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Abstract

In this paper we introduce the concept of multiplication-like modules and we obtain some related
results. We show that an R-module M is multiplication-like if and only if for each ideal I of R,
I =(IM :g M). We prove that any multiplication-like module is faithful and r-multiplication. So we
get that any flat and multiplication-like module is faithfully flat.
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1 Introduction

Hroughout this paper, all rings are com-

mutative with identity and all modules
are unitary. Let M be an R-module. For a
submodule N of M, let (N :g M) denote the
set of all elements r in R such that rM C N.
The annihilator of M, denoted by Anng(M),
is (0 :g M). A proper submodule N of M is
called prime (primary) if ro € N, for r € R
and x € M, implies that either x € N or
r € (N :g M) (™ € (N :g M), for some
n € N). We denote the set of prime submodules
of M by Spec(M). For a submodule N of M,
V(N) denotes {P € Spec(M)|N C P}, and
rad(N) = (V(N), is called the radical of N and
was introduced in [9], [10] and [11]. A proper
submodule N of M is said to be primary-like if
rm € N, for r € R and m € M, implies that
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either m € rad(N) or r € (N :g M) (see [7]).

It is said that M is a multiplication module, if
for each submodule N of M, there is an ideal
I of R, such that N = IM. Equivalently, M is
a multiplication module if and only if for each
submodule N of M, we have N = (N :p M)M
[5] and [6].

In [3] the notion of a comultiplication module
was introduced as a dual of the concept of a
multiplication module.  An R-module M is
called comultiplication, if for every submodule
N of M, there exists an ideal I of R such that
N = (0:p7 I). For example, the Z-module Zje is
a comultiplication module since all of its proper
submodules are of the form (0 :p P'Z) for
1=0,1,.... It is clear that M is comultiplication
if and only if for every submodule N of M, we
have N = (0 :p7 (0 :g N)). An R-module M is
said to be strong comultiplication, if for every
submodule N of M there is exactly one ideal [
of R with N = (0:p7 I) (see[4]).

M is said to be an r-multiplication module, when
IM # M for every proper ideal I of R (see [12]).
A non-zero submodule N of M is said to be
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second, if for each ¢ € R, the homomorphism
NN is either surjective or zero [15]. An
R-module M is said to be distributive, if the
lattice of its submodule is distributive, i.e.
(X+Y)NnZ=(XnZ)+ (Y NZ), for any of
its submodules X,Y and Z. A non-zero module
M over a ring R is said to be prime, if the
annihilator of M is the same as the annihilator of
N for every non-zero submodule N of M (see [2]).

In this article, we introduce multiplication-
like module and obtain some basic results and
characterizations.

2  Multiplication-Like Modules
Definition 2.1. An R-module M is said
multiplication-like, if for any ideal I of R, there
exists a submodule N of M such that I = (N :p

Example 2.1.
multiplication-like.
(i1) R[X] is a multiplication-like R-module.

(i) Q, Zn and Zp~ as Z-module are not
multiplication-like.

(i) Every wector space is

It is clear that every free module is
multiplication-like; but M = Z @ Zs is a
multiplication-like Z-module, which is not free.

Lemma 2.1. An R-module M is multiplication-
like if and only if for each ideal I of R, I =
(IM :gp M).

Proof. The sufficiency is clear. Conversely, sup-
pose that M is a multiplication-like. Then there
exists a submodule N of M such that I =
(N :g M). So we have IM C N. Hence
I C(IM:g M) C (N :g M) = 1. This implies
that I = (IM :g M) as desired. O

Proposition 2.1. Let M be an R-module. Then
M is multiplication-like if and only if for every
ideal I of R, there exist submodules N; of M (i €
J), such that I = ZieJ(Ni ‘R M) = (ZiEJ Nz ‘R

Proof. Let M be multiplication-like and let I be
an ideal of R. Then I = (IM :p M). On the
other hand, I = Zriel Rr; and for each r; € I,
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Rr; = (r;M :g M). So we have
I = Zriel Rri - ZmGI(TfM ‘R M) =
(5,1 7iM i M),

Hence the proof is completed. O

Theorem 2.1. Let M be an R-module.
the following statements are equivalent.

Then

(i) M is multiplication-like.

