

Available online at http://sanad.iau.ir/journal/ijim/ Int. J. Industrial Mathematics (ISSN 2008-5621) Vol. 16, No. 3, 2024 Article ID IJIM-1629, 19 pages Research Article

On J-C-Numerical Range and Its Generalizations

A. Janfada^{*}, M. Lashkaray

Department of Mathematics, University of Birjand, Avini, Birjand, South Khorasan, Iran.

Submission Date: 2022/12/23, Revised Date: 2024/06/15, Date of Acceptance: 2024/08/11

Abstract

In this paper, we study *J*-*C*-numerical range of a set or a tuple of matrices and investigate their basic properties. Also, we give the conditions of star-shapeness of *J*-*C*-numerical range. Finally, we generalize these results to a set of matrices.

Keywords: Joint numerical range, *C*-numerical range, *J*-*C*-numerical range, star-shaped, star-center.

^{*} Corresponding author: Email: ajanfada@birjand.ac.ir.

1. Introduction

Let M_n be the set of all $n \times n$ complex matrices. Toeplitz [1] defined the concept of the numerical range of $A \in M_n$ by

$$W(A) = \{x^*Ax \mid x \in \mathbb{C}^n, x^*x = 1\} \\ = \{Tr(Axx^*) \mid x \in \mathbb{C}^n, x^*x = 1\}$$

For a nonempty set \mathfrak{A} of matrices in M_n , Lau et al. [2] considered and investigated

$$W(\mathfrak{A}) = \bigcup \{ W(A) | A \in \mathfrak{A} \}.$$

Let

$$J = I_r \oplus (-I_{n-r}) = diag \left(1, \dots, 1, \underbrace{-1, \dots, -1}_{r}\right).$$

Clearly, J has r positive and n-r negative eigenvalues. The J-adjoint of $A \in M_n$ is defined by

$$\left[A^{\#}a,b\right] = \left[a,JAJb\right], \quad a,b \in \mathbb{C}$$

or equivalently, $A^{\#} = JA^{*}J$. A matrix *A* is called *J*-scalar, *J*-normal, *J*-unitary and *J*-Hermitian if it satisfies $A = mJ(m \in \mathbb{C})$, $A^{\#}A = AA^{\#}$, $A^{\#}A = AA^{\#} = I_{n}$, and $A = A^{\#}$, respectively. We denote by $\mathfrak{U}_{r,n-r}$ the group of all *J*-unitary matrices. If $A \in M_{n}$ is similar to a diagonal matrix, then *A* is said to be diagonalizable. For a matrix $C \in M_{n}$, Goldberg and Straus [3] defined the *C*-numerical range of $A \in M_{n}$ by

$$W_{C}(A) = \{Tr(CU^{*}AU) | U \text{ is unitary } \}.$$

For the standard basis $\{E_{11}, \dots, E_{nn}\}$ of M_n , if $C = E_{11}$, then $W_C(A) = W(A)$. For a nonempty set \mathfrak{A} of matrices in M_n , Lau et al.[2] introduced $W_C(\mathfrak{A})$ as follows:

$$W_{C}(\mathfrak{A}) = \bigcup \{ W_{C}(A) | A \in \mathfrak{A} \}.$$

Let $J = I_r \oplus (-I_{n-r}), 0 < r < n$, be a Hermitian involutive, that is, $J^2 = I$ and $J^* = J^{-1} = J$. Bebiano et al. [4] defined *J*-*C*-numerical range (or *J*-*C*-tracial range) as

$$W_{C}^{J}(A) = \{ Tr(CU^{-1}AU) | U \in M_{n}, U^{*}JU = J \},\$$

Where $A, C \in M_n(\mathbb{C})$. For $J = I_n$, we have $W_C^J(A) = W_C(A)$.

Following Lau et al. [2], we state the following definition.

Definition 1. Let $J = I_r \oplus (-I_{n-r}), 0 < r < n$, and $A, C \in M_n(\mathbb{C})$. For a nonempty set \mathfrak{A} of matrices in M_n , we have

$$W_{C}^{J}(\mathfrak{A}) = \bigcup \{ W_{C}^{J}(A) | A \in \mathfrak{A} \}.$$

Definition 2. If $A \in M_n$ is not *J*-Hermitian, then one may consider the *J*-Hermitian decomposition

$$A = Re^{J}(A) + iIm^{J}(A) = A_{1} + iA_{2},$$

Where

$$A_1 = Re^J(A) = \frac{1}{2}(A + A^{\#})$$

and

$$A_{2} = Im^{J}(A) = \frac{1}{2i}(A - A^{*})$$

are J-Hermitian. Now, we consider $W_C^J(A_1, A_2)$ as the joint J-C-numerical range of (A_1, A_2) defined by

$$W_{C}^{J}(A_{1},A_{2}) = \left\{ \left(Tr(CU^{-1}A_{1}U), Tr(CU^{-1}A_{2}U) \right) | U \in M_{n}, U^{*}JU = J \right\}.$$

Also, we define the joint *J*-*C*-numerical range of $(A_1, \ldots, A_k) \in M_n^k$ by

$$W_C^J(A_1,\ldots,A_k) = \left\{ \left(Tr(CU^{-1}A_1U),\ldots,Tr(CU^{-1}A_kU) \right) | U \in M_n, U^*JU = J \right\} \subseteq \mathbb{C}^k.$$

If $m \in \mathbb{C}$ and C = mI, then $W_{C}^{J}(A) = \{mTr(A)\}$ and

$$W_{C}^{J}\left(A_{1},\ldots,A_{k}\right)=\left\{m\left(Tr\left(A_{1}\right),\ldots,Tr\left(A_{k}\right)\right)\right\}.$$

So, we consider *C* to be not a scalar matrix.

This paper is organized as follows. In Section 2, we survey the elementary properties of $W_c^J(\mathfrak{A})$. In Section 3, we give the geometric properties of $W_c^J(\mathfrak{A})$ and generalize the conditions of star-shapeness for that. Finally, in Sections 4, we extend $W_c^J(\mathfrak{A})$ to joint *J*-*C*-numerical range and give some properties that can be concluded from $W_c^J(\mathfrak{A})$.

