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Abstract

Data envelopment analysis (DEA) is a method for evaluating the performance of a set of homogenous
decision-making units (DMUs) with multiple inputs and multiple outputs. There are various models
for efficiency calculation in DEA, one of which is based on determining a common set of weights
(CSW), which is used extensively by DEA experts. In classical data envelopment analysis, all input
and output values are clearly specified. However, this assumption might not always be true in real-
world applications. One of the important methods for dealing with imprecise data is to explore the
use of stochastic data in DEA. This manuscript extends the CSW model to stochastic inputs and
outputs. Next, the stochastic CSW model is transformed into a nonlinear model, and then, the
deterministic model is transformed into a quadratic programming model. The efficiency obtained
using stochastic data is called stochastic efficiency. Finally, the concept presented in this article is
demonstrated through a numerical example involving a number of Iranian banks.

Keywords : Data envelopment analysis; Stochastic efficiency; Common set of weights; Normal distri-
bution; Quadratic Programming.

—————————————————————————————————–

1 Introduction

U
p to the year 1978, a large body of research

was conducted on measuring the efficiency of

DMUs in a system. The majority of these studies
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led to the development of non-parametric meth-

ods. Farrell [13] was one of the researchers trying

to overcome these issues by introducing a pro-

duction function, but he was unable to extend

the method to multiple outputs. However, he in-

troduced an efficiency measure that came to be

famously known as Farrells measure of efficiency.

Data envelopment analysis is an extension of Far-

rells idea with regard to efficiency calculation us-

ing a production function. Twenty years after

Farrells distinguished accomplishment, Charnes,

Cooper, and Rhodes [4] introduced a model based

on previous works called the CCR model. The

CCR model was presented as a single-objective
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model for calculating the relative efficiency of

decision-making units with multiple inputs and

multiple outputs. Later on, Banker, Charnes, and

Cooper [2] developed the CCR model under the

assumption of variable returns to scale (VRS) and

called it the BCC model. To calculate the rela-

tive efficiency in DEA, the ratio of a weighted set

of outputs to a weighted set of inputs is maxi-

mized. It is worth noting that to measure the ef-

ficiency of each unit, the model should be solved

again with respective modifications. In this re-

spect, different weights are obtained for the in-

puts and outputs of each DMU in each iteration

of the model. Flexibility in weight assignment

can be both considered a strength and a weakness

of this method. The advantage is that if a DMU

was found inefficient with this method, it will also

be inefficient using any other method. The flaw

to the method is that it allows any unit to as-

sign input and output weights that would result

in the maximum level of efficiency in comparison

with other units, and hence, there is the concern

that a unit might only be found efficient because

of the assigned weights. In addition, when dif-

ferent weights are obtained, it gives rise to the

question that which weight is more suitable. Due

to these issues and the incapability of basic mod-

els in resolving them, calculating a common set

of weights (CSW) became a method of interest.

In the CSW method, the ratio of weighted out-

puts to weighted inputs is simultaneously maxi-

mized for all DMUs. Thompson et al. [27, 26],

Cook et al. [6], Charnes et al. [5], and Roll et

al.[23, 24] have studied some of the CSW con-

cepts. Jahanshahloo et al. [14, 17] introduced a

multi-objective model for efficiency measurement

through the CSW method in one study, and using

the infinity norm, proposed a nonlinear method

for solving the CSW model in another. Further-

more, Cook and Zhu [7] utilized goal program-

ming to solve the CSW model, and Davoodi and

Rezai [12] suggested a linear method for the same

purpose. Despite the many capabilities of input

and output parameters in DEA, which have been

mentioned by many researchers, there are major

flaws to them as well. One of the most critical

flaws is dependence on information from a time

period in which the units under study have actu-

ally been operating. Therefore, the results pro-

vided as solutions by these models are based on

past information. One way to resolve this issue is

to develop a model that would provide the pos-

sibility of prediction by taking into account the

incidence odds and applying the predicted values.

One of the critical methods for dealing with im-

precise data is the application of stochastic data

in DEA.

Cooper et al. [8] were the first to introduce

the concept of chance constrained programming.

