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Abstract

The primary aim of this paper is to investigate useful generalizations of the classical concept of action
of a hyperstructure on a non-empty set. The main goal is to develop the theory of dynamical system
to the theory of n-ary dynamical hypersystem. We also give some principal properties of an n-ary
dynamical hypersystem.
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1 Introduction

T
he main motivation for the work in this pa-

per is the study of the theory of n-ary dy-

namical hypersystem. Algebraic hyperstructures

were introduced by F. Marty [31] in 1934. One

of the first books, dedicated especially to hyper-

groups is “Prolegomena of Hypergroup Theory”,

written by P. Corsini in 1993 [8]. Another book

on “Hyperstructures and Their Representations”

was published one year later [31]. A recent book

on these topics is “Applications of Hyperstructure

Theory”, written by P. Corsini and V. Leoreanu

[9], see also [14, 15].

Definitions and theorems about hyperstructure

and applications that are needed along our study
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and can be found in the References. When good

references are available, we may not include the

details of all the introduction and proofs.

We use [2, 8, 9, 12, 21, 35] and summarize the

general preliminary definitions of algebraic hyper-

structures.

Definition 1.1. Let H be a non-empty set. Let

P∗(H) be the set of all non-empty subsets of H,

we define the concepts of hyperoperation, semi-

hypergroup, hypergroup, Hv-group and regular hy-

pergroup as following:

(i) A hyperoperation on H is defined as a map

⊗ : H ×H −→ P∗(H). The couple (H,⊗) is

called a hypergroupoid. If X and Y are non-

empty subsets of H, then we denote X⊗Y =∪
x∈X, y∈Y x⊗y, a⊗X = {a}⊗X and X⊗

a = X ⊗ {a}, where a ∈ H.

(ii) A hypergroupoid (H,⊗) is called a semi-

hypergroup if we have (x⊗y)⊗z = x⊗(y⊗z)
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for all x, y, z of H, which means∪
u∈x⊗y

u⊗ z =
∪

v∈y⊗z
x⊗ v.

(iii) We say that a semi-hypergroup (H,⊗) is a

hypergroup if we have x ⊗H = H ⊗ x = H

for all x ∈ H.

A hypergroupoid (H,⊗) is an Hv-group, if

for all x, y, z ∈ H, the following conditions

hold:

(1) x⊗ (y ⊗ z) ∩ (x⊗ y)⊗ z ̸= ∅ (weak associa-

tivity),

(2) x⊗H = H ⊗ x = H (reproduction axiom).

(iv) A hypergroupoid (H,⊗) is said to be commu-

tative (or abelian ) if x⊗ y = y ⊗ x for all

x, y ∈ H.

(v) A hypergroup (H,⊗) is called regular if it has

at least an identity, that is an element e of

H, such that for all x ∈ H,x ∈ e⊗ x ∩ x⊗ e

and each element has at least one inverse,

that is if x ∈ H, then there exists x′ ∈ H

such that e ∈ x ⊗ x′ ∩ x′ ⊗ x. The set of all

identities of H is denoted by E(H)

(vi) If x ∈ H, il(x) = {x′ : e ∈ x′⊗x} is the set of

all left inverses of x in H (resp. ir(x)) and

i(x) = il(x) ∩ ir(x).

(vi) A regular hypergroup (H,⊗) is called re-

versible if for all (x; y; a) ∈ H3:

(1) y ∈ a⊗x, then there exists a′ ∈ i(a) such

that x ∈ a′ ∩ y;
(2) y ∈ x⊗a, then there exists a′′ ∈ i(a) such

that x ∈ y ⊗ a′′.

(vii) Let (H,⊗) be an Hv-group and K be a non-

empty subset of H. Then K is called an Hv-

subgroup of H if (K,⊗) is an Hv-group.

(iix) Let (H,⊗) be a hypergroup, K a non-empty

subset of H. We say that K is invertible to

the left if the implication y ∈ K ⊗ x =⇒ x ∈
K ⊗ y valid. We say K is invertible if K is

invertible to the right and to the left.

Proposition 1.1. If (H,⊗) is a hypergroup such

that E(H) ̸= ϕ; and K is an invertible subhyper-

group of it, then E(H) ⊆ K.

Definition 1.2. Let (H1, ·), (H2, ∗) be two Hv-

groups. A map f : H1 → H2 is called an Hv-

homomorphism or a weak homomorphism if f(x ·
y) ∩ f(x) ∗ f(y) ̸= ∅ for all x, y ∈ H1.

The map f is called an inclusion homomorphism

if f(x · y) ⊆ f(x) ∗ f(y) for all x, y ∈ H1.

Finally, f is called a strong homomorphism if

f(x · y) = f(x) ∗ f(y) for all x, y ∈ H1.

If f is onto, one to one and strong homomor-

phism, then it is called an isomorphism. In this

case, we write H1
∼= H2. Moreover, if the domain

and the range of f are the same Hv-group, then

the isomorphism is called automorphism. We can

easily verify that the set of all automorphisms of

H, denoted by AutH, is a group.

We first present some basic notions and results

about n-hypergroups (see [9]), which are needed

in this paper.

