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Abstract

This paper presents a new inventory model for deteriorating items, allowable shortages, and stochastic
inflationary conditions, considering a belief-rule-base inventory control (BRB-IC) method. This is a
new insight in comparison with the previous research, which considers a belief-rule-based inventory
control under nonstationary demand. The Genetic Algorithm and exact methods have been considered
for minimizing the objective function. The numerical example and a sensitivity analysis provided to
illustrate the theoretical results.
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1 Introduction

F
rom the emergence of classical studies in the

field of scientific management which dates

back to the first and second decades of last cen-

tury, the topic of inventory controlling and how

to decide on that, was one of the most significant

concerns of the managers and until now, exten-

sive efforts have been made in this field and var-

ious models for inventory controlling have been

presented (Fareghian & Rahimzadeh, 2017)[1].

Most of the models which were presented at early
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stages, were relatively simple and as far as possi-

ble, they tried to simplify the facts and also they

assumed the parameters of the models as deter-

ministic quantities but the real world is compli-

cated and attaining the certain and deterministic

data, is a daunting task.

The majority of inventory controlling problems,

take place in industrial, distribution and service

areas, where the demand is dynamic and also non-

deterministic (Treharne & Sox, 2002) [2]. The

reasons for dynamic demand are: (1.1) a multi-

stage of product life-cycle (Metan & Thiele, 2008

[3]; Song & Zipkin, 1993 [4]), (1.2) technological

advances and breakthroughs and short products

life (Bertsimas & Thiele, 2006a [5]; Giannoccaro,

Pontrandolfo [6], & Scozzi, 2003 [7]; Song & Zip-

kin, 1993) [4], (1.3) impacts related to the seasons

(Zipkin, 1989 [40]), (1.4) unstable desires of cus-

tomers (Bertsimas & Thiele, 2006a [5]), (1.5) un-
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steady economic conditions (Song & Zipkin, 1993

[4]) and (1.6) exchange rate changes (Scheller-

Wolf & Tayur, 1997) [8]. It is impossible to avoid,

that the future demand will origin from a distri-

bution that is different from what governs histor-

ical demand (Scarf, 1958) [9].

In the past, researches and studies in the inven-

tory controlling with dynamic and unsteady de-

mand merely concentrated on stochastic method-

ologies with specific demand models. For exam-

ple, in the sequential periods, demands were spec-

ified by various well-known distributions (Bol-

lapragada & Morton, 1999 [10]; Gavirneni &

Tayur, 2001 [11]; Karlin, 1960 [12]; Morton, 1978

[13]; Tarim & Kingsman, 2006[14]; Veinott, 1966

[15]), dynamic Markov decision processes (Iida,

1999 [16]; Song & Zipkin, 1993 [4]; Treharne &

Sox, 2002 [2]) and autoregressive, moving average

or mixed autoregressive-moving average processes

(Johnson & Thompson, 1975 [17]; Lee, Padman-

abhan, & Whang, 1997 [18]; Lee, So, Tang, 2000

[19]; Raghunathan, 2001 [20]. Also, an innova-

tive merged framework for forecasting and inven-

tory management for short-cycle products was

provided by Kurawarwala and Matsuo (1996)

[21] for the first time. Also by using stochas-

tic methodologies, demand-price related prob-

lems, were modeled and formulated (Federgruen

& Heching, 1999 [22]; Gallego & van Ryzin, 1994

[23]). (Ghoreishi, Mirzazadeh, Weber& Nakhai-

Kamalabadi, 2015 [24]) developed an economic

order quantity model for non-instantaneous de-

teriorating items with selling price and inflation

induced demand under the effect of inflation and

customer returns. In which the customer returns

are assumed as a function of demand and price.

Also, (Gholami, Mirzazadeh, 2018 [25]) studied

the inventory management literature regarding

the models with controllable lead time, and ob-

served that an accurate demand distribution is of-

ten skewed to the right for many items and fitting

the normal distribution to the random demand

may cause a great financial loss for an inventory

system. (Kouki, Zied Babai, Jemai, and Minner,

2018 [26]) proposed a continuous-review full-lost

sale base stock inventory model in which uncer-

tain demand follows the compound Poisson dis-

tribution. Also, (Kim and Sarkar, 2017 [27] pro-

posed a joint replenishment inventory model with

multistage quality improvement and lead time-

dependent ordering cost.

Although, in practical and real inventory prob-

lems, attaining the precise knowledge about the

demand such as stochastic distribution and time

series data, is really hard and not realistic (Bertsi-

mas & Thiele, 2006a[5]; Petrovic, Petrovic, & Vu-

josevic, 1996 [28]). It is obvious that, on the basis

of unrealistic assumptions, inventory controlling

strategies, do not have any result except poor and

not effective performances. Therefore, there is

a strong need and desire to devise new alterna-

tive non-probabilistic inventory control strategies

with slight and limited data. By completely ig-

noring the stochastic hypotheses, Fuzzy mathe-

matical programming (Dey & Chakraborty, 2009

[29]; Li, Kabadi, & Nair, 2002 [30]; Petrovic et

al., 1996 [28]; Roy & Maiti, 1997 [31]; Yao &

Su, 2000 [32]) and Robust counterpart optimiza-

tion (RCO) (Bertsimas & Thiele, 2006a [5], 2006b

[33]) have been studied to deal with uncertain

inventory problems. In these studies, with ne-

glecting historical demand, a set of forecasting

demands is modeled in forms of fuzzy sets or

intervals and so optimal decisions and policies,

are acquired on the foundation of the finite fu-

ture planning periods. Also, systems based on

fuzzy logic are suggested to work out inventory

control problems with fuzzy forecasting demand

(Hung Fang, Nuttle, & King, 1997 [34]; Kamal &

Sculfort, 2007 [35]; Leung, Lau, & Kwong, 2003

[36]), but the fuzzy rules mentioned in the re-

lated literature have a big problem. They just

considered qualitative expert knowledge without

surveying quantitative expert knowledge and his-

torical demand. Another way of conventional ap-

proximation approach is to change completely the

indistinct and non-deterministic forecasting de-

mand into single-point value based on the data

and preferences of the manager (Gen, Tsujimura,

& Zheng, 1997 [7]), then use stochastic approxi-

mation approach to create and develop ”optimal”