(i) For every ideal I of R and each sub-
module N of M with I C (N :p M), there
exists a submodule L of M such that L C N and
I=(L:x M).

(iii) For every ideal I of R and each sub-
module N of M with I C (N :gp M), there
exists a submodule L of M such that L C N and
IC(L:p M).

Proof. ()= (ii) Let I C (N :p M). Since
M is multiplication-like, I = (IM :g M). Put
L=IMAN. Since I = (IM :x M) C (N :x M),
hence L C N and we have

(L ;g M) = UMNN :x M) = (IM
M)N (N :gp M) =1.

(ii) = (47i) It is obvious.

(ii]) =
put
H ={L: Lis a submodule of M and I C (L :p

(1) Let T be an ideal of R and

Clearly H is a non-empty set, so by Zorn's
Lemma, H has a minimal member like K and
soI C (K :gp M). Assume that I # (K :p M).
Then by part

(iii), there exists a submodule U of M with
UC Kad I C (U :g M). But this is a
contradiction by the choice of K. Thus we
have I = (K :p M). This shows that M is

multiplication-like. O

Example 2.2. Let M = Zg and R = Zg. Then
M is multiplication-like but, 2Z¢ and 3Z¢ are not
multiplication-like modules.

Let M be a torsion-free R-module. Clearly,
every non-zero cyclic submodule of M is a
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multiplication-like R-module. But, if every non-
zero cyclic submodule of an R-module M is
multiplication-like, then M is not necessarily
multiplication-like. As the following example
Shows:

Example 2.3. Let M = Q and R =7Z. Then ev-
ery non-zero cyclic submodule of M is free and so

multiplication-like; but Q is not a multiplication-
litke R-module.

Theorem 2.2. Let R be a comultiplication ring
and M be a faithful R-module. Then M is a
multiplication-like R-module.

Proof. Assume that [ is a proper ideal of R and
rM C IM, for r € R. Then rAnng(I)M = 0.
Since M is faithful and R is a comultiplication
ring, we have r € I. Thus M is a multiplication-
like module. O

It is straightforward to prove that R is a co-
multiplication ring if and only if (I :g J) =
(Anng(J) :r Anng(I)), for each ideals I and J
of R. So by Theorem 2.2, we have:

Corollary 2.1. Let R be a ring such that for ev-
ery ideal I and J of R, (I :r J) = (Anng(J) :r
Anng(I)).  Then every faithful R-module is

multiplication-like module.

By Example 3.8 [3] and Theorem 2.2, we obtain
the following corollary.

Corollary 2.2. Let R be a semi-simple ring.
Then every faithful R-module is multiplication-
like.

Corollary 2.3. Let M be a strong comultiplica-
tion module which has a mazximal submodule over
a reduced ring R (recall that a reduced ring is one
with no nilpotents). Then M is a multiplication-
like R-module.

Proof. As M is strong comultiplicatin, then
Anng(M) = 0. Now it follows easily from Corol-
lary 4.5 [12] and Corollary 2.2. O

By Proposition 4.3 [12] and Theorem 2.2, we
get the following corollary.

Corollary 2.4. Let M be a non-zero multiplica-
tion and strong comultiplication R-module. Then
M is a multiplication-like R-module.
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Clearly, if M is a multiplication-like R-module
and p: M — M "is an R-epimorphism, then M
is a multiplication-like module.

Also, let M be an R-module and N be a
submodule of M. If % is a multiplication-like
R-module, then we can conclude that M is a
multiplication-like R-module. But, the converse
is not true in general, as the following example
shows:

Example 2.4. 7Z as Z-module is a
multiplication-like R-module, but for submodule
nZ, % is not a multiplication-like Z-module.

Lemma 2.2. Let M be a multiplication-like
R-module.

(i) If for submodule N of M, N C IM for
each non-zero ideal I of R and % is faithful,
then % is a multiplication-like R-module.

(i) If M is a faithful R-module, p : M — M’ is
an epimorphism and for any non-zero ideal I of
R, ker(p) C IM, then M’ is a multiplication-like
R-module.

Proof. We have I(%) = . Hence ¥ is a
multiplication-like R-module.
(ii) This is clear by part (i). O

Corollary 2.5. Let N be a faithful second sub-
module of a multiplication-like R-module M.