Hosseinzadeh-Lotfi et al. [21, 17] used the con-

cept of stochastic data to rank DMUs and achieve

centralized resource allocation. Azadeh et al. [1]

used a stochastic DEA model to calculate the ef-

ficiency of electric power companies. Cooper et

al. [11, 10, 9] and Huang and Lee [16] were also

among researchers that utilized the concept of

chance constrained programming. Khodabakhshi

et al. [20] developed an additive model for esti-

mating returns to scale in stochastic DEA. Fur-

thermore, Khodabakhshi [19, 18] used this con-

cept to develop input- and output-oriented super-

efficiency models in DEA. There are various mod-

els of efficiency measurement in DEA that are ex-

tended to interval and fuzzy data, but there are

no models suited to determine efficiency in the

presence of stochastic data using a common set

of weights. For instance, consider the numerous

branches of a bank. In each branch, the person-

nel salaries, administrative costs, rental fees, and

costs of movable properties form the inputs of

the branch. Meanwhile, the deposits (including

current accounts, savings accounts, short-term

and long-term investment accounts, etc.), loans

(including all loans extended to economic, in-

dustrial, mining, agricultural, housing, commer-

cial, and service sectors), and interbank services

(including incoming/outgoing wire transfers and

checks) are the outputs of the branch. Numer-

ous factors, such as macroeconomic and political

factors, unexpected governmental decisions and

their impact on the banking system, and other

similar environmental factors, have a completely

random and uncontrollable effect on the behav-

ior of depositors and borrowers. Therefore, we
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are faced with stochastic data in the efficiency

evaluation of bank branches.

Given that stochastic inputs and outputs are ob-

served in various areas, it seems necessary to

extend the previous definitions and models to

this type of data. In this paper, utilizing the

concept of chance constrained programming, we

first introduce a stochastic CSW model along

with probability restrictions. Then, we trans-

form the stochastic CSW model into a determin-

istic model, and following that, the deterministic

model is transformed into a quadratic program-

ming model. Determining a level of error would

cause the results to have a probable nature, and

increasing the level of error would reduce our con-

fidence in results such as efficiency scores. The

rest of this manuscript is organized as follows:

Section 2 presents the definitions and concepts

relating efficiency and the CSW model, and

a stochastic CSW model and its deterministic

equivalent are proposed in section 3. In sec-

tion 4, the application of the proposed model is

demonstrated using a numerical example, and fi-

nally, our conclusions and suggestions for future

research are presented in the end.

2 Background

Assume that we have n DMUs each consuming m

inputs to produce s outputs. Also, let xij and yrj
denote the ith and rth values of DMUj , respec-

tively. The following shows the fractional model

for calculating the relative efficiency of DMUo,

where o ∈ {1, . . . , n}:

θo = max

∑s
r=1 uryro∑m
i=1 vixio

s.t :

s∑
r=1

uryrj

m∑
i=1

vixij

≤ 1, j = 1, . . . , n (2.1)

ur, vi ≥ 0, i = 1, . . . ,m, r = 1, . . . , s

ur and vi represent the relative importance of

input and output vectors, respectively. Using

the Charnes-Cooper transformation [3], the frac-

tional model above is transformed into the follow-

ing linear model, which is known as the multiplier

CCR model:

θo = max

s∑
r=1

uryro

s.t :

m∑
i=1

vixi0 = 1

s∑
r=1

uryrj −
m∑
i=1

vixij ≤ 0, j = 1, . . . , n (2.2)

ur, vi ≥ 0, i = 1, . . . ,m, r = 1, . . . , s

To calculate the efficiency of each unit using the

multiplier CCR model, the model should be it-

erated. By doing so, different input and output

weights are produced for each DMU in each it-

eration of the model. To resolve this issue and

determine a single weight for all DMUs, the CSW

method can be used as follows [17]:

max



s∑
r=1

uryr1

m∑
i=1

vixi1

,

s∑
r=1

uryr2

m∑
i=1

vixi2

, . . . ,

s∑
r=1

uryrn

m∑
i=1

vixin



s.t :

s∑
r=1

uryrj

m∑
i=1

vixij

≤ 1, j = 1, . . . , n (2.3)

ur, vi ≥ 0, i = 1, . . . ,m, r = 1, . . . , s

Various methods have been proposed for solv-

ing this multi-objective fractional model. Goal

programming (GP) is one of these methods [25].