inventory control policies. But this approach has

a drawback, it does not take account of demand

uncertainty fully and therefore, mentioned opti-
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mal policies are not very reliable and trustwor-

thy. Also (A. Mirzazadeh, 2011 [37]) stated that

the inventory models, generally, are derived with

considering two methods: minimizing the average

annual cost, and minimizing the discounted cost.

Then he compares the optimal ordering policies

determined by these methods under uncertain in-

flationary situations. (Sheng, Zhu & Wang, 2018

[38]) considered a production-inventory problem

involving uncertain data with constraints that

the production rates are restricted to an appro-

priate interval. (Prak and Teunter, 2019 [39])

proposed a framework for addressing forecasting

uncertainty that is applicable to any inventory

model, demand distribution, and parameter es-

timator. (Ganyakmaz, Ozekici & Fikri, 2019

[40]) proposed and investigate a multi-period, sin-

gle item, periodic-review inventory control model

where they explicitly model a continuous-time

stochastic input price process which determines

both purchase and selling prices and consequently

influences the customer demand.

Moreover, except dynamic and non-deterministic

demand, the majority of the models in the liter-

ature, are based on the definite planning horizon

into the future which leads to that, the quantity

of order for the forthcoming period can be con-

siderably affected by forecasts for far periods and

it is obvious that, for the distant periods, fore-

casting is hardly and rarely reliable (Mellichamp

& Love, 1978 [41]). So based on these draw-

backs and considerations, we propose a belief-

rule-based inventory control (BRB-IC) method

according to the current inventory, historical de-

mand data, and necessary and obligatory short-

term forecasting demand. The method is devel-

oped and formed from the decision support mech-

anism of belief-rule-based inference methodology

–RIMER (Yang, Liu, Wang, Sii, & Wang, 2006

[42]; Yang, Liu, Xu, Wang, & Wang, 2007 [43])

which is built and derived based on the eviden-

tial reasoning (ER) approach (Yang, 2001; Yang

& Sen, 1994 [44]; Yang& Singh, 1994 [44]; Yang

& Xu, 2002a [45]; Yang & Xu, 2002b [46]) and

rule-based expert system. RIMER is a modeling

and inference program under uncertain and non-

deterministic conditions which is combined with a

belief-rule structure. It has been applied in many

cases such as graphite content detection (Yang

et al., 2006, 2007 [42]), pipeline leak detection

(Chen, Yang, Xu, Zhou, & Tang, 2011 [47]; Xu et

al., 2007 [43]; Zhou, Hu, Xu, Yang, & Zhou, 2011

[48]; Zhou, Hu, Yang, Xu Zhou, 2009 [49]), clini-

cal guideline (Kong, Xu, Liu, & Yang, 2009 [18]),

nuclear safeguards assessment (Liu, Ruan, Wang,

& Martinez, 2009 [50]), new product development

and evolvement (Tang, Yang, Chin, Wong, & Liu,

2011 [51]), system sustainability and reliability

prediction (Hu, Si, & Yang, 2010 [52]), and gyro-

scopic drift prediction (Si, Hu, Yang, & Zhang,

2011 [38]). It is noteworthy that the BRB-IC

method can build a knowledge-based framework

for inventory control and also can deal with differ-

ent kinds of uncertain data. It can help experts

and decision-makers to change the construction

of belief-rule-base and also update and improve

it by using their judgmental knowledge. Also,

this method is easy for implementation and un-

derstanding while it does not need heavy com-

putational efforts. (Nodoust, Mirzazadeh & We-

ber, 2017 [53] assumed this kind of inflation in an

inventory system which is a production inspec-

tion system with returning unsatisfying items for

being reworked. (Zhou, Dou, Sun, Jiang& Tan,

2017 [54]) proposed a sustainable decision-making

model is proposed for the evaluation of engine

manufacturing. (Zichang He& Wen Jiang, 2018

[55]) propose a new belief Markov chain model

combining Dempster-Shafer evidence theory and

The discrete-time Markov chain. In their model,

the uncertain data are allowed to be handled in

the form of interval number, and the basic proba-

bility assignment is generated by an optimization

method based on the distance between interval

numbers. (Liu, Deng& Chan, 2018 [56]) propose

a systematic method to select a supplier. ANP

and entropy weight is adapted to calculate sub-

jective and objective weight separately. In order

to get a comprehensive weight, DEMATEL and

game theory are combined. They used Dempster-

Shafer theory to deal with the uncertainties of

input data and get the best supplier. (Zichang

He& Wen Jiang,2018 [55]) proposed an eviden-

tial Markov (EM) decision-making model based
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on Dempster- Shafer evidence theory and Markov

modeling to address this issue and to model

the real human decision-making process maker.