2. Elementary properties of *J*-*C*-numerical range

In this section, we give some basic results about *J*-*C*-numerical range and then investigate their generalization.

Proposition 1. Let $A, C \in M_n$. then the following properties hold:

- a) For every $U \in \mathfrak{U}_{r,n-r}, W_{C}^{J}(A) = W_{C}^{J}(U^{-1}AU).$
- b) For every $a, b \in \mathbb{C}, W_C^J(aI + bA) = aTr(CI) + bW_C^J(A)$.
- c) $W_{C^*}^J(A^*) = \overline{W_C^J(A)}.$
- d) $W_{C}^{J}(A) = W_{A}^{J}(C)$.
- e) $W_{C}^{J}(A)$ is a connected set.
- f) If A and C are J-Hermitian matrices, then $W_C^J(A) \subseteq \mathbb{R}$.

Proof. (a), (b), (c) and (d) immediately follow from definition of J-C-numerical range.

e) As $\mathfrak{U}_{r,n-r}$ is connected and $W_C^J(A)$ is the range of the continuous map from $\mathfrak{U}_{r,n-r}$ to \mathbb{C} , so $W_C^J(A)$ is a connected set in the complex plane.

f) For any $U \in \mathfrak{U}_{r,n-r}$, it follows from [5] that $\overline{Tr(CU^{-1}AU)} = Tr(CU^{-1}AU)$. Now, we generalize these properties to $W_C^J(\mathfrak{A})$, where $\emptyset \neq \mathfrak{A} \subseteq M_n$.

Theorem 2. Let $C \in M_n$ is a nonscalar matrix and let $\emptyset \neq \mathfrak{A} \subseteq M_n$.

- a) For every $U \in \mathfrak{U}_{r,n-r}$, we have $W_{C}^{J}(\mathfrak{A}) = W_{C}^{J}(U^{-1}\mathfrak{A}U)$.
- b) For every $a, b \in \mathbb{C}$, if

$$a\mathfrak{A} + b\mathbf{I} = \{ aA + bI \mid A \in \mathfrak{A} \},\$$

then

$$W_{C}^{J}(a\mathfrak{A}+bI) = aW_{C}^{J}(\mathfrak{A})+bTr(C)$$
$$= \{aw +bTr(C)|w \in W_{C}^{J}(\mathfrak{A})\}.$$

- c) If \mathfrak{A} is bounded, then so is $W_C^J(\mathfrak{A})$.
- d) If \mathfrak{A} is compact, then so is $W_{C}^{J}(\mathfrak{A})$.

Proof. (a) and (b) follows from Proposition 1(a) and (b), respectively.

c) If \mathfrak{A} is bounded, then there is B > 0 such that for every $A \in M_n$, we have ||A|| < B. Hence,

$$|Tr(CU^{-1}AU)| \le n ||C|| ||A|| < n ||C|| B.$$

Therefore, $W_{C}^{J}(\mathfrak{A})$ is bounded.

d) Since \mathfrak{A} is compact, so is bounded and closed. Hence, $W_C^J(\mathfrak{A})$ is also bounded, from (c). To prove that $W_C^J(\mathfrak{A})$ is closed, we suppose that $\{Tr(CU_i^{-1}A_iU_i) | i = 1, 2, ...\}$ is a sequence in $W_C^J(\mathfrak{A})$ converging to $w \in \mathbb{C}$, where $A_i \in \mathfrak{A}$ and $U_i \in \mathfrak{U}_{r,n-r}$, for each *i*. Because \mathfrak{A} is compact, there is a subsequence $\{A_{k_i} | k = 1, 2, ...\}$ of $\{A_i | i = 1, 2, ...\}$ of converging to $A_0 \in \mathfrak{A}$. Furthermore, We can consider a subsequence $\{U_{k_i} | k = 1, 2, ...\}$ of $\{U_i | i = 1, 2, ...\}$ converging to U_0 . Therefore, $\{Tr(CU_{k_i}^{-1}A_{k_i}U_{k_i}) | k = 1, 2, ...\}$ is converged to

$$Tr\left(CU_{0}^{-1}A_{0}U_{0}\right)=w_{0}\in W_{C}^{J}(\mathfrak{A}).$$

Thus, $W_{C}^{J}(\mathfrak{A})$ is closed, forcing $W_{C}^{J}(\mathfrak{A})$ is compact. \Box

Part (a) of the following example shows that the converse of (c) and (d) of the above theorem is not true in general.

Example 1. a) Let $C \in M_n$ is a nonscalar matrix whose trace is zero and let $\mathfrak{A} = \{mI \mid m \in \mathbb{C}\}$. Then $W_C^J(\mathfrak{A}) = \{0\}$ is compact and bounded, but \mathfrak{A} is not bounded.

b) Let

$$\mathfrak{A} = \left\{ diag\left(0, a + \frac{i}{a}\right) | a > 0 \right\} \cup \left\{ diag\left(0, 0\right) \right\}.$$

Then \mathfrak{A} is closed, but

$$W\left(\mathfrak{A}\right) = \left\{a + ib \mid a, b > 0, ab \le 1\right\} \cup \left\{0\right\}$$

is not closed.

Remark 1. a) For every $B \subseteq \mathbb{C}$, if $Tr(C) \neq 0$ and

$$\mathfrak{A} = \left\{ \frac{mI}{Tr\left(C\right)} \mid m \in B \right\},\$$

then $W_{C}^{J}(\mathfrak{A}) = B$. Therefore, the geometrical shape of $W_{C}^{J}(\mathfrak{A})$ may be quite arbitrary.

b) If
$$C = mI$$
 and $m \in \mathbb{C}$, then $W_C^J(\mathfrak{A}) = \{mTr(A) | A \in \mathfrak{A}\}$.