Then for every non-zero ideal I of R, there is
a submodule L of M such that I = (L :p %)

Proof. Since N is second and faithful, we have
that IN = N, for each non-zero ideal I of R.
So N C IM. By Lemma 2.2 (i), the proof is
complete. O

Proposition 2.2. Let M be a multiplication-like
R-module and I be an ideal of R. Then % s a
multiplication-like ?—module.

Proof. 1t is enough to prove that for each ideal J

of R containing I, (4(AL) R Ay C 4. Since M

is multiplication-like, we have J = (JM :p M).
If (r+1) € (J(&) = AL), then for every
xeM,(r+)(xz+1IM)e %(MM)—JM

I
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This implies that r« € JM. So we have
that r € J. It followsr%—fe%. O

Corollary 2.6. Let M be a multiplication-like R-
module. Then for any ideal I of R such that I C
Anng(M), M is a multiplication-like %—module.

Remark 2.1. The converse of previous corol-
lary is not true in general. For example, Z, is
a multiplication-like Z,-module, while Z, as Z-
module is not multiplication-like.

The following proposition shows the behavior
of modules that are multiplication-like module
over localizations.

Proposition 2.3. Let M be an R-module and S
be a multiplicative closed subset of R.

(i) If M is a finitely generated multiplication-like
R-module, then Mg s a multiplication-like
Rg-module.

(i) If Mg is a multiplication-like Rg-module
and for any ideal I of R and any r ¢ 1,
SN :gr)=0, then M is a multiplication-like
R-module.

Proof. (i) Since M is a multiplication-like mod-
ule, I = (IM :p M) for any ideal I of R. So
we have Ig = (IgMg :ry Mg), as M is finitely
generated.

(ii) Let I be an ideal of R and r € (IM :g M). So
1Ms C IsMg. Since Mg is a multiplication-like
Rg-module, 7 € Is. So there exists u € S such
that ur € I. If r ¢ I, then u € SN (I :g ) which
is a contradiction. Hence r € I. ]

We now give an example to show that in Propo-
sition 2.3 (ii), the condition is necessary.

Example 2.5. Let M =Q, R=7Z and S =7 —
{0}. Then Mg is a vector space on field Rg = Q.
So Mg is a multiplication-like Rg-module; but M
18 not a multiplication-like R-module.

Corollary 2.7. Let (R,m) be a local ring and
M be a finitely generated R-module. Then M 1is
a multiplication-like R-module if and only if M,
is a multiplication-like R,,-module.
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Proposition 2.4. Let M and N be R-modules
and M ®r N be a multiplication-like mod-
ule. Then M and N are multiplication-like R-
modules.

Proof. Let I be anideal of Rand r € (IM :gp M).
Then rM ® g N C IM ®r N. This implies that
r(M ®@r N) CI(M ®g N), so that r € (I(M ®g
N):p M ®r N) = I. Hence M and similarly N
are multiplication-like R-modules. O

It is clear that, if M is a multiplication-like
R-module and N is a free R-module, then the
converse of above proposition is true.

Proposition 2.5. Let My and M, be two R-
modules which My or My is multiplication-like
R-module. Then My ® My is a multiplication-like
R-module.

Proof. Let I be an ideal of R such that r(M; ©
Ms) C I(M; & M) and M; be a multiplication-
like R-module. Then I = (IM; :g M;) which
implies that » € I. Therefore, M; ® M, is a
multiplication-like R-module. O

The converse of above lemma is not true in gen-
eral.

Example 2.6. Consider M = Zg = (2) @ (3)
and R = Zg. Then M is a multiplication-like R-
module. But it is easy to see that N = 2Zg and
L = 3Z¢ are not multiplication-like module.

Corollary 2.8. Let M; (i € I) be R-modules
such that for some i, M; is a multiplication-like
R-module. Then ®;c1M; is a multiplication-like
R-module.

Lemma 2.3. Let R be a ring and M be an R-
module such that I # (IM :gr M), for some ideal
I. Then there exists an ideal K and r ¢ K such
that I C K and (K :g r) is mazimal ideal of ring
R.