Let H be a non-empty set and n ∈ N, n ⩾
2. Consider ⊗n : H ×H · · · ×H︸ ︷︷ ︸

n−time

−→ P∗(H) ,

where P∗(H) be the set of all non-empty subsets

of H. Then the hyperoperation ⊗n is called an

n-ary hyperoperation on H and the pair (H,⊗n)

is called an n-hypergroupoid. If Bi for i = 1, ..., n

are non-empty subset of H. Then we denote

ϕn(B1, · · · , Bn) = (1.1)

∪
{ϕn(b1, · · · , bn); (b1, · · · , bn) ∈

n∏
i=1

Bi}. (1.2)

We shall denote the sequence hi, hi+1, · · · , hj by

hji . For j < i, the symbol hji is the empty set.

Definition 1.3. [12]

(i) The n-hypergroupoid (H,⊗n) is called an n-

ary semihypergroup if for i, j ∈ {1, 2, ..., n} and

h2n−1
1 , we have

⊗n (h
i−1
1 ,⊗n(h

n+i−1
i ), h2n−1

n+i ) = (1.3)

⊗n (h
j−1
1 ,⊗n(h

n+j−1
j ), h2n−1

n+j ). (1.4)
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(ii) We say that (H,⊗n) is an n-ary quasihy-

pergroup if for all h0, h1, · · · , hn ∈ H and fixed

i ∈ {1, ..., n} there exists x ∈ H such that

h0 ∈ ⊗n(h
i−1
1 , x, h2n−1

n+i ). (1.5)

(iii) An n-ary hypergroup is both an n-ary semi-

hypergroup and an n-ary quasihypergroup.

(iv) An n-ary hypergroup (H,⊗n) is commu-

tative if for all hn1 of H, and any permu-

tation σ of {1, 2, ..., n}, we have ⊗n(h
n
1 ) =

⊗n(hσ(1), · · · , hσ(n)).
(v) Let (H,⊗n) be an n-ary hypergroup and K a

non-empty subset of H. If K is closed under

the n-ary hyperoperation ⊗n, then we say that

K is an n-ary semi-subhypergroup. An n-ary

semi-subypergroup K is called an n-ary subhy-

pergroup of H if for all k0, k1, · · · , kn ∈ K and

fixed i ∈ {1, 2, ..., n}, there exists x ∈ K such that

k0 ∈ ⊗n(k
i−1
1 , x, hni+1).

Remark 1.1. Every n-ary operation can be con-

ceived as a hyperoperation whose value set is the

singleton {⊗n(x1, ..., xn)} , for all x1, ..., xnt ∈
H}.

Example 1.1. Let us consider the distributive

lattice (P∗(X),∪,∩) of the parts of a set X, which

contains at least three elements. Define the fol-

lowing n-ary hyperoperation on P∗(X): for all

X1, · · · , Xn ∈ P∗(X),

⊗n (X1, · · · , Xn) = (1.6)

{Z ∈ P∗(X)|X1 ∩ · · · ∩Xn ⊆ Z ⊆ X1 ∪ · · · ∪Xn}.
(1.7)

Therefore (P∗(X),⊗n) is a commutative n-ary

hypergroup.

2 Main Results

In this section, we define our basic object of study.

2.1 The new approach to concepts of
universal n-ary hyperalgebra

Definition 2.1. Let n be a non-negative integer

and {Hi, i = 1, ..., n} be a system of (finite or

infinite) non-empty sets. We define the concepts

of n-ary hyperstructure (or n-HS), universal n-

ary hyperoperation (or n-UHO) as follows:

By an n-ary hyperstructure (or n-HS), we

mean the pair ({Hi; i = 1, ..., n}, ϕn), where

ϕn :

n∏
i=1

Hi −→ P∗(

n∪
i=1

Hi) (2.8)

maps any n-tuple (H1, ...,Hn) ∈
∏n
i=1Hi to

a non-empty subsets ϕn(h1, ..., hn) ⊂
∪n
i=1Hi.

That is defined universal n-ary hyperoperation (or

n-UHO).

If Ai for i = 1, ..., n are non-empty subset of

Hn, then we denote

ϕn(A1, ...An) = (2.9)

∪
{ϕn(x1, ...xn); (x1, ..., xn) ∈

n∏
i=1

Ai}. (2.10)

Remark 2.1. In the special case let Hi = H for

all i = 1, .., n. We obtain an n-HO on H that is

an operation ϕn from Hn to P∗(H). Similarly,

we can identify the set {x} with the element x.

Therefore any n-HO is an n-UHO.

Example 2.1. Now we specialize our considera-

tions to the classical differential ring of real func-

tions f ∈ C∞(R), here J = (a, b) ⊆ R, ( not

excluding the case J = R) with the usual differ-

entiation. For any f ∈ C∞(R), we denote by∫
f(x)dx the set of all primitive functions to f .

For any n-ary of functions ψi ∈ C∞(J) with

i = 1, ..., n. Let Ψ = (ψ1, ..., ψn). We define an

n-UHO ∗(n,Ψ) on the ring C∞(J) by

∗(n,Ψ) : C
∞(J)× ...× C∞(J)︸ ︷︷ ︸

n−time

−→ P ∗(C∞(J))

∗(n,Ψ)(f1, ..., fn) =
∫
(
∑n

i=1(ψ
′
i(x)fi(x))dx), fi ∈

C∞(J).

Evidently (C∞(J), ∗n,Ψ) is a universal n-ary hy-

peralgebra (or n-UHA).