In goal programming, the decision maker spec-

ifies certain levels for achieving the objectives.

Moreover, the decision maker allows deviation

from the goals, and therefore, creates flexibility in

the decision-making process. Also, the objective

function seeks to minimize the undesirable devi-

ations. Based on the GP method, Model (2.3) an

be transformed into the following nonlinear model

in order to identify a set of common weights:

min
n∑

j=1

(
s−j + s+j

)
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Table 1: The average input-output data for 15 banks.

Personnel scores paid interests received interests loans bank fees

DMU01 12.1657143 3042777312 4101560290 171017942 238815365.7

DMU02 18.6157143 4554095611 6218453905 440984913 1519490550

DMU03 18.1257143 5420614923 6323510346 420481191 2191018454

DMU04 13.1728571 2899451169 5109351561 475870573 1355977200

DMU05 11.3671429 3426429642 4821842767 196013953 328262665.9

DMU06 13.57 5120803446 7315158710 586040178 2127950910

DMU07 12.78 5780459280 5651786897 232289072 574769441.4

DMU08 8.45428571 3472026870 2740483351 255702740 1165573151

DMU09 15.0014286 4332428054 4107394280 249633733 766701171.3

DMU10 15.2585714 5000232886 6518731217 624622398 5457856304

DMU11 12.65 4370662601 5591460382 444093713 1370700809

DMU12 10.5314286 2526027536 3504779713 658320635 977485353

DMU13 9.82714286 3107371152 3332608236 131463968 164765249.7

DMU14 12.6314286 3389075306 3220094121 286234437 1240881842

DMU15 11.6128571 3619785956 4550116513 281302473 857893696.4

s.t:
s∑

r=1

uryrj

m∑
i=1

vixij

+ s−j − s+j = Aj , j = 1, . . . , (2.4)

s∑
r=1

uryrj

m∑
i=1

vixij

≤ 1, j = 1, . . . , n

s−j , s
+
j ≥ 0, j = 1, . . . , n

ur, vi ≥ ε, i = 1, . . . ,m, r = 1, . . . , s

where Aj denotes the goal of the jth objective.

s−j and s+j are negative and positive deviations

from the objective, respectively. Technically, the

deviational variables s−j and s+j help the objective

function j to achieve the goal Aj = 1. Thereby,

the positive deviation is equal to zero here, i.e.

s+j = 0. Thus, the first constraint can be refor-

mulated as follows:
s∑

r=1

uryrj + s−j

m∑
i=1

vixij =
m∑
i=1

vixij ,

j = 1, . . . , n

Considering the nonlinear constraint above,

Model (2.4) cannot be transformed into a linear

model. In order to achieve the goal of DMUj

(efficiency scores of one), the numerator should

increase in the fraction
∑S

r=1 uryrj∑m
i=1 vixij

while the de-

nominator is decreased. Therefore, Model (2.3)

can be reformulated as follows:

min
n∑

j=1

(
s−j + s+j

)
s.t: ∑s

r=1 uryrj + s+j∑m
i=1 vixij − s−j

= 1, j = 1, . . . , n (2.5)

∑s
r=1 uryrj∑m
i=1 vixij

≤ 1, j = 1, . . . , n

s−j , s
+
j ≥ 0, j = 1, . . . , n

ur, vi ≥ ε, i = 1, . . . ,m, r = 1, . . . , s

Obviously, based on the first constrai(2.5), the

second constraint is redundant and can be re-

moved from the model. Therefore, the model can
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Table 2: Covariance of the inputs.