Proof. By hypothesis there exists an element r in
R such that r € (IM :g M) but r ¢ I. Let §
denote the collection of ideals L of R such that
I C Lbutr¢L. Clearly S is non-empty and so
by Zorn’s Lemma, S contains a maximal member
like K.

Thus I C K and r ¢ K. Let s be an element of
R such that s ¢ (K :p 7). It follows that K is a
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proper subset of K + Rsr and hence K+ Rsr ¢ S.
Thus r € K + Rsr. Therefore, there exists b € R
and v € K such that r = u+bsr and so (1—bs)r €
K. Tt follows that (K :g ) is a maximal ideal of
R. O

Theorem 2.3. Let R be a ring. Then the follow-
ing statements are equivalent for R-module M .

(i) M is a multiplication-like R-module.

(ii) I = (IM :p M), for every ideal I of
R.

(iii) Given ideals I1,J of R, IM C JM im-
plies that I C J.

(iv) Given any ideal I of R and r € R,
rM C IM implies that r € I.

(v) Given any ideal I of R and r € R,

rM C IM implies that (I :g ) is not a maximal
ideal.

Proof. (i) <= (i) By Lemma 2.1.

(i) = (iii) Let IM C JM. Then
(IM :p M) C (JM :x M). By (ii), I C J.
(1it) =  (it) We know that always

IM = (IM :x M)M. By (iii), I = (IM :x M).
(191) <= (iv) It is obvious.

(tv) = (v) Let rM C IM. By (iv), r € I, and
hence (I :g r) = R. Therefore, (I :g r) is not a
maximal.

(v) = (iv) Let rM C IM such that r ¢ I. By
Lemma 2.3, there exists an ideal K of R such
that I C K, r ¢ K and (K :p r) is maximal
ideal. But this is a contradiction.

O

3 Properties of Multiplication-
Like Modules

In this section we shall show that multiplication-
like modules have some interesting properties.
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Theorem 3.1. Let M be a multiplication-like
R-module. Then

(i) M is a faithful module.
(ii) M is an r-multiplication module.

(iii) The set of all prime submodules of an
R-module M is non-empty (Specr(M) # ().

(iv) For every ideal I of R, Anng(I) =
Anng(IM).

(v)

Z(R) = {a € R 3 non —
zero submodule N st (N :g M) # 0, a(N :g
M) =0}

(here Z(R) denotes the set of zero divisor of R).

Proof. (i) By Lemma 2.1, 0 = (0M g M) =
Anng(M).

(ii) If there exists a proper ideal I of R such that
IM = M, then I = (IM :g M) = R. This is a
contradiction and the proof is completed.

(i) Let m € Max(R). By part (i),
(mM :r M). This shows that mM is
a prime submodule of M.

m =

(iv) It is enough to prove that Anng(IM) C
Anng(I). Now let r € Anngr(IM), then
rIM = 0. Now by using part (i), we have Ir = 0.

(v) Let a € Z(R). Then there exists
0 # b € R such that ab = 0. It implies that
a(bM :r M) = 0, because M ia multiplication-
like module. The converse is clear. O

The following examples show that Converse
parts of the previous theorem do not hold in gen-
eral.

Example 3.1. Let R =7 and M = Q. It is
clear that M satisfies in parts (i), (i), (iv) and
(v), but M is not a multiplication-like R-module.

Example 3.2. Let R = Z and M =
@pEmM(R) Zy. Clearly M is an r-multiplication
and 47 # (4ZM :p M) = 2Z. Therefore M is
not a multiplication-like module.
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Lemma 3.1. Let M be an R-module. Then M is
multiplication-like and second module if and only
if M is a vector space.

Proof. 1t is sufficient to show that R is a field.
For each non-unit such asr € R, rM # M, as M
is multiplication-like module. So r = 0, beacause
M is second and faithful. The set of non-units
is zero ideal. Therefore R is a field and M is a

vector space. ]

Lemma 3.2. Let M be an r-multiplication
module which every proper submodule of it is
multiplication-like R-module. Then M is a
multiplication-like R-module.

Proof. Let I be an ideal of R. By Lemma 2.1,
I = (I*’M :g IM). Let rM C IM. Tt follows
that IrM C I?M. So we have r € I. Therefore,
M is a multiplication-like R-module. O

Corollary 3.1. Let M be a finitely gener-
ated R-module that every submodule of it is
multiplication-like R-module. Then M is a
multiplication-like module.