Example 2.2. Let {Vi)}ni=1 be a family of real

vector spaces endowed with an n-ary hyperbracket

[., ..., .]︸ ︷︷ ︸
n−time

: V1 × ...× Vn −→ P ∗(
∪n
i=1 Vi)
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[v1, ..., vn]︸ ︷︷ ︸
n−time

=
∪n
i=1 Span{vi}, vi ∈ Vi.

Therefore, the pair ({Vi)}ni=1, [., ..., .]︸ ︷︷ ︸
n−time

), is an n-

UHA.

Example 2.3. A 3-ary Lie hyperalgebra is a vec-

tor space V over R, equipped with a 3-ary linear

hyperbracket map

[., ., .]︸ ︷︷ ︸
3−time

: V × V × V −→ V ⊂ P ∗(V)

satisfying the properties;

(i) [X,Y, Z] = −[Y,X,Z] (anti-commutativity),

(ii) [X1, X2, [Y1, Y2, Y3]] = [[X1, X2, Y1], Y2, Y3] +

[Y1, [X1, X2, Y2], Y3] + [Y1, Y2, [X1, X2, Y3]],

(iii) [X,Y, Z] + [Y, Z,X] + [Z,X, Y ] =

0, ∀Xi, Yi, Z ∈ V (Jacobi identity).

Thus, the pair (V, [., ., .]), is an universal 3-ary

Lie hyperalgebra.

Example 2.4. Let M be a differentiable n-

manifold with differentiable structure F. The

(C∞M)-module of vector fields on M is de-

noted by χ(M). If X,Y and Z are vector

fields on M . It is well known that, given

[X,Y ] := XY − Y X. he standard Jacobi identity

(JI) [[X,Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0

is automatically satisfied if the product is asso-

ciative. For a Lie algebra A, expressed by the

Lie commutators [Xi, Xj ] = CkijXk in a certain

basis {Xi}, i = 1, ..., r = dimA. The JI implies

the Jacobi condition (JC) 1
2ϵ
j1j2j3
i1i2i3

Cρj1j2C
δ
ρj3

= 0.

Let n be even. A n-ary bracket or skew-

symmetric Lie multi-bracket is a Lie algebra val-

ued n-ary linear skew-symmetric mapping

[., ..., .]︸ ︷︷ ︸
n−time

: A× ...×A︸ ︷︷ ︸
n−time

−→ A ⊂ P ∗(A)

(Xi1 , ..., Xin) 7 −→ [Xi1 , ..., Xin ] = ωσi1...inXσ,

where the constants ωσi1...inXσ is satisfied the

condition

ϵ
j1j2...j2n−1

i1i2...i2n−1
ωρj1...inω

ρ
jn+1...j2n−1

= 0 (the generalised

Jacobi condition (GJC)).

For n = 2 it gives the ordinary (JC). Therefore,

the pair (A, [., ..., .]︸ ︷︷ ︸
n−time

), is a universal n-ary Lie hy-

peralgebra.

Remark 2.2. A n-UHO (1) yields a map of

power-sets determined by this hyperoperation.

Thus the map

Φn :

n∏
i=1

P∗(Xi) −→ P∗(

n∪
i=1

Xi) (2.11)

is defined by Φn(X1, ..., Xn) =∪
{ϕn(x1, ..., xn); (x1, ..., xn) ∈

∏n
i=1Xi} and

conversely an n-UHO on
∏n
i=1 P∗(Xi) yields an

n-UHO on
∏n
i=1Xi .

Definition 2.2. Let X ω = ({Xi; i =

1, ..., nt}, (ϕt)t∈ω) and Yω = ({Yi; i =

1, ..., nt}, (ψt)t∈ω) be a pair of nt-UHO of the

same type ω. A homomorphism Fω : X ω −→ Yω
between two nt-UHO is any system of mappings

F = {fi : Xi −→ Yi} such that the following

diagram is commutative:

nt∏
i=1

Xiϕt∏nt
i=1 fi

//

��

P∗(

nt∪
i=1

Xi)ϑ
⋆

��
nt∏
i=1

Yi
ψt

// P∗(

nt∪
i=1

Yi)

where for any nt-tuple (x1, x2, ..., xnt) ∈
∏nt
i=1Xi

we have
nt∏
i=1

fi(x1, x2, ..., xnt) =

(f1(x1), f2(x2), ..., fnt(xnt))

and ϑ⋆ : P∗(

nt∪
i=1

Xi) −→ P∗(

nt∪
i=1

Yi)

is the lifting of a mapping ϑ :
∪nt
i=1Xi −→

∪nt
i=1 Yi

defined by the induction. For x ∈ X1 suppose

ϑ(x) = f1(x). So ϑ :
∪i
j=1Xj −→

∪i
j=1 Yj is well

defined and for any x ∈ Xi+1\
∪i
j=1Xj suppose

ϑ(x) = fi+1(x) .
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By the above definition, the following lemma is

easily proved.

Lemma 2.1. Let

X ω = ({Xi; i = 1, ..., nt}, (ϕt)t∈ω),

Yω = ({Yi; i = 1, ..., nt}, (ψt)t∈ω)

and Zω = ({Zi; i = 1, ..., nt}, (ηt)t∈ω) are three

nt-UHO of the same type ω. If Fω : X ω −→
Yω and Gω : Yω −→ Zω are homomorphisms.