Covariance 11 12

DMU01 11 28.1037619 2130753830
12 2130753830 2.88E + 18

DMU02 11 343.2171619 86734091712
12 86734091712 2.52E + 19

DMU03 11 141.6761619 24151949825
12 24151949825 1.55E + 19

DMU04 11 16.95742381 4133633431
12 4133633431 2.03E + 18

DMU05 11 37.35045714 20172661533
12 20172661533 1.44E + 19

DMU06 11 13.0552 9714084720
12 9714084720 2.51E + 19

DMU07 11 33.54252381 13930523397
12 13930523397 1.16E + 19

DMU08 11 15.71349524 2819236832
12 2819236832 3.06E + 18

DMU09 11 47.42264762 11860619917
12 11860619917 5.27E + 18

DMU10 11 83.96704762 27107378091
12 27107378091 1.21E + 19

DMU11 I1 15.47603333 8094851174
12 8094851174 9.15E + 18

DMU12 11 13.54364762 4521995985
12 4521995985 3.72E + 18

DMU13 11 10.14172381 1563242334
12 1563242334 4.08E + 18

DMU14 11 43.92771429 −4296514482
12 −4296514482 1.06E + 18

DMU15 11 17.61259048 4375450930
12 4375450930 7.18E + 18

be formulated in the following linear form:

min

n∑
j=1

(
s−j + s+j

)
s.t:

s∑
r=1

uryrj −
m∑
i=1

vixij +
(
s+j + s−j

)
= 0 (2.6)

s−j , s
+
j ≥ 0, j = 1, . . . , n

ur, vi ≥ ε, i = 1, . . . ,m, r = 1, . . . , s

By setting s−j +s+j = sj , the model is transformed

as follows:

min
n∑

j=1

sj

s.t:

s∑
r=1

uryrj −
m∑
i=1

vixij + sj = 0 (2.7)

sj ≥ 0, j = 1, . . . , n

ur, vi ≥ ε, i = 1, . . . ,m, r = 1, . . . , s

Model (2.7) can have multiple optimal solutions.

In this case, using the model presented in [22], a

unique optimal solution can be obtained. Model

(2.7) can be reformulated as follows:

Max
n∑

j=1

(
s∑

r=1

uryrj −
m∑
i=1

vixij

)

s.t:

s∑
r=1

uryrj −
m∑
i=1

vixij ≤ 0, j = 1, . . . , n (2.8)
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Table 3: Covariance of the outputs.