Example 2.2, show that if R-module M
is multiplication-like module, then every non-
zero submodule of M need not necessarily be
multiplication-like. By Theorem 3.1 (ii) and
Proposition 2.11.24 [13], we get the following
lemma.

Lemma 3.3. Let M be a flat and multiplication-
like R-module. Then M 1is a faithfully flat.

If M is a multiplication (comultiplication)
module, then it is not concluded that M is a
multiplication-like and conversely.

Example 3.3.
(i) Zy, as Z-module is a multiplication module,
but it is not multiplication-like.

(ii) Z ® 7Z as Z-module is multiplication-
ltke, but is not multiplication.

(1it) Zpo as Z-module is a comultiplication,
but is not multiplication-like.

(iv) Z as a Z-module is multiplication-like
module, but is not a comultiplicatiom module, by
Ezample 3.9 [3].
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Remark 3.1. By Example 2.2, we can see that
if R-module M is multiplication-like, then every
submodule of M is not r-multiplication.

Proposition 3.1. Let R be a Noetherian domain
which is not a field and M be a multiplication-like
R-module. Then every mon-zero maximal sub-
module of M, is r-multiplication.

Proof. Suppose that N is a non-zero maximal
submodule of M. If N is not an r-multiplication,
then there exists a proper ideal I of R such that
IN = N.

Since N is a maximal submodule and M is
multiplication-like, we must have N = IM and
I =1% = (N :g M). Hence there exists a € I
such that (1 —a)l = 0. Since R is domain, we
have I = R or I = 0, which is a contradiction. [J

Proposition 3.2. Let R be a local Noetherian
ring that is not a field and M be a multiplication-
like R-module. Then every non-zero mazimal
submodule of M is r-multiplication.

Proof. Suppose that N is a non-zero maximal
submodule of M. If N is not an r-multiplication,
then there exists a proper ideal I of R such that
IN = N. Since N is a maximal submodule and
M is multiplication-like, we have N = IM and
I = 1> = (N :g M). By Nakayama lemma,
I = 0, which is a contradiction. Hence N is an
r-multiplication. O

Lemma 3.4. Let M be a multiplication R-
module. Then M is a multiplication-like if and
only if M is finitely generated and faithful.

Proof. Let M be a multiplication-like R-module.
By Theorem 3.1, M is faithful and for each proper
ideal I of R, IM # M. It follows that M is
finitely generated. Conversely, let I be a proper
ideal of R. Note that IM = (IM :p M)M.
Since M is multiplication, faithful and finitely
generated, I = (IM :p M). Therefore, M is
multiplication-like. O

Lemma 3.5. Let M be a faithful multiplication
R-module. Then M is an r-multiplication if and
only if M is a multiplication-like.

Proof. Let M be a multiplication-like R-module.
By Theorem 3.1, M is r-multiplication. Con-
versely, let I be an ideal of R. Note that IM =
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(IM :p M)M. Since M is faithful multiplication
and r-multiplication, so M is finitely generated.
Now by Lemma 3.4, M is multiplication-like. [J

Corollary 3.2. If M s a multiplication and
multiplication-like R-module, then |Specr(M)|=
|Spec(R)|.

Corollary 3.3. Let M be a multiplication and
multiplication-like R-module. Then for every I
ideal of R, there exists an unique R-submodule K
of M such that I = (K :g M).

Corollary 3.4. Let M be a multiplication-like R-
module. Then M is multiplication if and only if

for every I of R, there exists an unique submodule
N of M such that I = (N :g M).

Lemma 3.6. Assume that M is a comultiplica-
tion and multiplication-like R-module. Then M
18 a strong comultiplication.

Proof. Suppose N be a submodule of M. If there
exist ideals I and J such that N = (0 :ps ) and
N = (0 :p J), then IM = JM, by Proposition
4.1 [12]. Now by Theorem 2.3, [ = J. O

Proposition 3.3. If M is a comultiplication and
multiplication-like R-module, then for every sub-
module N of M, there exists an ideal I of R such
that (N :p M) = Anng(I).