In both cases, we see that we do not have information about the matrices in \mathfrak{A} and the geometrical properties of $W_{C}^{J}(\mathfrak{A})$, but the following theorem provides conditions for the simultaneous description of the geometric properties of $W_{C}^{J}(\mathfrak{A})$ and the matrices in \mathfrak{A} .

Theorem 3. Let $C \in M_n$ is a nonscalar matric and let $\emptyset \neq \mathfrak{A} \subseteq M_n$. Then the following conditions hold:

- a) $W_{C}^{J}(\mathfrak{A}) = \{m\}, m \in \mathbb{C} \text{ if and only if } \mathfrak{A} = \{lI \mid lTr(C) = m\}.$
- b) The set $W_C^J(\mathfrak{A})$ is a subset of a straight-line L if and only if the following conditions hold:
- i) $\mathfrak{A} \subseteq \{ lI \mid l \in \mathbb{C}, lTr(C) \in L \}.$
- ii) $C = diag(c_1, ..., c_n) \in \mathbb{R}^n$ with the $c_i J_i$ pairwise distinct, where J_i denote the *i*th diagonal element of J, i = 1, ..., n and \mathfrak{A} is a set of *J*-Hermitian matrices.

Proof. Condition (a) follows from the fact that

$$W_{C}^{J}(\mathfrak{A}) = \{m\} \Leftrightarrow A = lI, lTr(C) = m.$$

b) For every $A \in \mathfrak{A}$ and $l \in \mathbb{C}$, let A = lI and $lTr(C) \in L$. Then obviously the result follows from the definition of $W_C^J(A)$. Conversely, let the set $W_C^J(\mathfrak{A})$ is a subset of a straight line *L*. If $\mathfrak{A} \subseteq \{lI \mid l \in \mathbb{C}\}$, then clearly $\mathfrak{A} \subseteq \{lI \mid l \in \mathbb{C}, lTr(C) \in L\}$ and (i) is proved.

Now, let \mathfrak{A} contains a nonscalar matrix A. Then (ii) follows from [4, Theorem 5.3]. \Box

We denote by $\sigma_J^{\pm}(A)$ the sets of the eigenvalues of A with eigenvectors v such that $v^*Jv = \pm 1$. We note that a *J*-Hermitian matrix A is *J*-unitarily diagonalizable if and only if every eigenvalue of A belongs either to $\sigma_J^+(A)$ or to $\sigma_J^-(A)$. In other word, $\sigma_J^+(A)$ (respectively, $\sigma_J^-(A)$) consists of r(respectively, n-r) eigenvalues. Let A be a *J*-Hermitian matrix and let

$$\begin{aligned} a_1, \dots, a_r &\in \sigma_J^+(A), \qquad a_1 \geq \dots \geq a_r, \\ a_{r+1}, \dots, a_n &\in \sigma_J^-(A), \qquad a_{r+1} \geq \dots \geq a_n, \\ c_1, \dots, c_r &\in \sigma_J^+(C), \qquad c_1 \geq \dots \geq c_r, \\ c_{r+1}, \dots, c_n &\in \sigma_J^-(C), \qquad c_{r+1} \geq \dots \geq c_n. \end{aligned}$$

The eigenvalues of A are called to not interlace if either $a_r > a_{r+1}$ or $a_n > a_1$. If this condition does not hold, then we say that the eigenvalues of A are interlace.

Bebiano et al. [6] showed that if either the eigenvalues of A or C interlace and

$$a_1 \neq a_n, \quad a_r \neq a_{r+1}, \quad c_1 \neq c_n, \quad c_r \neq c_{r+1},$$

then $W_{c}^{J}(A)$ is the whole real line.

Now, due to this notation, we have the following proposition to identify \mathfrak{A} and $W_{C}^{J}(\mathfrak{A})$.

Proposition 4. Let $\mathfrak{A} \subseteq M_n$. Then $W_C^J(\mathfrak{A}) \subseteq \mathbb{R}$ if and only if

- a) $C = diag(c_1, ..., c_n) \in \mathbb{R}^n$ with the $c_i J_i$ pairwise distinct for i = 1, ..., n and \mathfrak{A} is a set of Hermitian matrices.
- b) \mathfrak{A} is a set of nonscalar *J*-Hermitian and *J*-unitarily diagonalizable matrices of A_i 's and $C \in \mathfrak{A}$. Also, for k = 1, ..., n, let a_{i_k} and c_k be the eigenvalues of A_i 's and C, respectively, such that

$$\begin{aligned} &a_{i_1}, \dots, a_{i_r} \in \sigma_J^+(A_i), \qquad a_{i_1} \ge \dots \ge a_{i_r}, \\ &a_{i_{r+1}}, \dots, a_{i_n} \in \sigma_J^-(A_i), \qquad a_{i_{r+1}} \ge \dots \ge a_{i_n}, \\ &c_1, \dots, c_r \in \sigma_J^+(C), \qquad c_1 \ge \dots \ge c_r, \\ &c_{r+1}, \dots, c_n \in \sigma_J^-(C), \qquad c_{r+1} \ge \dots \ge c_n. \end{aligned}$$

If the eigenvalues of A_i 's and the eigenvalues of C do not interlace, then one of the following conditions holds:

a)
$$(a_{l_1} - a_{m_1})(c_{l_2} - c_{m_2}) < 0$$
, for all $1 \le l_1, l_2 \le r$, $r + 1 \le m_1, m_2 \le n$.
b) $(a_{l_1} - a_{m_1})(c_{l_2} - c_{m_2}) > 0$, for all $1 \le l_1, l_2 \le r$, $r + 1 \le m_1, m_2 \le n$.

Proof. The results follow by [4, Theorem 5.2] and [6, Proposition 2.1], respectively.□

3. Geometric interpretation for star-shapeness of *J-C*-Numerical range

After studying the properties of each concept, researchers always describe it geometrically. In this section, we study the star-shapeness of a matrix and a set of matrices.