Then we can define a homomorphism between two

hyperalgebras X ω and Zω such that

GωoFω = {giofi : Xi −→ Zi}.

In the above definition if Xi = X and Yi = Y
for all i = 1, ..., n. Then we obtain the classical

hyperstructure theory is as follow:

Definition 2.3. X ω = (X , (ϕt)t∈ω) , Yω =

(Y, (ψt)t∈ω) be two nt-HA of the same type ω. A

map f : X ω −→ Yω is called a homomorphism if

for every t ∈ ω and all x1, ..., xnt ∈ X :

f(ϕt(x1, ..., xnt)) ⊆ ψt(f(x1), ..., f(xnt)) (2.12)

f is called a dual homomorphism if:

f(ϕt(x1, ..., xnt) ⊇ ψt(f(x1), ..., f(xnt)) (2.13)

f is called a weak homomorphism if:

f(ϕt(x1, ..., xnt)) ∩ ψt(f(x1), ..., f(xnt)) ̸= ∅
(2.14)

And finally f is called a strong homomorphism if:

f(ϕt(x1, ..., xnt) = ψt(f(x1), ..., f(xnt)). (2.15)

Remark 2.3. Let f is bijection then it is called

an isomorphism, a dual isomorphism, and a

strong isomorphism, if both f and f−1 are homo-

morphisms, dual homomorphisms, and strong ho-

momorphisms, respectively. In the case of strong

isomorphism, we write X ω ∼= Yω. If the domain

and the range of f are the same hyperalgebras,

then the isomorphism is called automorphism. It

is easily verified that the set of all automorphisms

of X ω, denoted by Aut X ω, is a group.

Corollary 2.1. The following are equivalent for

a function f between two hyperalgebras X ω and

Yω of the same type ω.

(i) The map f is an isomorphism.

(ii) The map f is a dual isomorphism.

(iii) The map f is a strong isomorphism.

Proof. (i) Right-arrow (iii) suppose that f :

X ω −→ Yω is an isomorphism. Thus both f and

f−1 are homomorphisms. Then, since fof−1 = id

is a strong homomorphism (actually a dual homo-

morphism), so for every t ∈ ω and all x1, ..., xnt ∈
X ω we have

(fof−1)(ϕt(x1, ..., xnt)). (2.16)

The proof of (i) =⇒ (ii) is similar and the other

implications are obvious.

Remark 2.4. In the definition of an n-UHO, if

Hi = H for all i = 1, ..., n. Then we obtain the

classical n-ary algebraic hypersystem (hyperstruc-

ture theory) [16].

2.2 Topology of Hyperalgebra

Recall that a topological group is a group G

together with a topology on G that makes

the multiplication and inversion operations

continuous; where the topology on G × G is the

corresponding product topology. The discrete

and trivial topologies are group topologies on ev-

ery group, but the question of finding interesting

hyperstructure topologies has received a great

deal of attention in the literature. We begin with

a brief overview of this literature, to motivate

our work in this paper.

LetH be a set and (H, τ) be a topological space

where for any x ∈ H there exist at least one open

set O(x) such that x ∈ O(x), which is called fun-

damental open set.

Example 2.5. Let H be a set, τ is a topol-

ogy on H and ⊗n is a hyperoperation on H de-

fined by ⊗n(x1, ..., xn) =
∪n
i=1 ζ(xi) where ζ :

H → P ∗(H) is a function that for any xi ∈ H

, ζ(xi) = O(xi). So the hypergroupoid (H,⊗n) is

a hypergroup.



170 A. Dehghan Nezhad et al., /IJIM Vol. 14, No. 2 (2022) 165-176

As defined topology n-groups, we had hoped

to be able to define the topology on n-ary hyper-

groups as the hyperoperation be continue. But

we cannot define a topology on the P ∗(H) with

the help of the topology of the hypergroup H. So

we recall first the semicontinuity and then intro-

duce an adequate definition of topological n-ary

hypergroups.

Definition 2.4. Let (H,⊗n) be a hypergroupoid

and (H, τ) be a topological space, the Cartesian

product Hn will be equipped with the product

topology. The hyperoperation ∗n is called:

(1) upper semcontinuous, if for every open set

O ∈ τ , the set O∗ = {(x1, ..., xn) ∈ Hn :

⊗n(x1, ...xn) ⊂ O} is an open in Hn;

(2) lower semicontinuous, if for every open set

O ∈ τ , the set O∗ = {(x1, ..., xn) ∈ Hn :

⊗n(x1, ...xn) ∩O ̸= ∅} is an open in Hn;

(3) Similarly, the hyperoperation ⊗n is semicon-

tinuous if it is upper and lower semicontinuous.

Remark 2.5. Let ⊗n be a hyperoperation on Hn.

Then the hyperoperation ⊗n is upper semicontin-

uous at (x1, ..., xn) ∈ Hn if and only if for every

open set U ∈ τ , such that ⊗n(x1, ...xn) ⊆ U there

exists open sets Vi , (i = 1, ..., n) of (x1, ..., xn)

such that for all i ,xi ⊆ Vi implies

⊗n(y1, ..., yn) ⊆ U for all yi ∈ Vi.