Proof. Let N be a submodule of M. Since M is a
comultiplication R-module, there exists an ideal
I of R such that N = (0 :ps I) and hence

(N :g M) =(0:pI):rg M) = Anng(IM) =
Anng(I). O

Lemma 3.7. Let M be a multiplication-like
R-module. Then for every ideal I and J of R

(i) (IJM :g M) = (IM :z M)(JM :5 M).

(’LZ) (IM+JM ‘R M) = (IM ‘R M)+(JM ‘R
M).

(i5i) (INJ)M :g M) = (IM : g M)N(JM :gp M).
Proof. This follows from Lemma 2.1. O

Remark 3.2. Lemma 3.7 shows properties
which hold for multiplication-like modules (for
ideals of ring), but part (ii) is not valid in general
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for submodules of module.

Consider M = Z[X|®Z[X] as R = Z[X]-module.
Then (X)®Z[X] : g M)+ (Z[X]® (X) :r M) C
(X)eZX|+Z[X])® (X) g M) =R.

Proposition 3.4. Let M be a Noetherian
multiplication-like R-module. Then R is Noethe-
rian.

Proof. Let I} C I C I3 C ... be an ascending
chain of ideals of R. It follows that [1M C I, M C
IsM C ... is an ascending chain of submodules of
M. So there exists a positive integer k such that
ItyM = I,y M = ..., and hence I = Ixy = ...,
as M is multiplication-like. O

Proposition 3.5. Let M be an Artinian
multiplication-like R-module. Then R is Ar-
tintan.

The following example shows that if M is
multiplication-like over a Noetherian (Artinian)
ring, then it is not necessarily to be a Noetherin
(Artinian) module.

Example 3.4. Let V be a vector space over a
field F. It follows that V is multiplication-like
and F is Artinian and Noetherian. But if V' has
an infinite dimension, then V is not Artinian and
Noetherian.

Proposition 3.6. Let M be a faithful module
over a Noetherian ring R such that for every pri-
mary ideal q of R, ¢ = (¢M :r M). Then M is
multiplication-like.

Proof. Let I be an ideal of R and let I = (", ¢
be a reduced primary decomposition of I in R,
where ¢; are primary. It follows that

I € (IM g M) = (M2 @)M :r M) C
Mici (@M :p M) =y q =1 O

Lemma 3.8. If R-module M is a multiplication-
like R-module and each submodule of M has a
reduced primary decomposition, then every ideal
of R has a reduced primary decomposition.

Proof. Let I be an ideal of R. Since M is
multiplication-like it follows that I = (IM :gp M).
By hypothesis, IM = (), ¢, when ¢; are P;-
primary. Hence

I'=(IM:zr M) = (216 :r M) =NiZy(a r
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It follows that I has reduced primary decomposi-
tion in R. O

Recall that an integral domain R is a valution
ring if and only if the ideals of R are totally or-
dered by inclusion.

Lemma 3.9. Let M be a multiplication-like R-
module and R be an integral domain.

Then for any submodules N, L of M, (N :p M) C
(L:g M) or (L:g M) C (N :g M) if and only if

R s valuation ring.

Proof. Obvious O

Proposition 3.7. If for some P € Maz(R),
PM is a multiplication-like R-module, then M
1s o multiplication-like R-module.

Proof. If PM = M, then the proof is complete.
Now assume that PM # M and let I be any ideal
of Rand r € (IM :p M).

It implies that rPM C PIM. Hence r € I. O

Remark 3.3. Example 2.6 shows that the con-
verse of Proposition 3.7 is not true, in general.

Anderson and Fuller [1] called the submodule
N a pure submodule, if IN = NN IM for every
ideal I of R.

Proposition 3.8. Let N be a pure submodule of
an R-module M. If N is multiplication-like, then
M is a multiplication-like module.

Proof. Let I be an ideal of R. Then I = (IN :p
N). Assume that rM C IM. Since N is pure,
we have rN C IN, and hence r € I. Therefore,
M is multiplication-like. ]

Recall that a ring R is discrete valuation ring
(DVR) if and only if it is valuation and Noethe-
rian ring. If R is a DVR, then every non-zero
ideal I of R is uniquely of the type I = m™ (for
some n € N), where m is the unique maximal
ideal R.

