 is
a set of Hermitian matrices.
b) %l is a set of nonscalar J-Hermitian and J-unitarily diagonalizable matrices of A, 's

and C e 2. Also, for k =1,...,n, leta, and c, be the eigenvalues of A, 'sand C,
respectively, such that

a,....a_€ay (A)), g >---2a,
e @ eoy (A), a =228,
CpreaiCp €05 (C), c,>-->C,,
Crr-nCr€0y(C), € y2>--2c.

If the eigenvalues of A, 's and the eigenvalues of C do not interlace, then one of the following
conditions holds:

a) (a,-a,)(c, —C,,)<0, forall 1<l,l,<r, r+i<m,m,<n.
b) (a,l—aml)(clz—cm2)>0, for all 1<1,l,<r, r+1<m;,m,<n.

Proof. The results follow by [4, Theorem 5.2] and [6, Proposition 2.1], respectively.o

3. Geometric interpretation for star-shapeness of J-C-Numerical range

After studying the properties of each concept, researchers always describe it geometrically. In
this section, we study the star-shapeness of a matrix and a set of matrices.

Lemma 1[7, Lemma 1]. Consider A,B € M, be partitioned as

A:|:all A12:| and B:|:b11 Ble|,
A21 A22 BZl BZZ

where a,;,b;, € C. Then
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Tr| A 1 B 1

:a11b11+Tr(AZZBZZ)+ei9(A12821)+e7ig(BlZAZl)'
The locus of which, when 6 runs from 0 to 2m, forms an ellipse centered at
a, by, +Tr (A,B,, ) with length of major axis equal to 2(|A,,B | +[B,,A,|).

We consider the following set:

SW( (A)={S eM WS (S)cW. (A), forallC eM, }.
Then for any unitary U, we have SW. (A)=SW/ (U “AU ) If S eSW( (A), then
USU eSW/ (A).

Now, using this definition, we prove that J-C-numerical range is star-shaped, but before
expressing it, we need some lemmas, which we present below.

Lemma 2. Let S =(s; )eSW. (A), let 1<l <n, let m[0,1], and let T =(t; ) be
defined by

(o ms,, if exactly oneof iand k equals |,
* sy, otherwise.

That is, T is obtained from S by multiplying m to the entries on the Ith row and on the Ith
column, except for the (1,1 ) thentry of S. Then T e SW/ (A).

Proof. We assume, without loss of generality, that | =1. For every J-unitary U, and U, and
forevery 6 € R, we set

w (U,U,,0):=Tr| (U'CU,) 1 (U,'su,) 1

Clearly, w (U,,U,,0)eC and w (U, ,U,,0)eW. (S)cW/ (A). Since &, ,
connected, we can choose two continuous functions

is path

-r
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fu. 90, :[01] =>4,

such that f,, (0)=U,, g, (0)=1 and that both f;*(1)Cf, (1) and g (1)Sg,, (1) are
upper triangular. By using Lemma 1, for every q €[0,1], the points w (fu1 (9).9y,(d )8)
form an ellipse E (q) when 6 runs through 0 to 2. Because both f, (q) and g, (q) are
continuous, E (0) deforms continuously to become E (1) when g runs from 0 to 1. Since
both f,;* (1)Cf,, (1) and g’ (1)Sgy, (1) are upper triangular, it follows from Lemma 1 that
the length of the major axis of the ellipse E (1) is zero; that is, E (1) degenerates into a
single point. Let peC be any point in the interior of E (0). If p=E (1), then
peWd (S)cW( (A). If p#E (1), then p must be swept across by some ellipse E (q)
as E (O) is deformed to become the degenerating ellipse E (1) when ¢ runs from 0 to 1.
Thus, p eW/ (S) WS (A). The point

S
Tr|(U,'cu,) S Mo =d,,8,, +Tr (D5S,,)+M (Dy,S, ) +m(Sy,Dy,)
mSZl S22

where

d D S, S
U;lcul{ 1 12}, S :{ 1 12] d,,s,€C, me[01]]
D21 D22 S21 S22

is in the interior of the ellipse E (0) and therefore is contained in W' (A ). Because this is

true for every J-unitary matrix U, and forevery C e M , so

Sll mSlZ ESWJ(A)D
mle S22 ¢ .