(Mi Zhou, Xin-Bao Liu, Yu-Wang Chen, Jian-Bo

Yang, 2018 [57]) suggested the ER rule is gen-

eralized to deal with Multiple attribute decision-

making problems in group decision-making cir-

cumstance where the weights and reliabilities

of both experts and attributes are considered.

(Asoke Kumar Bhunia et al, 2017 [58]) Devel-

oped an economic production lot size model for

a production-inventory system of manufacturing

firm which consists of three departments (produc-

tion, Marketing, and Research& Development).

They assumed that demand is to be dependent

on both the selling price and marketing cost of

the product. ( AbuDahab, Xu& Chen, 2016 [59])

They extended the original belief rule-based infer-

ence methodology using the evidential reasoning

approach by introducing generalized belief rules

as knowledge representation scheme and using the

evidential reasoning rule for evidence combina-

tion in the rule-based inference methodology in-

stead of the evidential reasoning approach. In

this paper, we have assumed nonstationary and

uncertain demand. Also, a detailed analysis has

been done for surveying the effect of uncertain in-

flationary conditions on the optimal ordering pol-

icy under stochastic inflationary conditions and

arbitrary probability density functions for the in-

ternal and external inflation rates. Deteriorating

items and shortages have been considered. Since

the definitive method was a defect, we used the

genetic method. Because the demand values ob-

tained from the model are in the interval, to solve

a definite method, the value of the function is

also calculated as an interval. In order to ob-

tain our definitive number, we have calculated

the average demand and based on that the value

of the function was calculated. For this reason,

we used the genetic method to solve this problem

and after calculations, it turned out that the re-

sults obtained from the genetic method are bet-

ter than the definitive method, which is shown

in the following sections. A numerical example

and a sensitivity analysis are used to illustrate

the model. The rest of the paper is organized as

follows. The assumptions and notations of the

inventory model considered are described in sec-

tion 2. The concept of belief structure and ER

approach are presented in section 3. Section 4

represents the formulation and description of the

proposed inventory model. Section 5 represents

the solution procedure. The results of parame-

ter tuning and numerical examples are presented

than in section 6. In section 7 we presented the

sensitivity analysis in order to show the validity

of the algorithm.

1. Assumptions and Notations

(a) Assumptions:

The mathematical model in this paper is devel-

oped based on the following assumptions:

1. The demand rate is uncertain as a belief

structure.

2. Lead time is negligible. Also, the initial and

final inventory level is zero.

3. The Shortage is allowed and fully backlogged

except for the final cycle.

4. The replenishment is instantaneous and lead

time is zero.

5. The initial inventory level is zero.

6. The system operates for prescribed time-

horizon of length H.

7. A constant fraction of the on-hand inven-

tory deteriorates per unit time, as soon as

the item is received into inventory.

1. (a) Notations:

Also, the following notations are used:

ETV C(n, k): The total present value of costs

over the time horizon;

TI(n, k): The total quantity of goods in ware-

house over time horizon;

T : The interval of time between replenishment;

k: The proportion of time in any given inventory

cycle which orders can be filled from the existing

stock;
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n: The number of replenishments during time

horizon;

im: Internal (for m=1) and external (for m=2)

inflation rates;

f(im): The pdf of im;

r: The discount rate;

D: The demand rate per unit time;

A: The ordering cost per order at time zero;

cIm: The internal (for m=1) and external (for

m=2) inventory carrying cost (for I=1) and short-

age cost (for I=2) per unit time at time zero;

p: The external purchase cost at time zero;

θ: The constant deterioration rate;

Mim(Y ): The moment generating function of im
for m=1 and m=2;

H: The fixed time horizon;

Other notations will be introduced later. It is

assumed that the length of the planning horizon

isH=nT , Where, n is an integer for the number

of replenishments to be made during periodHand

T is an interval of time between replenishments.

The unit of time can be considered as a year, a

month, a week, etc. and k(0 ≺ k ≤ 1) is the

proportion of time in any given inventory cycle

which orders can be filled from the existing stock.

Thus, during the time interval[(j − 1)T, jT ], the

inventory level leads to zero and shortages occur

at the time(j + k − 1)T . Shortages are accumu-

lated until jTbefore they are back ordered and

are not allowed in the last replenishment cycle.

The optimal inventory policy yields the ordering

and shortage points, which minimize the total ex-

pected inventory cost over the time horizon.

1. Belief- rule- based inventory control

method

Most of the traditional models for inventory con-

trol are based on a definite planning horizon into

the future. These methods consistently incorpo-

rate the tacit assumption that demand forecasts

are relatively accurate, which results in that the

order quantity for the future period can be sig-

nificantly affected by forecasts for distant peri-

ods. However, the forecasting for distant peri-

ods is hardly reliable. Inventory strategies should

well be based on the current inventory, historical

demand information and necessary short- term

forecasting demand. Besides, there is a need to

develop an inventory control model that does not

rely on the stochastic hypothesis and meanwhile

can handle various types of uncertain information

common in real life inventory control processes.

With those considerations, we propose a belief-

rule-based inventory control method which inher-

its the information processing ability of RIMER

and allows the incorporation of human knowledge

and historical demand information to derive reli-

able inventory control strategy. The belief-rule-

based expert system is a deployment of tradi-

tional rule-based systems and is capable of repre-

senting more complicated causal relationship and

handling different types of uncertain information.

3.1. Demand assessment

In this paper, the case of having an evaluation of

many decision makers about the demand rate is

studied. Each member mentions an idea with a

belief degree. For better understanding, define a

set of M decision makers as follows:

D = {D1D2D3...Dn...DM} . (1.1)

Suppose the relative weights of the decision mak-

ers wherewi is the relative weight forDiand is nor-

malized which0 ≺ wi ≺ 1 an equation (1.2) is

fulfilled.
M∑
i=1

wi = 1. (1.2)

TABLE 1. Belief structure.
DM ... Di ... D1

H1 β1,1 ... β1,i ... β1,M
... ... ... ... ... ...