Lemma 1[7, Lemma 1]. Consider $A, B \in M_n$ be partitioned as

$$A = \begin{bmatrix} a_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \quad and \quad B = \begin{bmatrix} b_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix},$$

where $a_{11}, b_{11} \in \mathbb{C}$. Then

$$Tr\left(A\begin{bmatrix}e^{-i\theta} & & \\ & 1 & \\ & \ddots & \\ & & 1\end{bmatrix}B\begin{bmatrix}e^{i\theta} & & \\ & 1 & \\ & & \ddots & \\ & & 1\end{bmatrix}\right)$$
$$=a_{11}b_{11}+Tr(A_{22}B_{22})+e^{i\theta}(A_{12}B_{21})+e^{-i\theta}(B_{12}A_{21}).$$

The locus of which, when θ runs from 0 to 2π , forms an ellipse centered at $a_{11}b_{11} + Tr(A_{22}B_{22})$ with length of major axis equal to $2(|A_{12}B_{21}| + |B_{12}A_{21}|)$.

We consider the following set:

$$SW_{C}^{J}(A) = \left\{ S \in M_{n} \mid W_{C}^{J}(S) \subseteq W_{C}^{J}(A), \text{ for all } C \in M_{n} \right\}.$$

Then for any unitary U, we have $SW_C^J(A) = SW_C^J(U^{-1}AU)$. If $S \in SW_C^J(A)$, then $U^{-1}SU \in SW_C^J(A)$.

Now, using this definition, we prove that *J*-*C*-numerical range is star-shaped, but before expressing it, we need some lemmas, which we present below.

Lemma 2. Let $S = (s_{ik}) \in SW_C^J(A)$, let $1 \le l \le n$, let $m \in [0,1]$, and let $T = (t_{ik})$ be defined by

$$t_{ik} = \begin{cases} ms_{ik} & \text{if exactly one of } i \text{ and } k \text{ equals } l, \\ s_{ik} & \text{otherwise.} \end{cases}$$

That is, *T* is obtained from *S* by multiplying *m* to the entries on the *l*th row and on the *l*th column, except for the (l, l) th entry of *S*. Then $T \in SW_{C}^{J}(A)$.

Proof. We assume, without loss of generality, that l = 1. For every *J*-unitary U_1 and U_2 and for every $\theta \in \mathbb{R}$, we set

$$w(U_{1},U_{2},\theta) \coloneqq Tr \left(\begin{pmatrix} U_{1}^{-1}CU_{1} \end{pmatrix} \begin{bmatrix} e^{-i\theta} & & \\ & 1 & \\ & & \ddots & \\ & & & 1 \end{bmatrix} \begin{pmatrix} U_{2}^{-1}SU_{2} \end{pmatrix} \begin{bmatrix} e^{i\theta} & & \\ & 1 & \\ & & \ddots & \\ & & & & 1 \end{bmatrix} \right).$$

Clearly, $w(U_1, U_2, \theta) \in \mathbb{C}$ and $w(U_1, U_2, \theta) \in W_C^J(S) \subseteq W_C^J(A)$. Since $\mathfrak{U}_{r,n-r}$ is path connected, we can choose two continuous functions

$$f_{U_1}, g_{U_2}: [0,1] \rightarrow \mathfrak{U}_{r,n-1}$$

such that $f_{U_1}(0) = U_1$, $g_{U_2}(0) = I$ and that both $f_{U_1}^{-1}(1)Cf_{U_1}(1)$ and $g_{U_2}^{-1}(1)Sg_{U_2}(1)$ are upper triangular. By using Lemma 1, for every $q \in [0,1]$, the points $w\left(f_{U_1}(q), g_{U_2}(q), \theta\right)$ form an ellipse E(q) when θ runs through 0 to 2π . Because both $f_{U_1}(q)$ and $g_{U_2}(q)$ are continuous, E(0) deforms continuously to become E(1) when q runs from 0 to 1. Since both $f_{U_1}^{-1}(1)Cf_{U_1}(1)$ and $g_{U_2}^{-1}(1)Sg_{U_2}(1)$ are upper triangular, it follows from Lemma 1 that the length of the major axis of the ellipse E(1) is zero; that is, E(1) degenerates into a single point. Let $p \in \mathbb{C}$ be any point in the interior of E(0). If p = E(1), then $p \in W_c^{-J}(S) \subseteq W_c^{-J}(A)$. If $p \neq E(1)$, then p must be swept across by some ellipse E(q)as E(0) is deformed to become the degenerating ellipse E(1) when q runs from 0 to 1. Thus, $p \in W_c^{-J}(S) \subseteq W_c^{-J}(A)$. The point

$$Tr\left(\left(U_{1}^{-1}CU_{1}\right)\begin{bmatrix}s_{11} & mS_{12}\\ mS_{21} & S_{22}\end{bmatrix}\right) = d_{11}s_{11} + Tr\left(D_{22}S_{22}\right) + m\left(D_{12}S_{21}\right) + m\left(S_{12}D_{12}\right)$$

where

$$U_{1}^{-1}CU_{1} = \begin{bmatrix} d_{11} & D_{12} \\ D_{21} & D_{22} \end{bmatrix}, \quad S = \begin{bmatrix} s_{11} & S_{12} \\ S_{21} & S_{22} \end{bmatrix}, \quad d_{11}, s_{11} \in \mathbb{C}, \quad m \in [0,1]$$

is in the interior of the ellipse E(0) and therefore is contained in $W_C^J(A)$. Because this is true for every *J*-unitary matrix U_1 and for every $C \in M_n$, so

$$\begin{bmatrix} s_{11} & mS_{12} \\ mS_{21} & S_{22} \end{bmatrix} \in SW_C^J(A).\Box$$

Lemma 3. Let $S \in SW_{c}^{J}(S)$. Then for every $a \in [0,1]$, the following conditions hold:

a)
$$aS + (1-a)diag(S) \in SW_{C}^{J}(A)$$
.
b) $aS + (1-a)\frac{Tr(A)}{n}I_{n} \in SW_{C}^{J}(A)$.

The statement (b) means that the set $SW_C^J(A)$ is star-shaped with respect to star-center $\frac{Tr(A)}{n}I_n$.