Lemma 3. Let S e SW¢ (S ). Then for every a €[0,1], the following conditions hold:

a) aS +(1-a)diag (S)eSW/ (A).
)

b) aS+(1—a) f] I, eSWZ (A).

n

The statement (b) means that the set SWCJ (A) is star-shaped with respect to star-center
Tr(A)
n

n
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Proof. Let S =(s; )eSW. (A) and m e[0,1] be such that m*=a. By repeatedly
applying the result of Lemma 2 on S and considering 1<1 <n, we obtain

aS +(1-a)diag (S ) =(t; ).
Where

| Si i =k,
*“|m3%,, otherwise
is contained in SW ¢’ (A ) and this prove (a).

It follows from [8, p. 77, Problem 3] that there exists J-unitary U such that

diag (U -1su)=Tnﬂ|

Now,
S eSWZ(A)={Tr(S)} =W/ (S)cw,’ (A)={Tr(A)}.
=Tr(S)=Tr(A).

Because U 'SU e SW.' (A), so (a) implies that

T =a(u lsu)+(1—a)Tr£]A)|n =a(U 'sU)+(1-a)diag (U 'sU).

Thus
Tr (A
s +(1-a) A | _uTU tesw (Ao
n

Now, we provide our result about star-shapeness of J-C-numerical range.
Theorem 5. Let A,C e M (C). Then W/ (A) is star-shaped with respect to star-center
Tr(A)Tr(C)

- .
Proof. Let w eW. (A), let ae[0,1] and let U be a J-unitary matrix such that
w =Tr (CU ’1AU). Because A e SW/' (A), so by Lemma 3(b), we have

S =aA +(1—a)wl

- eSWZ (A).

n

Therefore,

10
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aw +(1—a)Tr(A)n& =Tr(CU 'sU)eW/ (S)cW. (A)o

In Theorem 2, we gave some elementary properties of WCJ (Q[) Now, by the star-shapeness

of W (21) and connectivity of 2(, we have the following theorem.
Theorem 6. If 2 is connected, then so is W' ().

Proof. By previous theorem, for every A,C eM  (C),W/ (A) is star-shaped with

rArc) (A)nTr ©) as a star center, that is, for everyw €W/’ (A) and a<[0,1],
aw +(1_a)w EWCJ (A)

Letw, =Tr (Cqulul) and W, :Tr(CU 2’1A2U2), where A,A, €2 and U, and U,
are J-unitary matrices. Then there are two line segment, one with end points w, and

w, and the other with end points w, and w

. Because A is

Tr(A)Tr(C)
connected, so are the sets {Tr (A )| A € 2} and — | A e ;. Therefore, there

THAJTTC) pento IATT(C)

is a path joining w, to
n n

and finally tow ,.0

Now, if 20 is not connected, then WCJ (Ql) may also not be connected. See the two examples
below.

Example2.a)Let J =1, letC =E,,, let A =diag (1+i,1-i), let S, =conv {A,-A},
let S, =conv {A,—A +4l}, and let A=S,US,. Then 2 is star-shaped with star-center
A. Now,

W (3,)2W (3,)= W (A +(1-a)(-A))= | bW (a)

a<0.] be[-11]
Also, because
W (A)=W (-A+2l,)=conv {1-i 1+i},

we have

11
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W (S,)=W (S,)= JW (aA+(1-a)(-A+4l,))
ae[O,l]

= Jw ((1-2a)(-A+21,)+21,)

ae[O,l]

= J bW (-A+21,)+2

be[—l,l]

= [J bW (A)+2

oL
=W/ (S,)+2.
Thus,
WS (2)=W (S,US,)
=W (S,) UW (S,)
=conv {0,—1—i,-1+i} wconv {0,1-i,1+i,2} Uconv {2,3-i,3+i},
and W' (2() is not star-shaped.
b)Let J =1, letC =E;, let A =diag (1+i,1—i), and let 2A =conv {A,-A}.
Then
We' () =W (21)
= Uw (aA+(1-a)(-A))

ae[O,l]

- |J ow (A)

be[-11]
=conv {0,-1—i,-1+i} wconv {0,1—i,1+i}.