Hn βn,1 ... βn,i ... βn,M
... ... ... ... ... ...

HN βN,1 ... βN,i ... βN,M

De-

fine N unique values Hi as probable values of

inflation, presented by decision makers.

H = {H1H2H3...Hi...HN} (1.3)

βn,i Shows the probable degree that nth decision

maker assigns to the ith value of inflation. So βn,i
is a belief degree that:

N∑
n=1

βn,i ≤ 1, βn,i ≥ 0. (1.4)
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The evaluation is considered to be complete if:

N∑
n=1

βn,i = 1. (1.5)

And it is called to be incomplete if:

N∑
n=1

βn,i ≺ 1 (1.6)

For example, decision maker Dn shows that the

rate of inflation is Hiby the belief degree of βn,i
and so on each member gives a slight degree for

each value of a set H. Table 1 has been built

to show this fact. The components of the first

column are probable values of inflation and the

first row has the members of the decision maker

team. βn,i denotes the probable degree that the

nth decision maker assigns to theith value of

inflation. Each member can specify his numerical

opinion in any way, complete or incomplete.

The team members can also say that they do

not have any specific idea about someone. This

condition leads to an incomplete evaluation since

in this condition the sum of the belief degrees

for the member is not equal to 1. In the cases

which sum of all columns is equal to 1, we have

the complete assessment. Decision making under

such condition is with a high uncertainty because

it is so hard to use inflation in solving the model

with this structure. To deal with and solve this

problem, a method based on Dempster-Shafer

evidence theory is presented called Evidential

Reasoning (ER) approach with aggregating these

belief degrees with using the relative weights

of decision makers and the probable values of

inflation. The method is demonstrated in the

next section.

3.2. Evidential Reasoning method

Letmn,i be a basic probability mass which is cal-

culated as follows:

mn,i = wiβn,i. (1.7)

Let mH,i be the remaining probability mass un-

allocated to each decision makerDi, mH,i is cal-

culated as follows:

mH,i = 1−
N∑

n=1

mn,i = 1− wi

N∑
n=1

βn,i. (1.8)

DecomposemH,i, intom̃H,i andm̄H,i as follows:

m̄H,i = 1− wi (1.9)

m̃H,i = wi(1−
N∑

n=1

βn,i) (1.10)

With:

mH,i = m̄H,i + m̃H,i. (1.11)

The evaluation of decision makers that make the

general property is aggregated to build a single

assessment of a general property. The probability

masses allocated to the different assessments as

well as the probability mass left unallocated are

denoted by:

mn,Q(L), (n = 1, ..., N), m̄H,Q(L), m̃H,Q(L).

and:

mH,Q(L).

LetQ(1.1) = 1, then we get

mn,Q(1) =

mn,1, (n = 1, ..., N), m̄H,Q(1) =

m̄H,1, m̃H,Q(1) = m̃H,1 (1.12)

mH,Q(1) = mH,1. (1.13)

The merged probability masses can be generated

by aggregating all the probability assignments us-

ing the following recursive ER algorithm:

{Hn} : (n = 1, ..., N)mn,Q(i+1) =

vQ(i+1)

[
mn,Q(i)mn,i+1 +mH,Q(i)mn,i+1 +mn,Q(i)mH,i+1

]
.

(1.14)

n = 1, ..., N. (1.15)

We continue to leti = 1, which results in (1.15):

{H} :

mH,Q(i+1) = m̄H,Q(i+1) + m̃H,Q(i+1) (1.16)

m̃H,Q(i+1) =

vQ(i+1)

[
m̃H,Q(i)m̃H,i+1 + m̄H,Q(i)

m̃H,i+1 + m̃H,Q(i)m̄H,i+1

]
(1.17)

m̄H,Q(i+1) = vQ(i+1)

[
m̄H,Q(i)m̄H,i+1

]
(1.18)
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vQ(i+1) =1− N∑
s=1

N∑
j=1,j ̸=s

ms,I(i)mj,i+1

−1

, i = {1, 2, ...,M − 1} (1.19)

vQ(1.2)as calculated by (1.19) is used to

normalizemn,Q(1.2), mH,Q(1.2)so that

N∑
n=1

mn,Q(2) +mH,Q(2) = 1. (1.20)

Letβn denotes the combined degree of belief eval-

uated toHn which is produced by merging the as-

sessments for all the decision makers.βnis then

calculated by:

{Hn} :

βn =
mn,Q(M)

1− m̄H,Q(M)
, (n = 1, ..., N) (1.21)

{H} :

βH =
m̃H,Q(M)

1− m̄H,Q(M)
. (1.22)

Consider some relative importance for probable

values of inflation which is called Utility func-

tions. For instance,u(Hn)(n = 1, ..., N) is the rel-

ative importance ofHnwhich is a number between

0 and 1.

Now, the utilities of u(Hn)(n = 1, ..., N) are

estimated via utility functionsu(Hn)provided we

have some beliefβH left unallocated in the assess-

ments we can somehow arbitrarily calculate an

utility interval for the quantities ofHnbeing eval-

uated. This interval is calculated as follows:

umax = (βN +βH)u(HN )+
N−1∑
n=1

βnu(Hn). (1.23)

umin = (β1 + βH)u(H1) +
N∑

n=2

βnu(Hn). (1.24)

uavg =
umin + umax

2
(1.25)

The inflation value after aggregating the decision

makers ideas by ER approach is led to become an

interval number called [umin, umax].