Proof. Let $S = (s_{ik}) \in SW_C^J(A)$ and $m \in [0,1]$ be such that $m^2 = a$. By repeatedly applying the result of Lemma 2 on *S* and considering $1 \le l \le n$, we obtain

$$aS + (1-a)diag(S) = (t_{ik}),$$

Where

$$t_{ik} = \begin{cases} s_{ik}, & i = k, \\ m^2 s_{ik}, & otherwise \end{cases}$$

is contained in $SW_{C}^{J}(A)$ and this prove (a).

It follows from [8, p. 77, Problem 3] that there exists J-unitary U such that

$$diag\left(U^{-1}SU\right) = \frac{Tr\left(S\right)}{n}I_{n}.$$

Now,

$$S \in SW_{C}^{J}(A) \Longrightarrow \{Tr(S)\} = W_{I}^{J}(S) \subseteq W_{I}^{J}(A) = \{Tr(A)\}.$$
$$\Longrightarrow Tr(S) = Tr(A).$$

Because $U^{-1}SU \in SW_{C}^{J}(A)$, so (a) implies that

$$T = a\left(U^{-1}SU\right) + (1-a)\frac{Tr(A)}{n}I_n = a\left(U^{-1}SU\right) + (1-a)diag\left(U^{-1}SU\right).$$

Thus

$$aS + (1-a)\frac{Tr(A)}{n}I_n = UTU^{-1} \in SW_C^J(A).\Box$$

Now, we provide our result about star-shapeness of J-C-numerical range.

Theorem 5. Let $A, C \in M_n(\mathbb{C})$. Then $W_C^J(A)$ is star-shaped with respect to star-center $\frac{Tr(A)Tr(C)}{n}$.

Proof. Let $w \in W_C^J(A)$, let $a \in [0,1]$ and let U be a *J*-unitary matrix such that $w = Tr(CU^{-1}AU)$. Because $A \in SW_C^J(A)$, so by Lemma 3(b), we have

$$S := aA + (1-a)\frac{Tr(A)}{n}I_n \in SW_C^J(A).$$

Therefore,

$$aw + (1-a)\frac{Tr(A)Tr(C)}{n} = Tr(CU^{-1}SU) \in W_{C}^{J}(S) \subseteq W_{C}^{J}(A).\Box$$

In Theorem 2, we gave some elementary properties of $W_C^J(\mathfrak{A})$. Now, by the star-shapeness of $W_C^J(\mathfrak{A})$ and connectivity of \mathfrak{A} , we have the following theorem.

Theorem 6. If \mathfrak{A} is connected, then so is $W_C^J(\mathfrak{A})$.

Proof. By previous theorem, for every $A, C \in M_n(\mathbb{C}), W_c^J(A)$ is star-shaped with $\frac{Tr(A)Tr(C)}{n}$ as a star center, that is, for every $w \in W_c^J(A)$ and $a \in [0,1]$,

$$aw + (1-a)\frac{Tr(A)Tr(C)}{n} \in W_C^J(A).$$

Let $w_1 = Tr(CU_1^{-1}A_1U_1)$ and $w_2 = Tr(CU_2^{-1}A_2U_2)$, where $A_1, A_2 \in \mathfrak{A}$ and U_1 and U_2 are *J*-unitary matrices. Then there are two line segment, one with end points w_1 and $\frac{Tr(A_1)Tr(C)}{n}$, and the other with end points w_2 and $\frac{Tr(A_2)Tr(C)}{n}$. Because \mathfrak{A} is connected, so are the sets $\{Tr(A) | A \in \mathfrak{A}\}$ and $\{\frac{Tr(A)Tr(C)}{n} | A \in \mathfrak{A}\}$. Therefore, there is a path joining w_1 to $\frac{Tr(A_1)Tr(C)}{n}$, then to $\frac{Tr(A_2)Tr(C)}{n}$ and finally to w_2 .

Now, if \mathfrak{A} is not connected, then $W_C^J(\mathfrak{A})$ may also not be connected. See the two examples below.

Example 2. a) Let $J = I_n$, let $C = E_{11}$, let A = diag(1+i, 1-i), let $S_1 = conv\{A, -A\}$, let $S_2 = conv\{A, -A + 4I_n\}$, and let $\mathfrak{A} = S_1 \cup S_2$. Then \mathfrak{A} is star-shaped with star-center A. Now,

$$W_{C}^{J}(S_{1}) = W(S_{1}) = \bigcup_{a \in [0,1]} W(aA + (1-a)(-A)) = \bigcup_{b \in [-1,1]} bW(A).$$

Also, because

$$W(A) = W(-A + 2I_n) = conv \{1-i, 1+i\},\$$

we have

$$W_{C}^{J}(S_{2}) = W(S_{2}) = \bigcup_{a \in [0,1]} W(aA + (1-a)(-A + 4I_{n}))$$

= $\bigcup_{a \in [0,1]} W((1-2a)(-A + 2I_{n}) + 2I_{n})$
= $\bigcup_{b \in [-1,1]} bW(-A + 2I_{n}) + 2$
= $\bigcup_{b \in [-1,1]} bW(A) + 2$
= $W_{C}^{J}(S_{1}) + 2.$

Thus,

$$W_{C}^{J}(\mathfrak{A}) = W(S_{1} \cup S_{2})$$

= $W(S_{1}) \cup W(S_{2})$
= $conv \{0, -1-i, -1+i\} \cup conv \{0, 1-i, 1+i, 2\} \cup conv \{2, 3-i, 3+i\},$

and $W_{C}^{J}(\mathfrak{A})$ is not star-shaped.

b) Let $J = I_n$, let $C = E_{11}$, let A = diag(1+i, 1-i), and let $\mathfrak{A} = conv \{A, -A\}$.

$$W_{C}^{J}(\mathfrak{A}) = W(\mathfrak{A})$$
$$= \bigcup_{a \in [0,1]} W(aA + (1-a)(-A))$$
$$= \bigcup_{b \in [-1,1]} bW(A)$$
$$= conv \{0, -1-i, -1+i\} \cup conv \{0, 1-i, 1+i\}.$$

In the following, we check whether for a convex set $\mathfrak{A}, W_{C}^{J}(\mathfrak{A})$ is always star-shaped or not. Nevertheless, before that we need a lemma, which expresses the star-shapeness of $W_{C}^{J}(\mathfrak{A})$ according to certain states of \mathfrak{A} or *C*. From now on, we denote by $SC_{C}^{J}(A)$ the set of all-star-centers of $W_{C}^{J}(A)$.