In the following, we check whether for a convex set QL,WCJ (Ql) is always star-shaped or

not. Nevertheless, before that we need a lemma, which expresses the star-shapeness of
W (=) according to certain states of 2 or C. From now on, we denote by SC¢ (A) the

set of all-star-centers of W. (A).
Lemma4. Let C e M and 2 be a convex matrix set.

a) If A contains ascalar matrix ml, thenW/ () is star-shaped with mTr (C ) asa
star-center.
b) Let

) [)SC(A)=2,

A e

12
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i) ﬁscg (A)=D.

In both cases, for every m e ﬂ{SCCJ (A)]|A e Q[} W' (2) is star-shaped with m as a star-
center.

c) IfTr(C)=0, thenW () is star-shaped with 0 as a star-center.

d) Ifforevery A e A, Tr(A)=t, thenW/ (2) is star-shaped with tTr (C ) asa star-
center.

e) Let A=conv {A,A,} andlet m eSCZ (A,)NSC{ (A,). Then W () is star-
shaped with m as a star-center.

Proof. a) Let ml =A, andlet A, €. Then
conv {mTr (C )W/ (A,)} cW( (conv {A,,A,}) W ().

b) For every w eW/ (2), there is B €2 such that w eW/ (B ). Because
m eSC¢ (B ), so the line segment joining m and w will lie in W/’ (B )W/ (%), and
part (i) follows. Part (ii) can be obtained from Helly’s Theorem and part (i).

c) The result follows from Theorem 5 and (b).

d) Because for every A e, Tr(A)=t, so ﬂ{SCé (A)]A eQ[} =tTr (C).
Now, the result follows from (b).

e) Assume that w €W (21). Then there are U, € 4
w =Tr(CU,"(aA, +(1-a)A,)U, ). It suffices to prove that

and a €[0,1] such that

r,n-r

conv {m,Tr (CU,"AU, ).Tr (CU"A U, )} W (21). )

Let U, el |
have

such that Tr (CUl_lAlUl)zm. Since m eSC¢ (A;)NSC¢ (A,), we

-r

conv {Tr(CU O*lAlUO),m} U conv {Tr(CU O’lAZUO),m} cW¢ ().
Furthermore,
conv {Tr (CU,'AU,).Tr (CU AU, )}
={Tr(CU* (@A, +(1-a)A,)U, ) [ac[01]} cw( (21).
Thus

13
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d =conv

/—’;T\
-

(CUS*AU,).Tr(CU AU, )|
U conv {Tr(Cuo’lAon),m}
weonv {Tr (CU'AU, ) m} W (21).

We need to prove equation (1).

If d is a line segment or a point, then equation (1) holds obviously. Suppose that d is
nondegenerate. Since il is path-connected, we define a continuous function

f:[01]->4, .,
f (0)=U,,
f (1)=U,.

For ae[0,1], we set
g (a):=conv {Tr (Cf (a) " Af (a))Tr (Cf () *Adf (a))]
conv {Tr(Cf (a) " Af (a))m]
conv {Tr(Cf (a) At (a))m}cw¢ ().
Also, we set
M :=max {a|w econv (g (k)), for all 0<k <a}.

For every W econv (g (0)) because

g (1) =conv {Tr (Cf (a) At (a)),m}
and g (1) degenerates, by the continuity of f, we have
weg(M)cw ()

and the result follows. O

Now, we are ready to present our theorem, which actually generalizes part (e) of the above
Lemma.

Theorem 7. Suppose that C € M, that S be a (finite or infinite) family of matrices in M
and that 2 =conv (S ). If m e (|SCZ (A), then W () is star-shaped with star-center

AeS
m.

14
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Proof. If S has two elements, then the result holds from Lemma 4. Assume that |S | >3 and
that w €W (). Then there exist S,,...,S, €S and a,,...,a >0 with a +---+a, =1
andU e 4l such that

w, =Tr(CU'S,U), i=1..,
w =Tr(CU @S, +-+aS, ) ).