Demonstrating the inflation by an interval num-

ber and using the interval arithmetic, the objec-

tive function for profit is altered to related multi-

objective functions. These functions are mini-

mized and solved by Maple software which is rep-

resented in the next section.

Under the hypotheses of complete assessment, the

utility of values of Hn is calculated as a single

point according to

u =

N∑
n=1

βnu(Hn). (1.26)

But the aim of this research is the incomplete

assessment which deals with the interval inflation

value. The inventory model, considered in this

paper is shown in the next section.

1. The mathematical formulation:

The objectives of the problem can be explained

as follows (A.Mirzazadeh, 2013):

1. Minimization of the expected present value

of costs over the time horizon

MinZ1 = ETV C(n, k) (1.27)

Let ECP, ECH, ECS and ECR denote the ex-

pected present value of the purchasing, carry-

ing, shortage and replenishment costs, respec-

tively. The detailed analysis of each cost function

is given as follows:

4.1. Expected present value of the pur-

chasing cost

During any given period, the order quantity is

consisting of both demand and deterioration for

the relevant period excluding shortage part of the

period and the amount required to satisfy the

demand during the shortage period in the pre-

ceding time interval. For the jth cycle, (j =

1, 2, ...., n − 1)the expected present value of the

purchase cost can be formulated as follows:
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ECPj−1 =

E

[
pe−R2(j−1)T

∫ (k+j−1)T

(j−1)T
Deθ(t−(j−1)T )dt

+pe−R2jT

∫ jT

(k+j−1)T
Ddt

]
= E

[
pD

[
e−R2(j−1)T (eθkT − 1)/

+e−R2jT (1− k)T
]]

for : j = 1...n− 1, R2 = r − i2. (1.28)

The above equation can be rewritten as:

ECPj−1 =

(pD/θ)e(1−j)rT (eθkT − 1)Mi2((j − 1)T )

+ pDT (1− k)e−rjTMi2(jT )

for : j = 1, ..., n− 1 (1.29)

In the last period shortages are not allowable,

therefore the expected present value of the pur-

chase cost is:

ECPn−1 =

E

[
pe−R2(n−1)T

∫ nT

(n−1)T
Deθ(t−(n−1)T )dt

]
= E

[
(pD/θ)e−R2(n−1)T (eθT − 1)

]
(1.30)

whereR2 = r − i2. It can similarly be rewritten

as

ECPn−1 = (pD/θ)e−r(n−1)T (eθT−1)Mi2((n−1)T )

(1.31)

Therefore, the total purchase cost for all cycles

can be written as follows:

ECP = ECPn−1 +

n−1∑
j=1

ECPj−1 (1.32)

4.2. Expected present value of the inven-

tory cost

The inventory carrying cost is divided into in-

ternal (for m=1) and external (for m=2) classes.

The carrying cost for the jth cycle (j =

1, 2, ...., n− 1) for the mth class (m=1,2) is:

ECHjm =

E[c1m

∫ (k+j−1)T

(j−1)T
(t−(j−1)T )De−Rmteθ(t−(j−1)T )dt]

= c1mDE

(t− 1

θ −Rm
)
e−Rmt+θ(t−(j−1)T )

θ −Rm

∣∣∣∣∣
(k+j−1)T

(j−1)T

− (j − 1)T

θ −Rm
e−Rmt+θ(t−(j−1)T )

∣∣∣∣(k+j−1)T

(j−1)T

]

= c1mDE

[
e−Rm(k+j−1)T+θkT

(θ −Rm)2
(k(θ −Rm)− 1)+

e−Rm(j−1)T

(θ −Rm)2
] =

c1mDE[
e−Rm(j−1)T (1 + e(θ−Rm)kT (kT (θ −Rm)− 1))

(θ −Rm)2
]

for : j = 1, ..., (n− 1), Rm = r − im,m = 1, 2.
(1.33)

In the last period for the mth class (m=1,2) from

similar machinations we have:

ECHnm =

E

[
c1m

∫ nT

(n−1)T
(t− (n− 1)T )De−Rmteθ(t−(n−1)T )dt

]

ECHnm =

c1mDE(
e−Rm(n−1)T (1 + e(θ−Rm)T ((θ −Rm)T − 1))

(θ −Rm)2

(1.34)

for : Rm = r − im,m = 1, 2 (1.35)

In the last period the inventory level comes to

zero at the end of period. The total internal and

external carrying costs for all cycles can be given

as follows:

ECH =

2∑
m=1

n−1∑
j=1

ECHjm +

2∑
m=1

ECHnm (1.36)

4.3. Expected present value of the short-

ages cost
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The expected present value of the shortages cost

for the j-th cycle (j = 1, 2, ...., n− 1) for the m-th

class (m=1,2) can be computed as:

ECSjm = E

[
c2m

∫ jT

(k+j−1)T
(jT − t)De−Rmtdt

]

= c2mDE

[[
e−Rmt

−Rm
(jT − t− 1

Rm
)

]jT
(k+j−1)T

]
= c2mDE[

e−RmjT

Rm
2

− e−Rm(k+j−1)T

−Rm
((1− k)T − 1

−Rm
)

]
= c2mDE[

e−RmjT (1 + ((1− k)RmT − 1)e−RmT (k−1))

Rm
2

]
WhereRm = r − im. It can be rewritten as

ECSjm =

c2mDE(
e−RmjT + ((1− k)RmT − 1)e−RmT (k+j−1)