Similarly, ⊗n is lower semicontinuous at

(x1, ..., xn) ∈ Hn if and only if for every open

set U ∈ τ satisfying ⊗n(x1, ...xn) ∩ U ̸= ∅, there
exists open sets Vi , (i = 1, ..., n) of (x1, ..., xn)

such that for all i ,xi ⊆ Vi implies

⊗n(y1, ..., yn) ∩ U ̸= ∅ for all yi ∈ Vi.

Proposition 2.1. The hyperoperation ⊗n of any

n-ary semihypergroup H endowed with the topol-

ogy τ is upper semicontinuous.

Proof. Let O be an open set of H. If (x1, ...xn) ∈
O∗ then

∪n
i=1O(xi) ⊂ O. Since ∀xi ∈ H,xi ∈

O(xi) ⊆ O we get (x1, ...xn) ∈ O∗. Conversely;

let (x1, ...xn) ∈ O∗. It is easy to see that for any

the open sets O(xi) are included in O. Therefore,

it is their union and finally (x1, ...xn) ∈ O∗.

Proposition 2.2. The hyperoperation ⊗n of any

topological n-ary semihypergroup (H, τ) is lower

semicontinuous if O(x) ∩ O = ∅ =⇒ O(a) ∩ O =

∅; ∀a ∈ O(x).

Proof. Let O be an open set of H. Since O(x) is a

neighbourhood of x for any x ∈ H. To prove that

O∗ is open; we will prove that for any (x1, ...xn) ∈
O∗ there exists a neighbourhood V of (x1, ...xn)

such that (x1, ...xn) ∈ V ⊂ O∗. Let (x1, ...xn) ∈
O∗ and set V = O(x1) × ... × O(xn). This set is

an open set of Hn and then a neighbourhood of

(x1, ...xn). The condition (
∪n
i=1O(xi)) ∩ O = ∅

implies that O(x) ∩ O = ∅ or ... O(xn) ∩ O = ∅.
For (a1, ..., an) ∈ O(x1)× ...×O(xn) and from our

condition, we can deduce that O(ai) ∩O = ∅. So
(O(a1)∪ ...∪O(an))∩O = ∅ and (a1, ..., an) ∈ O∗.

Finally (x1, ...xn) ∈ O(x1) × ... × O(xn) ⊂ O∗.

Thus O∗ is an open set.

Definition 2.5. A topological n-ary hypergroup

(H, ∗n) is a hypergroup endowed with a topology

τ such that the hyperoperation is semicontinue.

Corollary 2.2. If (H,⊗n) is a hypergroup

and the topology τ on H is such O(x1, ..., xn) ∩
O = ∅ ⇒ O(a1, ...an) ∩ O = ∅; ∀(a1, ...an) ∈
O(x1, ..., xn) for a fundamental saturated family

{O(x);x ∈ H}, then H is a topological hyper-

group.

Remark 2.6. It is trivial that the hyperoperation

⊗n as defined above is commutative.

Example 2.6. The discrete topology on (H,⊗n)

defined by ⊗n(x1, ..., xn) = {x1, ..., xn} has the

required properties. Therefore (H,⊗n) is a topo-

logical hypergroup.

Proposition 2.3. Any open set K of a n-ary

semihypergroup H endowed with the topology (τ)

is a n-ary sub-semihypergroup of H.

Proof. 1. If x ∈ K then x ∈ O(x)∩K which is an

open set. Consequently O(x) ⊆ K. Thus ab ⊆ K

, for all a; b ∈ K.

2. By the definition of our topology, any x ∈ K

is such x ∈ O(x) and so ∀a ∈ K;x ∈ O(a)∪O(x).

Then we get K ⊆ Ka ⊆ K =⇒ K = Ka.

The other equality can be obtained similarly. H
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is a sub-semihypergroup of itself. Any other sub-

semihypergroup of H will be called a proper sub-

semihypergroup.

2.3 Topological universal n-ary hyper-
algebra ( or topological n-UHA)

Recall first the basic terms and definitions of

topological n-ary hyperalgebra.

Definition 2.6. Assume that ({Xi; i =

1, ..., n},Φn) be a universal n-ary hyperalge-

bra, where Φn is a n-ary hyperoperation on

Xi(i = 1, ..., n) , for each τ1, ..., τn is a topology

on X1, ...,Xn and τ∗ be a topology on P∗(
∪n
i=1Xi)

as follow:

The family B consisting of all sets SV = {U ∈
P∗(

∪n
i=1Xi) | U ⊆ V, V =

∪n
i=1 vi, vi ∈ τi} is a

base for a topology on P∗(
∪n
i=1Xi).

Let X =
∏n
i=1Xi and τ = (τ1, ..., τn), if the uni-

versal n-ary hyperoperation Φn is continuous, the

triple({Xi; i = 1, ..., n},Φn, τ) is called a topology

of universal n-ary hyperalgebra. The continuity

of Φn means that for every (x1, ..., xn) ∈ X the

following statement holds:

∀OΦn(x1,...,xn) ∈ τ∗ ∃(Oxi ∈ τi)
n
1

Φn(Ox1 , ..., Oxn) ⊆ Oxn1

Definition 2.7. Let for n ≥ 2, the pair (H,Φn)
be a classical n-ary algebraic hypersystem. We

say that (H,Φn) is an n-ary group ( or n-group)

if and only if is an n-semigroup and an n-

quasigroup.