Lemma 4. Let $C \in M_n$ and \mathfrak{A} be a convex matrix set.

- a) If \mathfrak{A} contains a scalar matrix mI, then $W_C^J(\mathfrak{A})$ is star-shaped with mTr(C) as a star-center.
- b) Let

i)
$$\bigcap_{A_{i}\in\mathfrak{A}}SC_{C}^{J}(A_{i})\neq\emptyset,$$

ii)
$$\bigcap_{i=1}^{3} SC_{C}^{J}(A_{i}) \neq \emptyset.$$

In both cases, for every $m \in \bigcap \{SC_C^J(A) | A \in \mathfrak{A}\}, W_C^J(\mathfrak{A})$ is star-shaped with *m* as a starcenter.

- c) If Tr(C) = 0, then $W_C^J(\mathfrak{A})$ is star-shaped with 0 as a star-center.
- d) If for every $A \in \mathcal{A}$, Tr(A) = t, then $W_C^J(\mathfrak{A})$ is star-shaped with tTr(C) as a starcenter.
- e) Let $\mathfrak{A} = conv \{A_1, A_2\}$ and let $m \in SC_C^J(A_1) \cap SC_C^J(A_2)$. Then $W_C^J(\mathfrak{A})$ is starshaped with *m* as a star-center.

Proof. a) Let $mI = A_1$ and let $A_2 \in \mathfrak{A}$. Then

$$conv\left\{mTr\left(C\right), W_{C}^{J}\left(A_{2}\right)\right\} \subseteq W_{C}^{J}\left(conv\left\{A_{1}, A_{2}\right\}\right) \subseteq W_{C}^{J}\left(\mathfrak{A}\right).$$

b) For every $w \in W_c^J(\mathfrak{A})$, there is $B \in \mathfrak{A}$ such that $w \in W_c^J(B)$. Because $m \in SC_c^J(B)$, so the line segment joining *m* and *w* will lie in $W_c^J(B) \subseteq W_c^J(\mathfrak{A})$, and part (i) follows. Part (ii) can be obtained from Helly's Theorem and part (i).

c) The result follows from Theorem 5 and (b).

d) Because for every $A \in \mathfrak{A}$, Tr(A) = t, so $\bigcap \{SC_C^J(A) | A \in \mathfrak{A}\} = tTr(C)$. Now, the result follows from (b).

e) Assume that $w \in W_C^J(\mathfrak{A})$. Then there are $U_0 \in \mathfrak{U}_{r,n-r}$ and $a \in [0,1]$ such that $w = Tr(CU_0^{-1}(aA_1 + (1-a)A_2)U_0)$. It suffices to prove that

$$conv\left\{m,Tr\left(CU_{0}^{-1}A_{1}U_{0}\right),Tr\left(CU_{0}^{-1}A_{2}U_{0}\right)\right\}\subseteq W_{C}^{J}\left(\mathfrak{A}\right).$$
(1)

Let $U_1 \in \mathfrak{U}_{r,n-r}$ such that $Tr(CU_1^{-1}A_1U_1) = m$. Since $m \in SC_C^J(A_1) \cap SC_C^J(A_2)$, we have

$$\operatorname{conv}\left\{Tr\left(CU_{0}^{-1}A_{1}U_{0}\right),m\right\} \cup \operatorname{conv}\left\{Tr\left(CU_{0}^{-1}A_{2}U_{0}\right),m\right\} \subseteq W_{C}^{J}\left(\mathfrak{A}\right).$$

Furthermore,

$$conv \left\{ Tr \left(CU_{0}^{-1}A_{1}U_{0} \right), Tr \left(CU_{0}^{-1}A_{2}U_{0} \right) \right\} \\ = \left\{ Tr \left(CU_{0}^{-1} \left(aA_{1} + (1-a)A_{2} \right) U_{0} \right) \mid a \in [0,1] \right\} \subseteq W_{C}^{J} (\mathfrak{A}).$$

Thus

$$d = conv \left\{ Tr \left(CU_0^{-1}A_1U_0 \right), Tr \left(CU_0^{-1}A_2U_0 \right) \right\}$$
$$\cup conv \left\{ Tr \left(CU_0^{-1}A_1U_0 \right), m \right\}$$
$$\cup conv \left\{ Tr \left(CU_0^{-1}A_2U_0 \right), m \right\} \subseteq W_C^J (\mathfrak{A}).$$

We need to prove equation (1).

If d is a line segment or a point, then equation (1) holds obviously. Suppose that d is nondegenerate. Since $\mathfrak{U}_{r,n-r}$ is path-connected, we define a continuous function

$$f: [0,1] \to \mathfrak{U}_{r,n-r}$$
$$f(0) = U_0,$$
$$f(1) = U_1.$$

For $a \in [0,1]$, we set

$$g(a) \coloneqq conv \left\{ Tr \left(Cf(a)^{-1} A_{1}f(a) \right), Tr \left(Cf(a)^{-1} A_{2}f(a) \right) \right\}$$
$$\cup conv \left\{ Tr \left(Cf(a)^{-1} A_{1}f(a) \right), m \right\}$$
$$\cup conv \left\{ Tr \left(Cf(a)^{-1} A_{2}f(a) \right), m \right\} \subseteq W_{C}^{J}(\mathfrak{A}).$$

Also, we set

$$M := max \left\{ a \mid w \in conv \left(g \left(k \right) \right), for all \ 0 \le k \le a \right\}.$$

For every $w \in conv(g(0))$, because

$$g(1) = conv \left\{ Tr \left(Cf(a)^{-1} A_2 f(a) \right), m \right\}$$

and g(1) degenerates, by the continuity of f, we have

$$w \in g\left(M\right) \subseteq W_{C}^{J}\left(\mathfrak{A}\right)$$

and the result follows. \Box

Now, we are ready to present our theorem, which actually generalizes part (e) of the above Lemma.