Lemma 3.10. Let M be a faithful finitely gener-
ated module over discrete valuation ring R. Then
M is a multiplication-like.
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Proof. Let I be an ideal of R and m be the unique
maximal ideal. Then there exists n € N such that
I =m" We have m" C (m"M :p M) C m" L.
Hence m"™ = (m"M :g M) or (m"M :p M) =
m" L. If (m"M :g M) = m™!, then m"M =
m™ M. Hence by Nakayama lemma, m = 0
which is a contradiction. So (m"M :p M) =

m™.

O

A Dedekind domain (D.d) is a Noetherian in-
tegrally closed domain in which every non-zero
primes ideal is maximal.

Corollary 3.5. Let M be a faithful finitely gen-
erated module over D.d R. Then for every non-
zero prime ideal P of R, Mp is multiplication-like
Rp-module.

Proposition 3.9. Let M be a faithful finitely
generated R-module. Then for every radical ideal
like I, I =(IM :g M).

Proof. Let I be a radical ideal of R. Then

= I = ﬂpev(I)P. F9r eacl‘l P e V(I),
(PM :p M) = P, as M is a faithful finitely
generated module. Thus

I C (IM g M)

= ((ﬂpev P) )
ﬂpev(l)(PM R M) =

mPEV )P:I

N

Lemma 3.11. Let N be an R-submodule of M.
If N is a multiplication-like such that for every
ideal I of R, IN is primary-like submodule and
rad(IN) C N, then M is a multiplication-like
module.

Proof. Let I be an ideal of R. Since N is a
multiplication-like, I = (IN :p N). We show
that IM C IN. It follows to show that I C
(IN :p M). Let r € I. Since radr(IN) C N,
we can find an element n € N — radr(IN).
Then rn € IN. Hence r € (IN :gp M), as IN
is primary-like. Therefore, M is multiplication-

like. O
Lemma 3.12. Let M be a distribu-
tive  multiplication-like  R-module and  for
any two submodule N and L of M,
(N ‘R M)+(L ‘R M) = (N—l—L ‘R M)

Then R is a distributive ring.
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Proof. Let A,B and C be
Since M is multiplication-like, there
ist submodules N,K and L of M such
that A = (N g M),B = (K :zp M) and
C = (L:g M). Then

ideals of R.

ex-

-

(A+B)NC=((N:g M)+ (K :g M))N(L:
M)=(N+K:gM)N(L:g M)
=(N+K)NL:gM)=(NNL)+(KNL):
M)=(NNL:zx M)+ (KNL:x M)=(N
Mn(L :g M)+ (K :g M)n (L :rp M)
ANC+BnC.

=

Ol =

The following example shows that in above
theorem, the conditions, M is distributive and
for any two submodule N and L of M, (N :p
M)+ (L :g M) = (N + L :g M) can not be
omitted.

Example 3.5. Let M = Z[X] ® Z|X], R =
ZIX], N = (X) ® Z|X] and L = Z|X] & (X). It
is clear that (X)®Z[X] :rg M)+ (Z[X]® (X) R
M) C (X)®Z[X]|+Z[X]®(X) :r M) = R. Also
R is not distributive, by Theorem 6.6 [8] and M
is not distributive module, by [14].

Proposition 3.10. Let M be a multiplication-
like R-module. If I is an ideal of R such that IM
s a second submodule of M, then I is a second
ideal of R.

Proof. Let v, : I — I be the non-zero homo-
morphism defined by r +— ar. Thus alM # 0,
because M is faithful module. It follows that
alM = IM, since IM is a second submodule.
Since M is multiplication-like

al = (alM :g M) = (IM :p M) =1.
O

Corollary 3.6. Let M be a multiplication-like R-
module. If I is an ideal of R such that IM is a

second submodule of M, then for each non-zero
reR,reZ(R) orI=1Ir.

Lemma 3.13. Let M be a multiplication-like
and prime R-module. Then for any non-zero
ideal I of R, Anng(I) = 0.

Proof. Let I be any ideal of R. By Theorem 3.1
(i) and (iv), Anngr(I) = 0. O

Corollary 3.7. Let M be a multiplication-like
and prime R-module. Then Z(R) = 0.
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