Definition 2.8. Assume that (H,Φn) be an n-

groupoid, n ≥ 2 and τ

H isatopologyonH.Ifthen−hyperoperationΦn
is continuous, the triple (H,Φn, τH) is called a

topological n-groupoid. The continuity of Φn
means that for every h1, h2, ..., hn ∈ H, (or hn1 ∈
H) the following statement holds:

∀OΦn(hn1 )
∈ τH, ∃ (2.17)

(Ohi ∈ τ)n1 , Φn(Oh1 , ..., Ohn) ⊆ Ohn1 (2.18)

(equipped with ordinary product topology τH×...×
τH).

In the sequel for n-group (H,Φn) suppose −1

its inverse operation, n ≥ 2.

Definition 2.9. Let H be equipped with a topol-

ogy τH. Then we say that (H,Φn, τH) is a topo-

logical n-group if:

1) the n-hyperoperation, Φn is continuous in τH
and

2) the (n−1)-hyperoperation, −1 is continuous in

τH.

In other words, we say that (H,Φn, τH) is a

topological n-group if:

1)∀OΦn(hn1 )
∈ τH ∃(Ohi ∈ τ)n1

Φn(Oh1 , ..., Ohn) ⊆ OΦn(hn1 )
,

2)∀O(xn−1
1 )−1 ∈ τH ∃(Ohi ∈ τH)

n−1
1

Φn(Oh1 , ..., Ohn−1)
−1 ⊆ O(xn−1

1 )−1 ,

inspired by the definition of the topological n-

group.

Proposition 2.4. Assume that ({Xi; i =

1, ..., nt}, (Φnt)t∈ω) be an nt-UHA, where Φt is an

nt-HO on Xi(i = 1, ..., nt) , for each t ∈ ω and

τ1, ..., τnt is a topology on X1, ...,Xnt and τ
∗t be a

topology on P∗(
∪nt
i=1Xi) as follow:

The family Bt consisting of all sets SV = {U ∈
P∗(

∪nt
i=1Xi) | U ⊆ V, V =

∪nt
i=1 vi, vi ∈ τi} is a

base for a topology on P∗(
∪nt
i=1Xi).

We define the topological nt-UHA as follow.

Definition 2.10. Let X =
∏nt
i=1Xi and τ =

(τ1, ..., τnt). If the nt-UHO, Φt is continuous,

then the triple({Xi; i = 1, ..., nt}, (Φt)t∈ω, τ) is

called a topological nt-UHA . The continuity of

Φt means that for every (x1, ..., xnt) ∈ X the fol-

lowing statement holds:

∀OΦ(x1,...,xnt )
∈ τ∗t ∃(Oxi ∈ τi)

nt
1 (2.19)

Φ(Ox1 , ..., Oxnt
) ⊆ Oxnt

1
(2.20)

Example 2.7. We define a the 3-UHO, ϕ3 as

follows;

ϕ3 : (0, 1)× N× (0, 1) −→ P∗((0, 1) ∪ N ∪ (0, 1))

(2.21)

ϕ3(x, n, y) = {xy
2k

|0 ⩽ k ⩽ n}, ∀x, y ∈ (0, 1).

(2.22)
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Therefore ϕ3(x, n, y) ⫅ (0, 1) and for every

m,n ∈ N and x, y, z ∈ (0, 1), we have,

ϕ3(ϕ3(x, n, y),m, z) = {xy
2k

|0 ⩽ k ⩽ (n+m)}
(2.23)

= ϕ3(x, n, ϕ3(y,m, z)). (2.24)

The triple (((0, 1),N, (0, 1)), ϕ3, (τ, τ0, τ)) is a

topological 3-UHA, where τ is the standard topol-

ogy on (0, 1) and τ0 is the discrete topology on

N.

The Cartesian product H× ...×H︸ ︷︷ ︸
n−time

= Hn con-

sists of all n-tuples (h1, ..., h2), such that hi ∈
H, i = 1, ..., n. The i-projection of the Carte-

sian product Hn on its i-th axis is the map

Pr
(n)
i : Hn −→ H such that (h1, ..., h2) 7 −→ hi.

2.4 The n-ary dynamical hypersystem

Definition 2.11. [20] Let H be a group and X

be a set. Then H is said to act on X(on the left)

if there is a mapping Ω : H ×X → X satisfying

two conditions:

(i) If e is the identity element of H, then

Ω(e, x) = x, ∀x ∈ X (identity) and

(ii) If h1, h2 ∈ H, then Ω(h1,Ω(h2, x)) =

Ω(h1h2, x), ∀x ∈ X (compatibility).

When H is a topological group, X is a topologi-

cal space, and Ω is continuous, then the action is

called continuous.

Example 2.8.

(1) Let X = S1 = {z ∈ C||Z|= 1} and H be the

group of nth roots of unity for some n. Then

H acts on S1 by rotations : e
i2π
n acts on eiθ by

Ω(e
i2π
n , eiθ) = ei(θ+

i2π
n

).

(2) Take X = R2 and H = Z2. For

each pair of integers (m,n) ∈ Z2, we define

Ω((m,n), (x, y)) = (m + x, n + y). The pair

(Z2,R2) is a continuous group action.

This section explores the novel notion of the

n-ary hyperstructure actions, which is a natural

generalization of the usual notion of group ac-

tions. As a first step toward the study of the

n-ary hyperstructure actions from the algebraic

viewpoint.