Theorem 7. Suppose that $C \in M_n$, that *S* be a (finite or infinite) family of matrices in M_n and that $\mathfrak{A} = conv(S)$. If $m \in \bigcap_{A \in S} SC_C^J(A)$, then $W_C^J(\mathfrak{A})$ is star-shaped with star-center *m*.

Proof. If *S* has two elements, then the result holds from Lemma 4. Assume that $|S| \ge 3$ and that $w \in W_C^J(\mathfrak{A})$. Then there exist $S_1, \ldots, S_l \in S$ and $a_1, \ldots, a_l > 0$ with $a_1 + \cdots + a_l = 1$ and $U \in \mathfrak{U}_{r,n-r}$ such that

$$w_{i} = Tr(CU^{-1}S_{i}U), \quad i = 1,...,l$$

$$w = Tr(CU^{-1}(a_{1}S_{1} + \dots + a_{l}S_{l})U).$$

Therefore, $w \in conv \{w_1, ..., w_l\}$. The half line through *m* and *w* intersects a line segment joining some w_i and w_k with $1 \le i \le k \le l$ such that $w \in conv \{m, w_i, w_k\}$. Now, again Theorem 5 yields

$$conv \{m, w_i, w_k\} \subseteq W_C^J (conv \{S_i, S_k\}) \subseteq W_C^J (\mathfrak{A}).\Box$$

4. The joint *J*-*C*-numerical range

Many researchers have investigated the joint numerical range (see [9, 10, 11, 12]) and the joint *C*-numerical range (see [2, 13, 14, 15]). Following them in the introduction and in definition 2 for $(A_1, \ldots, A_k) \in M_n^k$, we introduce the joint *J*-*C*-numerical range as follows:

$$W_{C}^{J}(A_{1},...,A_{k}) = \left\{ \left(Tr(CU^{-1}A_{1}U),...,Tr(CU^{-1}A_{k}U) \right) | U \in M_{n}, U^{*}JU = J \right\}$$

$$\subset \mathbb{C}^{k}.$$

In this section, after stating a definition, we generalize this concept and study it.

Definition 3. Let $C, A_1, ..., A_k \in M_n$, and consider the *k*-tuple $K = (A_1, ..., A_k)$. Also, let *S* be a nonempty subset of M_n^k . We define *J*-*C*-numerical range of *S* as follows:

$$W_{C}^{J}(S) = \bigcup \Big\{ W_{C}^{J}(K) \mid K \in S \Big\},$$

and we call it the generalized joint *J*-*C*-numerical range.

Obviously, if $S = \{K\}$, then $W_C^J(S) = W_C^J(K)$.

Now, we investigate the preliminary properties of the generalized joint *J*-*C*-numerical range.

Theorem 8. Let $C \in M_n$ be a nonscalar matrix and let $\emptyset \neq S \subseteq M_n^k$.

- a) For every $U \in \mathfrak{U}_{r,n-r}, W_C^J(S) = W_C^J(U^{-1}SU).$
- b) Consider $a, b \in \mathbb{C}$ with $a \neq 0$ and $K = (A_1, \dots, A_k) \in M_n^k$.

- i) For i = 1, ..., k, we set $B_i = aA_i + bI$. Then for every $L = (B_1, ..., B_k) \in M_n^k$, $W_C^J(L) = aW_C^J(K) + bTr(C)$.
- ii) We set B = aC + b, then

$$W_{B}^{J}(K) = \{a(w_{1},...,w_{k}) + b(Tr(A_{1}),...,Tr(A_{k})) | (w_{1},...,w_{k}) \in W_{C}^{J}(K)\}.$$

- c) If C and $A_1, \ldots, A_k \in K$ are J-Hermitian, then $W_C^J(K), W_C^J(S) \subseteq \mathbb{R}^k$.
- d) If S is bounded, then so is $W_{C}^{J}(S)$.
- e) If S is compact, then so is $W_C^{J}(S)$.
- f) If S is connected, then so is $W_C^J(S)$.

Proof. Due to the generalized joint *J*-*C*-numerical range definition, Proposition 1 and Theorem 2, parts (a)-(e) are proved.

f) For every $K, L \in S$ with $K = (A_1, ..., A_k)$ and $L = (B_1, ..., B_k)$ and for *J*unitary matrices $V_0, V_1 \in \mathfrak{U}_{r,n-r}$, there is a path joining U_a with $a \in [0,1]$ joining V_0 and U_a . Therefore, there is a path joining

$$\left(Tr\left(CV_{0}^{-1}A_{1}V_{0}\right),\ldots,Tr\left(CV_{0}^{-1}A_{k}V_{0}\right)\right)$$

to

$$\left(Tr\left(CV_{1}^{-1}A_{1}V_{1}\right),\ldots,Tr\left(CV_{1}^{-1}A_{k}V_{1}\right)\right),$$

which is connected to $\left(Tr\left(CV_1^{-1}B_1V_1\right),\ldots,Tr\left(CV_1^{-1}B_kV_1\right)\right)$.

Also, we have the following theorem to simultaneously describe the geometric form of $W_{C}^{J}(S)$ and to identify S.

Theorem 9. Let $C \in M_n$ is a nonscalar matrix and let $\emptyset \neq S \subseteq M_n^k$. Then the following conditions hold:

a) The set $W_C^J(S)$ is a polygon $\{(w_1, \dots, w_k)\} \in \mathbb{C}^k$ if and only if $S = \{(m_1I_n, \dots, m_kI_n) | Tr(C)(m_1, \dots, m_k) = (w_1, \dots, w_k)\}.$

b) $W_{C}^{J}(S) \subseteq \mathbb{R}^{k}$ if and only if $C = diag(c_{1},...,c_{n}) \in \mathbb{R}^{n}$ with the $c_{l}J_{l}$ pairwise distinct, for l = 1,...,n, and for every $K = (A_{1},...,A_{k}) \in M_{n}^{k}, A_{i}$'s(i = 1,...,k) are Hermitian matrices.