Rm
2

)

(1.37)

for : j = 1, ..., (n− 1), Rm = r − im,m = 1, 2

(1.38)

The total shortages cost during the entire plan-

ning horizon H can be written as follows:

ECS =
2∑

m=1

n−1∑
j=1

ECSjm (1.39)

4.4. Expected present value of the ordering

cost

The expected present value of the ordering cost

for replenishment at time (j-1)T for the j-th cycle

is:

ECRj = Ae−rjTmi1(jT )for : j = 1, ..., n− 1

(1.40)

The total replenishment cost can be given as fol-

lows:

ECR =

n−1∑
j=0

ECRj (1.41)

Hence, the total expected inventory cost of the

system during the entire planning horizon H is

given by:

ETV C(n, k) = ECP + ECH + ECS + ECR

(1.42)

The objective is to determine the optimal values

of T and kto minimize ETV C(n, k)

1. SOLUTION PROCEDURE

This section discusses the solution procedure of

optimization problems for the expected present

value of costs over the time horizon. Many

researchers have successfully used metaheuristic

methods to solve complex optimization problems

in different fields of scientific and engineering dis-

ciplines. Some of these algorithms are simulated

annealing, tabu search, genetic algorithm, par-

ticle swarm optimization, ant colony optimiza-

tion, differential evolution, among others. Among

these algorithms, the widely used efficient al-

gorithms genetic algorithm (GA) and particle

swarm optimization (PSO) have been applied to

solve the optimization problem. In this paper,

the genetic algorithm (GA) is employed. On the

other hand, we used the definitive method. That

means: The problem is determiningnandkto lead

the minimum of the total expected inventory sys-

tem cost. For a given value ofn, the necessary

condition of optimality is as follows:

dETV C(n,k)
dk =

PDT
∑n−1

j=1[
e((1−j)r+θk)TMi2((j − 1)T )− e−rjTMi2(jT )

]
+
∑2

m=1

[
c1mDKT 2e−r(k−1)T+θkT∑n−1

j=1

[
e−rjTMim((k + j − 1)T )

]]
+
∑2

m=1

[
c2mDT 2(k − 1)∑n−1

j=1

[
e−rT (k+j−1)Mim(T (k + j − 1))

]]
= 0

(1.43)

The iterative methods such as newton method

can be used for calculatingk. The second- order

condition for a minimum is:

d2ETV C(n,k)
dk2

=

pDθT 2
∑n−1

j=1

[
e((1−j)r+θk)TMi2((j − 1)T )

]
+
∑2

m=1

[
c1mDT 2∑n−1

j=1 E
[
(1 + kT (θ −Rm))e(−Rm(k+j−1)+θk)T )

]]
+
∑2

m=1

[
c2mDT 2∑n−1

j=1

[
E
[
e−Rm(k+j−1)T (TRm(1− k) + 1)

]]]
≻ 0

(1.44)

1. NUMERICAL EXAMPLE
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Following example is providing according to the

results. The internal and external inflation rates

have the normal distribution function with means

ofµ1 = 0.08andµ2 = 0.14, standard deviations of

σ1 = 0.04andσ2 = 0.06, respectively. From the

above formulations and the demand assessment

which was represented as an interval numberD =

{5362.705, 6115.185} . In the previous section,

the average demand rate is 5738.945. The com-

pany interest rate is 20% per annum, the dete-

rioration rate of the on-hand inventory per unit

time is 0.01 and the length of time horizon is 10

years.

r = 0.2;H = 10years; θ = 0.01

The system costs at the beginning of time horizon

arec11 = 0.2; c12 = 0.4; c21 = 0.8; c22 = 0.6;

p = 5; A = 100.

6.1. Definitive methods

Using these parameter values, the optimal solu-

tion of the models is obtained and the results are

shown in Table 2.

Table 2. Optimal solution for numerical example
N K ETVC(n,k)

5 0.683993 495623.89

10 0.684074 474264.84

20 0.684190 453965.20

30 0.684317 447413.12

40 0.684440 444777.96

50 0.684590 443763.56

55 0.684689 443592.14

56 0.684761 443576.89

57 0.684814 443567.67

58* 0.684824 443563.49

59 0.684842 443564.76

60 0.684893 443571.16

80 0.684923 444433.14

100 0.684951 446133.56
The minimum cost over the time horizon is

443563.49 for n∗ = 58andk∗ = 0.684824. Opti-

mal interval of time between replenishment,T ∗,

equals toH/n∗ = 0.175year. The shortages occur

after elapsing 68.5% of the cycle time.

6.2. Genetic method

The minimum cost over the time horizon is

418276.81 for n∗ = 66andk∗ = 0.6843. Optimal

interval of time between replenishment,T ∗, equals

to H/n∗ = 0.151year. The shortages occur after

elapsing 69.9% of the cycle time.

1. SENSITIVITY ANALYSIS

To study the effects of system parameters changes

H,θ,D,r, µ1, µ2, σ1, σ2, A, p, c11, c12, c21 and

c22on the optimal cost, the replenishment time

and k∗ which is derived by the proposed method,

a sensitivity analysis was performed. This fact

is done by increasing the parameters by 20, 50 ,

100% and decreasing the parameters to 20, 50 ,

90%, taking each one at a time and keeping the re-

maining parameters at their original values. The

following conclusion in definitive methods can be

derived from the sensitivity analysis based on Ta-

ble 3.

Table 3. Effects of changes in model parame-

ters on n, k and optimal expected system cost

in definitive method.