Definition 2.12. [17] (i) An element e ∈ H,

where (H;ϕ) is a hyperstructure, is called an

identity if for all x ∈ H there holds x ∈ ϕ(x, e)

and x ∈ ϕ(e, x).

(ii) The element e of an n-ary hypergroup (H,ϕn)

is called a neutral (identity) element if

ϕn(e× · · · × e︸ ︷︷ ︸
(i−1)−time

, x, e× · · · × e︸ ︷︷ ︸
(n−i)−time

)

includes x for all x ∈ H and all i ∈ {1, 2, · · · , n}.

Definition 2.13. An n-ary dynamical hyper-

system or n-DHS Λn is a triple (X,Λn,A),

where A = ({Hi; i = 1, ..., n}, ϕn) (time set) is

an n-UHA, the function ϕn is a hyperoperation

on Hi(i = 1, ..., n), the non-empty set X is the

state-space (a topological space with topology τX)

and Λn is a map Λn : H × X → P∗(X) (we set

H =
∏n
i=1Hi), that satisfying two conditions:

(i) Λn(E1, ..., En, x) =∪
ei∈Ei

Λn(e1, ..., en, x) ⊇ {x}, ∀x ∈ X,

where Ei is the identity set for Hi, for all

i = 1, ..., n,

(ii) If h1, ..., hn ∈ H, then ∀x ∈ X;

Λn(ϕn(h1, E2, ..., En),Λn(ϕn(E1, h2, ..., En),

Λn(...,Λn(ϕn(E1, ..., En−1, hn), x), ...)))

∈ Λ((ϕn)(h1, ..., hn), x)

where Λn((ϕn)(h1, ..., hn), x) = {Λn(h, x) : h ∈
ϕn(h1, ..., hn)} and Ei is the identity set for Hi,

for all i = 1, ..., n.

Example 2.9. Let H = SPD(n) be the set of n×
n symmetric, positive definite matrices. Suppose

X = GL(n,R), then the act of H on X as follows;

Λ2 : GL(n,R)× SPD(n) → P∗(SPD(n))

for all G ∈ GL(n,R) and all s ∈ SPD(n),

Λ2(G,S) = {S,GSGT , GTSG}. It is easily

checked that GSGT , GTSG is in SPD(n) if S is

in SPD(n). For every SPD matrix S, can be

written as S = GGT , for some invertible matrix

G. Therefore the triple (SPD(n),Λ2, GL(n,R))
is a 2-DHS.

Our study is sufficiently general to ap-

ply to finite-as well as infinite-dimensional n-

DHS whose motions may evolve along a con-

tinuum (continuous-time n-DHS), discrete-time
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(discrete-time n-DHS). In the case of continuous-

time n-DHS, we consider motions that is con-

tinuous concerning for to time (continuous n-

DHS) and motions that allow discontinuities in

time(discontinuous n-DHS).

Let (X,Λn,A) be an n-DHS. Then a (Y,Λn,A)

is called a n-ary subdynamical hypersystem of

(X,Λn,A), when Y is a subset of X.

Furthermore (X,Λn|H′,A′) is called a n-ary

dynamical subhypersystem of (X,Λn,A), when

H ′
i ⊆ Hi and H′ = H ′

1×, ...,×H ′
n.

Definition 2.14. Let A = ({Hi; i = 1, ..., n}, ϕn)
and B = ({H ′

i; i = 1, ..., n}, ϕ′n) be two n-HA

where Ei(i = 1, ..., n) is the identity set for

Hi and E′
i(i = 1, ..., n) is the identity set for

H ′
i. Two n-DHSs (X,Λn,H) and (X ′,Λ′

n,H′),

are called conjugate n-DHS if there exist

one to one and onto maps L : X → X ′

and T : H → H ′, where Ti : Hi → H ′
i

and T ∗ : P ∗(
∪n
i=1Hi) → P ∗(

∪n
i=1H

′
i) such that

T ∗(h) = Ti(h) that the following two axioms hold;

(1) T ∗(ϕn(h1, ..., hn)) = ϕ′n(T1(h1), ..., Tn(hn)),

∀hi ∈ Hi

H = H1 × ...×Hn
//

��

P∗(

n∪
i=1

Hi)

��

H′ = H ′
1 × ...×H ′

n
// P∗(

n∪
i=1

H ′
i)

(2) L(Λn(h, x)) = Λ′
n(T n(h),L(x)),

∀h ∈ H, x ∈ X.

Proposition 2.5. Let (L, T ) be a conjugate

relation between two n-DHSs (X,Λn,H) and

(X ′,Λ′
n,H′) (or ({Hi; i = 1, ..., n}, ϕn) and

({H ′
i; i = 1, ..., n}, ϕ′n)) and (L′, T ′) be a conju-

gate relation between two n-DHSs (X ′,Λ′
n,H′)

and (X ′′,Λ′′
n,H′′) ( or ({H ′

i; i = 1, ..., n}, ϕ′n) and
({H ′′

i ; i = 1, ..., n}, ϕ′′n)). Then

(1) the relation (L−1, T −1) is a conjugate

relation between two n-DHSs (X ′,Λ′
n,H′) and

(X,Λn,H) ( or ({H ′
i; i = 1, ..., n}, ϕ′n) and

({Hi; i = 1, ..., n}, ϕn)),

(2) the relation (L′oL, T ′oT ) is a conjugate

relation between two n-DHSs (X,Λn,H) and

(X ′′,Λ′′
n,H′′) ( or ({Hi; i = 1, ..., n}, ϕn) and

({H ′′
i ; i = 1, ..., n}, ϕ′′n)).