Therefore, w econv {Wl,...,Wl } The half line through m and w intersects a line segment
joining some w; andw, with 1<i <k <I suchthatw econv {m,w, w,}. Now, again
Theorem 5 yields

conv {mw, w, } W/ (conv {S;,S, }) W/ ()

4. The joint J-C-numerical range

Many researchers have investigated the joint numerical range (see [9, 10, 11, 12]) and the
joint C-numerical range (see [2, 13, 14, 15]). Following them in the introduction and in

definition 2 for (A,,...,A, )€ M [, we introduce the joint J-C-numerical range as follows:
WS (A, A )={(Tr(CU "AU),...TrCU "AU))|U eM,, U =J |
— C~.
In this section, after stating a definition, we generalize this concept and study it.

Definition 3. Let C,A,,...,A, €M

n?

and consider the k-tuple K =(A,,...,A, ). Also, let

S be a nonempty subset of M : . We define J-C-numerical range of S as follows:

W (s)=U¢ (K)IK es |,
and we call it the generalized joint J-C-numerical range.
Obviously, if S ={K }, thenW/ (S)=W/ (K).
Now, we investigate the preliminary properties of the generalized joint J-C-numerical range.

Theorem 8. Let C € M, be a nonscalar matrix and let @ =S < M [.

a) ForeveryU el W/ (S)=W/(U7sU).

r,n-r?

b) Consider a,b € C with a0 and K =(A,,...,A, )eM \.

n

15
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i) For i=1..,k, we set B,=aA +bl. Then for every
L =(B,....B,)eM},

WS (L)=aw? (K )+bTr(C).
i)  Weset B=aC +b, then
W (K)=faW,,..w, )+b(Tr(A),..Tr (A ) | (Wy,...w, ) eWS (K)}.
c) IfCand A,,...,A, €K areJ-Hermitian, thenW. (K )W/ (S )gR".
d) IfSisbounded, thensois W (S).
e) IfSiscompact, thensoisW . (S).

f) IfSis connected, thensoisW . (S ).

Proof. Due to the generalized joint J-C-numerical range definition, Proposition 1 and
Theorem 2, parts (a)-(e) are proved.

f) For every K,L €S with K =(A,,...,A,) and L =(B,,...,B, ) and for J-

unitary matrices V ,,\V, € U there is a path joining U, with a €[0,1] joining V, and

r,n-r?

U,. Therefore, there is a path joining
(Tr(CVo AV, )....Tr (CV, AV, )
to
(Tr(Cv,"AV,)....Tr(CV,"AV,)),
which is connected to (Tr (CV,*BY, ),....Tr (CV, "BV, )) 0

Also, we have the following theorem to simultaneously describe the geometric form of
W' (S) and to identify S.

Theorem 9. Let C e M, is a nonscalar matrix and let & =S M : . Then the following
conditions hold:

a) ThesetW. (S) isapolygon {(w,,...w, )} eC* ifand only if

S ={(ml,,...m I )Tr(C)(m,...m )=(W,...w,)}.
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b) W/ (S)<R" if and only if C =diag (c,,...,c,) e R" with the ¢,J, pairwise
distinct, for 1 =1,...,n, and for every K =(A,,...,A, )e M, A 's(i =1,...,k)
are Hermitian matrices.

Proof. Part (a) is obvious and part (b) follows from [4, Theorem 5.2].0
Also, if C is a J-Hermitian and J-unitarily diagonalizable matrix, then one can write
W (A,....A )= C" inthe formW . (A, A, A A, ) = R?, where

111
J 1 # J 1 #
A, =Re’ (A )=§(AI +A]), A, =Im’ (A ):E(Al ~Af), =1k
The problem of determining conditions on S such that W (S ) is star-shaped still remains an

open and challenging problem. For example, Lau et al.[2] Showed that for
J=1,C :E11,81=(A1,Bl,ls) in which A, =diag (0,1,0) and B, =diag (1,0,—1),

and S,=(A,,B,,0;) in which A,=diag(10,0) and B,=diag(0,-11), if
S =conv {S,,S,}, then W (S)=W (S) is the union of the triangular disk with vertices

(1-a,aa), (aa-la), (01-2a,a)

and is not star-shaped. Hence, W (S ) may not be star-shaped in general.
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