1. As the mean of the internal inflation rate

increases, the number of replenishments (n)

decrease and k increases. By increasing the

mean of the external inflation rate, increase

the number of replenishments (n) and k.

The optimal expected present value of cost

(ETVC) increases whenµ1 andµ2increase but

highly sensitive toµ2. Induction of this result

is the purchase cost increasing by external

inflation rate is more than other cost com-

ponents.

2. Table 2 shows that the optimal value of k and

the number of replenishments (n) are insen-

sitive to changes in the standard deviations

of inflation rates.

3. The number of replenishments (n) is

highly sensitive to the change of the

parametersD,Aand H, is little sensitive to

changes in c12 and insensitive to changes in

r,p,θ, c11, c12, c21 andc22.

4. The optimal value of k is highly sensitive to

the change of the parameters c12, c21 and

c22 is moderately sensitive to r and c11 is

sensitive top,θ,D,A andH.
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Table 1: Results.

-90% -50% -20% 0% 20% 50% 100%
D N 18 41 52 58 63 72 85

K 0.683736 0.684672 0.684785 0.684824 0.684856 0.684889 0.684920
ETVC 48074.75 225380.13 356492.20 443563.49 530456.23 660551.84 876931.68

r N 15 44 45 58 61 64 67
K 0.785769 0.759842 0.735691 0.684824 0.667734 0.643124 0.591374
ETVC 847245.73 782135.62 599785.19 443563.49 354192.56 266804.83 170526.81

1 N 60 59 58 58 58 57 55
K 0.669269 0.675729 0.680031 0.684824 0.688929 0.694403 0.701356
ETVC 443257.35 443259.41 443462.61 443563.49 443644.33 443728.91 443911.42

2 N 47 49 53 58 61 65 69
K 0.670108 0.674419 0.679781 0.684824 0.690695 0.702305 0.719432
ETVC 227898.19 333779.60 439668.73 443563.49 503585.13 613682.32 784054.18

1 N 58 58 58 58 58 58 58
K 0.684834 0.684829 0.684824 0.684824 0.684824 0.684824 0.684814
ETVC 443542.25 443546.53 443555.73 443563.49 443576.15 443609.31 443639.43

2 N 58 58 58 58 58 58 58
K 0.678875 0.680179 0682935 0.684824 0.687511 0.693437 0.709420
ETVC 443389.73 443416.91 443489.36 443563.49 443681.12 443752.93 443864.21

θG N 58 58 58 58 58 59 60
K 0.688705 0.686877 0.685284 0.684824 0.683963 0.682178 0.681337
ETVC 443030.21 443272.58 443398.95 443563.49 443694.42 443833.23 444082.91

H N 12 22 37 58 75 99 120
K 0.695427 0.691205 0.687206 0.684824 0.683019 0.681574 0.679892
ETVC 64123.59 224397.89 352286.57 443563.49 517942.78 600969.70 682578.66

p N 29 46 54 58 62 66 71
K 0.704788 0.695807 0.689513 0.684824 0.680197 0.675629 0.665841
ETVC 51298.62 226795.08 357059.62 443563.49 529869.34 659032.50 873698.44

A N 185 85 66 58 53 47 41
K 0.685032 0.684974 0.684883 0.684824 0.684795 0.684713 0.684675
ETVC 431639.77 438466.31 441726.49 443563.49 445223.55 447472.74 450760.21

C11 N 56 57 58 58 59 60 61
K 0.761019 0.724817 0.696380 0.684824 0.673266 0.656935 0.631448
ETVC 442847.34 443183.42 443416. 63 443563.49 443705.23 443907.45 444219.14

C12 N 50 56 57 58 59 61 64
K 0.853212 0.764884 0705783 0.684824 0.656142 0.607722 0.563087
ETVC 441193.93 443037.49 443148.58 443563.49 443935.31 443924.18 445101.16

C21 N 58 58 58 58 58 58 59
K 0.531705 0.604053 0.641868 0.684824 0.706413 0.739442 0.771060
ETVC 443440.35 443505.70 443542.94 443563.49 443582.74 443604.97 443637.71

C22 N 58 58 58 58 58 58 59
K 0.539767 0.617053 0.670509 0.684824 0.705723 0.732830 0.768933
ETVC 443438.13 443504.29 443541.90 443563.49 443582.80 443605.90 443637.98
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5. The total expected inventory cost of the sys-

tem is highly sensitive to the changes in the

parametersD,r,Handpinsensitive to θ, c11,

c12, c21, c22 and A.

The following conclusion in Genetic methods can

be derived from the sensitivity analysis based on

Table 4.

Table 4. Effects of changes in model parameters

on n, k and optimal expected system cost in Ge-

netic method

In this table, we only look at changes in the criti-

cal parameters that were obtained from the previ-

ous table. And we found that the values obtained

through the genetic method are more accurate

and appropriate than the previous one.

1. SOME PARTICULAR CASES

In this section, an attempt has been made to

study some important special cases of the model.

Case 1: If the internal and external inflation

rates have the same pdf, the expected present

value of the total costETV C(n, k) can be ob-

tained by deleting
∑2

m=1in Eq. and substituting:

c1m = c1, Rm = R, im = i, for : I; 1, 2andm = 1, 2

(1.45)

The previous numerical example assumes that the

inflation rate has the normal distribution func-

tion with the mean of µ = 0.11and the stan-

dard deviation ofσ = 0.05. The optimal solution

in this case as follows:n∗ = 49, k∗ = 0.685109,

ETV C(n, k) = 39195.46andT ∗ = 0.204year. The

number of replenishment and inventory system

cost decrease and k increases.