Proof. Part (a) is obvious and part (b) follows from [4, Theorem 5.2]. □

Also, if *C* is a *J*-Hermitian and *J*-unitarily diagonalizable matrix, then one can write $W_C^J(A_1,...,A_k) \subseteq \mathbb{C}^k$ in the form $W_C^J(A_{11},A_{12},...,A_{k1},A_{k2}) \subseteq \mathbb{R}^{2k}$, where

$$A_{l1} = Re^{J}(A_{l}) = \frac{1}{2}(A_{l} + A_{l}^{*}), \quad A_{l2} = Im^{J}(A_{l}) = \frac{1}{2i}(A_{l} - A_{l}^{*}), \quad l = 1, \dots, k.$$

The problem of determining conditions on *S* such that W(S) is star-shaped still remains an open and challenging problem. For example, Lau et al.[2] Showed that for $J = I_n, C = E_{11}, S_1 = (A_1, B_1, I_3)$ in which $A_1 = diag(0, 1, 0)$ and $B_1 = diag(1, 0, -1)$, and $S_2 = (A_2, B_2, O_3)$ in which $A_2 = diag(1, 0, 0)$ and $B_2 = diag(0, -1, 1)$, if $S = conv \{S_1, S_2\}$, then $W_C^J(S) = W(S)$ is the union of the triangular disk with vertices

$$(1-a,a,a), (a,a-1,a), (0,1-2a,a)$$

and is not star-shaped. Hence, W(S) may not be star-shaped in general.

References

- Toeplitz, O. (1918), "Das algebraische Analogon zu einem Satze von Fejér", Mathematische Zeitschrift, Vol. 2 No. 1, pp. 187-197. <u>https://doi.org/10.1007/BF01212904</u>
- [2] Lau, P. S., Li, C. K., Poon, Y. T. and Sze, N. S. (2019), "The generalized numerical range of a set of matrices", Linear Algebra and its Applications, Vol. 563, pp. 24-46. <u>https://doi.org/10.1016/j.laa.2018.09.023</u>
- [3] Goldberg, M. and Straus, E. G. (1977), "Elementary inclusion relations for generalized numerical ranges", Linear Algebra and its Applications, Vol. 18 No. 1, pp. 1-24. <u>https://doi.org/10.1016/0024-3795(77)90075-1</u>
- [4] Bebiano, N., Lemos, R., Da Providencia, J. and Soares, G. (2004), "On generalized numerical ranges of operators on an indefinite inner product space", Linear and Multilinear Algebra, Vol. 52 No. 3-4, pp. 203-233. https://doi.org/10.1080/0308108031000134981
- [5] Nakazato, H., Bebiano, N. and da Providência, J. (2008), "The J-numerical range of a J-Hermitian matrix and related inequalities", Linear algebra and its applications, Vol. 428 No. 11-12, pp. 2995-3014. <u>https://doi.org/10.1016/j.laa.2008.01.027</u>
- [6] Bebiano, N., Lemos, R., Da Providência, J. and Soares, G. (2005), "On the geometry of numerical ranges in spaces with an indefinite inner product", Linear algebra and its applications, Vol. 399, pp. 17-34. <u>https://doi.org/10.1016/j.laa.2004.04.021</u>
- [7] Cheung, W. S. and Tsing, N. K. (1996), "The C-numerical range of matrices is starshaped", Linear and Multilinear Algebra, Vol. 41 No. 3, pp. 245-250. http://dx.doi.org/10.1080/03081089608818479
- [8] Horn, R. A. and Johnson, C. R. (1985), "Matrix analysis", Cambridge university press.
- [9] Au-Yeung, Y. H. and Poon, Y. T. (1979), "A remark on the convexity and positive definiteness concerning Hermitian matrices", Southeast Asian Bull. Math, Vol. 3 No. 2, pp. 85-92. <u>https://faculty.sites.iastate.edu/ytpoon/files/inline-files/02.pdf</u>
- [10] Binding, P. and Li, C. K. (1991), "Joint ranges of Hermitian matrices and simultaneous diagonalization", Linear algebra and its applications, Vol. 151, pp. 157-167. <u>https://doi.org/10.1016/0024-3795(91)90361-Y</u>
- [11] Gutkin, E., Jonckheere, E. A. and Karow, M. (2004), "Convexity of the joint numerical range: topological and differential geometric viewpoints", Linear Algebra and its Applications, Vol. 376, pp 143-171. <u>https://doi.org/10.1016/j.laa.2003.06.011</u>
- [12] Li, C. K. and Poon, Y. T. (2000), "Convexity of the joint numerical range", SIAM Journal on Matrix Analysis and Applications, Vol. 21 No. 2, pp 668-678. <u>https://doi.org/10.1137/S0895479898343516</u>

- [13] Au-Yeung, Y. H. and Tsing, N. K. (1983), "An extension of the Hausdorff-Toeplitz theorem on the numerical range", Proceedings of the American Mathematical Society, Vol. 89 No. 2, pp. 215-218. <u>http://dx.doi.org/10.2307/2044904</u>
- [14] Chien, M. T. and Nakazato, H. (2013), "Strict convexity of the joint c-numerical range", Linear Algebra and its Applications, Vol. 438 No. 3, pp 1305-1321. <u>http://dx.doi.org/10.1016/j.laa.2012.09.004</u>
- [15] Choi, M. D., Li, C. K. and Poon, Y. T. (2003), "Some convexity features associated with unitary orbits", Canadian Journal of Mathematics, Vol. 55 No. 1, pp. 91-111. http://dx.doi.org/10.4153/CJM-2003-004-x