Proof. (1) If h′i ∈ H ′
i for all i ∈ 1, ...n. Then the

following sequence of equalities holds

(T ∗)−1(ϕ′n(h
′
1, ..., h

′
n)) =

(T ∗)−1(ϕ′n(T1(h1), ..., Tn(hn))) =

(T ∗)−1(T ∗(ϕn(h1, ..., hn)) = ϕn(h1, ..., hn) =

ϕn(T −1
1 (T1(h1)), ..., T −1

n (Tn(hn))) =

ϕn(T −1
1 (h′1), ..., T −1

n (h′n)) where hi ∈ Hi.

For all h′ ∈ H′ and x′ ∈ X ′, we conclude

that the following sequence of equalities hold

L−1(Λ′
n(h

′), x′) =

L−1(Λ′
n(T n((T n)−1(h′)),L(L−1(x′)))) =

L−1(L(Λn((T n)−1(h′)),L−1(x′))) =

Λn((T n)−1(h′),L−1(x′)).

(2) If hi ∈ Hi.

Then the following sequence of equalities

holds

T ′∗oT ∗(ϕn(h1, ..., hn)) =

T ′∗(ϕ′n(T1(h1), ..., Tn(hn))) =

ϕ′′n(T ′
1oT1(h1), ..., T ′

noTn(hn)).

Finally, we conclude that for every h ∈ H
and x ∈ X the following sequence of equalities

holds

Λ′′
n(T ′noT n(h),L′oL(x)) =

L′(Λ′
n(T n(h),L(x))) = L′(L(Λn(h, x))) =

(L′oL)(Λn(h, x)).

Example 2.10. Let {Ni)}ni=1 = N be a family of

the set of natural numbers endowed with an n-HO

∗n : N1 × ...× Nn −→ P ∗(N1 × ...× Nn)

∗n(m1, ...,mn) =
∪n
i=1{(l1, ..., ln)|l1 + ...+ ln =

m1 + ...+mn, l1, ..., ln ∈ N}, mi ∈ Ni.

Therefore, the pair ({Ni)}ni=1, ∗n), is an n-UHA

with an identity element (0, ..., 0)︸ ︷︷ ︸
n−time

.
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We define an n-UHO Λn on the ring

C∞((J × ...× J)︸ ︷︷ ︸
n−time

) by

Λn : N × C∞((J × ...× J)︸ ︷︷ ︸
n−time

) −→

P ∗(C∞((J × ...× J)︸ ︷︷ ︸
n−time

))

Λn((m1, ...,mn), f) =

{
∪

∗n(m1,...,mn)
∂m1+...+mnf
∂l1x1...∂lnxn

}, f ∈
C∞((J × ...× J)︸ ︷︷ ︸

n−time

),

where ∂ denotes the partial derivative in the

partial differential equation (PDE). Evidently

(C∞((J × ...× J)︸ ︷︷ ︸
n−time

),Λn,N ) is a discontinuous n-

DHS.

Definition 2.15. For any x ∈ X, the set

OH(x) = {Λ(h, x);h ∈ H} is called hyperorbit

of x.

Example 2.11. Let (X,λn,H) is a dynamical

system. So we can define a 2-DHS (X,λ∗n,H)

where λ∗n : H ×X → P ∗(X) by (g, x) 7→ Og(x).

Proposition 2.6. Let (L, T ) be a conjugate rela-

tion between ({Hi; i = 1, ..., n}, ϕn) and ({H ′
i; i =

1, ..., n}, ϕ′n). Then L(OH(x)) = (OH′
(L(x)).

Proof. If x′ ∈ L(OH(x)), then there exists h ∈ H
such that

x′ ∈ L(Λ(h, x)) = Λ′(ϕn(h),L(x)) ∈ OH′
(L(x)).

Since conjugate relation is an equivalence rela-

tion, so the first part of the proof shows that

L−1(OH′
(L(x))) ⊆ OL(x).

In the same manner, we can see that

L−1(OH′
(L(x))) ⊇ OL(x).

This finishes the proof.

Proposition 2.7. Let (L, T ) be a conjugate rela-

tion between ({Hi; i = 1, ..., n}, ϕn) and ({H ′
i; i =

1, ..., n}, ϕ′n). If OH(x) = X, then OH′(x′) = X ′.

Proposition 2.8. Let (L, T ) be a conjugate rela-

tion between ({Hi; i = 1, ..., n}, ϕn) and ({H ′
i; i =

1, ..., n}, ϕ′n). If ({Hi; i = 1, ..., n}, ϕn) be a topo-

logically transitive, then ({H ′
i; i = 1, ..., n}, ϕ′n) is

topologically transitive.

3 Conclusions

The study of properties of n-ary dynamical

hypersystem in the context of n-ary topological

hypergroups is a new research topic of n-ary

hyperstructure theory. The existing research on

this topic deals only with n-ary hyperstructures

and for this study, the approximations in n-ary

topological hyperstructures are important. In

this paper, we introduce and characterize n-ary

dynamical hypersystem and give some examples.

Our future work on this topic will be focused

on the study of some particular classes of n-ary

dynamical hypersystem.
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