Case 2: If shortages are not allowed, k=1 and

the expected present worth of the total variable

costETV C(n) can be obtained. The minimum

solution of ETV C(n) for the discrete variable of

n must satisfy the following equation:

ETV C(n) ≤ 0 ≤ ETV C(n+ 1) (1.46)

WhereETV C(n) = ETV C(n) − ETV C(n − 1).

In the numerical example, using the above in-

equality, the following solution is obtained:n∗ =

69,ETV C(n) = 45596.73and T ∗ = 0.144year. It

shows that nand ETV C(n)increase in the with-

out shortages case.

Case 3: If available inventory has no deteriora-

tion (θ = 0) over time the cost function, after

modeling, may be rewritten as follows:

ETV C(n, k, θ = 0) =

A

n−1∑
j=0

[
e−rjTMi1(jT )

]
+ pDT

[
e−rT (n−1)Mi2((n− 1)T )

+

n−1∑
j=1

[
ke−rT (j−1)Mi2((j−1)T )−(k−1)e−rjTMi2(jT )

]]

+

2∑
m=1

[
c1mD

[n−1∑
j=1

E
[e−Rm(j−1)T (1− e−RmkT (kTRm + 1)

Rm
2

]
+ E

[e−Rm(n−1)T (1− e−RmT (TRm + 1))

Rm
2

]]]
+

2∑
m=1

n−1∑
j=1[

c2mDE
[e−RmjT + ((1− k))RmT − 1)e−RmT (k+j−1)

Rm
2

]]
(1.47)

The cost function can be minimized by the

methods indicated in this study. For a given value

of n, the necessary condition of optimality is:

dETV C(n, k, θ = 0)

dk

= pDT

n−1∑
j=1

[
e−rT (j−1)Mi2((j−1)T )−e−rjTMi2(jT )

]
+

2∑
m=1

[
c1mDkT 2e−rT (k−1)

n−1∑
j=1

[
e−rjTMim((k + j − 1)T

]]
+

2∑
m=1

[
c2mDT 2(k − 1)

n−1∑
j=1

[
e−rT (k+j−1)Mim(T (k + j − 1))

]]
= 0 (1.48)



O. Tehranian et al., /IJIM Vol. 5, No. 2 (2023) 79-94 91

Table 2: Results.

-90% -50% -20% 0% 20% 50% 100%
r N 50 57 64 66 68 69 70

K 0.69 0.69 0.68 0.68 0.68 0.67 0.64
ETVC 1225596.17 740342.61 520664.35 418276.81 337227.55 250139.22 159786.90

H N 2 30 47 66 76 109 138
K 0.69 0.69 0.68 0.68 0.68 0.66 0.65
ETVC 9235.94 184391.43 333463.40 418276.81 485626.32 563043.18 638878.12

A N 146 89 68 66 55 49 44
K 0.66 0.66 0.68 0.68 0.68 0.68 0.69
ETVC 404391.58 411428.27 414837.62 418276.81 418724.88 421063.70 424730.84

And the sufficient condition is the second deriva-

tive is positive. In this case, the numerical

result is obtained as follows:n∗ = 58,K∗ =

0.685146,ETV C(n, k) = 44319.44and T ∗ = 0.172

year. Thus ETV C(n) is decreased, k is increased

and n is not changed in comparison to the main

model.

Case 4: Now assume that the internal and exter-

nal inflation rates have the same pdf, no shortages

allowed andθ = 0. This may be solved by using

Eq. (1.47) and (1.48), substituting k = 1 and

considering (1.45).therefore, the optimal solution

is as follows:n∗ = 62,ETV C(n, k) = 41389.45and

T ∗ = 0.161year.

1. Conclusions

In order to deal with the inventory control prob-

lem under nonstationary and uncertain demand,

a belief-rule-base inventory control method was

suggested in this paper. Unlike traditional meth-

ods that make ordering policies based on a def-

inite planning horizon into the future whose re-

sulting order quantity for the forthcoming period

can be importantly affected by inoperative fore-

casts for distant periods, the belief-rule-base in-

ventory control method makes policies according

to current inventory, historical demand data and

necessary short-term forecasting demand. Also,

this model considers an inventory model with

stochastic internal and external inflation rates

for deteriorating items, allowable shortages, and

stochastic inflationary conditions. Usually, in

the inventory systems under inflationary condi-

tions, it has been assumed that inflation rates are

constant over the planning horizon. But, many

economic, political, social and cultural variables

may also affect the future changes in the infla-

tions rate. Therefore, assuming constant infla-

tion rates is not valid, especially when the time

horizon is more than two years. As shown, Since

the definitive method was a defect, we used the

genetic method. Because the demand values ob-

tained from the model are in the interval, to solve

a definite method, the value of the function is

also calculated as an interval. In order to ob-

tain our definitive number, we have calculated

the average demand and based on that the value

of the function was calculated. For this reason,

we used the genetic method to solve this problem

and after calculations, it turned out that the re-

sults obtained from the genetic method are bet-

ter than the definitive method. The numerical

examples have been given and sensitivity anal-

ysis has been conducted to illustrate the theo-

retical results. The results of sensitivity analysis

indicate that which of the parameters are more

sensitive to the optimal solution. Also, the re-

sults indicate the importance of taking into ac-

count stochastic inflation, especially when there

is considerable uncertainty associated with infla-

tion rates. Finally, four special cases have been

discussed identical inflation rates, no shortages

situation, no deterioration and considering all the

three cases simultaneously. These cases are com-

pared with the main model through the numerical

example.
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