Covariance O1 O2 O3

3* DMU01 O1 3.97E + 18 1.58E + 17 2.24E + 17
O2 1.58E + 17 7.54E + 15 1.10E + 16
O3 2.24E + 17 1.10E + 16 6.72E + 16

3* DMU02 O1 5.74E + 19 5.21E + 18 2.40E + 19
O2 5.21E + 18 5.18E + 17 2.44E + 18
O3 2.40E + 19 2.44E + 18 1.16E + 19

3* DMU03 O1 1.42E + 19 5.34E + 17 5.82E + 18
O2 5.34E + 17 1.21E + 17 7.70E + 17
O3 5.82E + 18 7.70E + 17 6.81E + 18

3* DMU04 O1 1.25E + 19 9.48E + 17 7.59E + 18
O2 9.48E + 17 2.44E + 17 1.30E + 18
O3 7.59E + 18 1.30E + 18 8.35E + 18

3* DMU05 O1 4.48E + 19 8.04E + 17 3.40E + 18
O2 8.04E + 17 2.41E + 16 6.21E + 16
O3 3.40E + 18 6.21E + 16 2.84E + 17

3* DMU06 O1 1.54E + 20 1.16E + 19 4.96E + 19
O2 1.16E + 19 9.02E + 17 3.88E + 18
O3 4.96E + 19 3.88E + 18 1.68E + 19

3* DMU07 O1 2.27E + 19 9.08E + 16 1.65E + 17
O2 9.08E + 16 2.57E + 16 1.39E + 17
O3 1.65E + 17 1.39E + 17 9.42E + 17

3* DMU08 O1 4.40E+18 2.49E+17 3.65E+18
O2 2.49E+17 4.03E+16 3.61E+17
O3 3.65E+18 3.61E+17 4.86E+18

3* DMU09 O1 8.81E+18 2.00E+17 1.26E+18
O2 2.00E+17 2.17E+16 8.64E+16
O3 1.26E+18 8.64E+16 5.48E+17

3* DMU10 O1 5.07E+19 5.44E+18 7.73E+19
O2 5.44E+18 6.76E+17 9.00E+18
O3 7.73E+19 9.00E+18 1.29E+20

3* DMU11 O1 1.00E+19 2.09E+17 -5.41E+17
O2 2.09E+17 6.52E+16 4.34E+17
O3 -5.41E+17 4.34E+17 3.62E+18

3* DMU12 O1 8.39E+18 3.33E+18 5.91E+18
O2 3.33E+18 1.75E+18 3.07E+18
O3 5.91E+18 3.07E+18 5.38E+18

3* DMU13 O1 4.67E+18 -1.05E+16 -1.92E+17
O2 -1.05E+16 2.68E+15 2.57E+15
O3 -1.92E+17 2.57E+15 3.37E+16

3* DMU14 O1 8.25E+18 4.18E+17 7.18E+17
O2 4.18E+17 7.97E+16 5.45E+17
O3 7.18E+17 5.45E+17 4.64E+18

3* DMU15 O1 1.38E+19 5.12E+17 7.02E+1
O2 5.12E+17 7.62E+16 4.30E+17
O3 7.02E+17 4.30E+17 3.04E+18

ur, vi ≥ ε, r = 1, 2, . . . , s; i = 1, 2, . . . ,m

If we let (u∗r , v
∗
i ) be the optimal solution of this

model, the CSW-efficiency of DMUj are calcu-

lated as follows:

θ∗j =

∑s
r=1 u

∗
ryrj∑m

i=1 v
∗
i xij

Definition 2.1. DMUj is CWA-efficient if θ∗j =
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1. Otherwise, DMUj is CWA-inefficient.

3 Efficiency measurement using
the CSW model with stochas-
tic inputs and outputs

Assume that X̃j = (x̃1j , . . . , x̃mj)
T and

Ỹj = (ỹ1j , . . . , ỹsj)
T are the stochastic

input and output vectors of

DMUj(j = 1, . . . , n), respectively. Moreover, let

Xj = (x1j , . . . , xmj)
T and

Yj = (y1j , . . . , ysj)
T be the expected value vectors

for the inputs and outputs ofDMUj , respectively.

Also, assume that the inputs and outputs have

normal distribution as follows:

x̃ij ∼ N
(
xij , σ

2
ij

)
, ỹrj ∼ N

(
yrj , σ

2
rj

)
Thus, the stochastic version of Model (2.8) with

probability constraints would be as follows:

MaxE

 n∑
j=1

(
s∑

r=1

urỹrj −
m∑
i=1

vix̃ij

)
s.t:

P

(
s∑

r=1

urỹrj −
m∑
i=1

vix̃ij ≤ 0

)
≥ 1− α, (3.9)

j = 1, . . . , n

ur, vi ≥ ε, r = 1, 2, . . . , s; i = 1, 2, . . . ,m

where P stands for probability and the level of

error, which is determined by the manager, lies

between zero and one. If we let (u∗r, v
∗
i ) be the op-

timal solution of the model above, the efficiency

scores of DMUj will be calculated as follows:

θ∗j =

∑s
r=1 u

∗
ryrj∑m

i=1 v
∗
i xij

j = 1, . . . , n

Stochastic efficiency can be defined as follows

through Model (3.9).

Definition 3.1. If θ∗o = 1, DMUo is stochasti-

cally efficient, and if θ∗o < 1, DMUo is stochasti-

cally inefficient.

3.1 Deterministic equivalent of the
stochastic CSW model

Now, we formulate the deterministic equivalent of

Model (3.9). The objective function of the model

is transformed into a deterministic expression us-

ing an expected value as follows:

E

 n∑
j=1

(
s∑

r=1

urỹrj −
m∑
i=1

vix̃ij

) =

n∑
j=1

s∑
r=1

uryrj −
n∑

j=1

m∑
i=1

vixij

Based on chance-constrained programming ap-

proaches with probability constraints [8], we ob-

tain the deterministic form of the models stochas-

tic constraint. For this purpose, consider the

probability constraint of unit j :

P

(
s∑

r=1

urỹrj −
m∑
i=1

vix̃ij ≤ 0

)
≥ 1− α,

By defining the slack variable εj , the inequality

above will be transformed into the following equa-

tion:

P

(
s∑

r=1

urỹrj −
m∑
i=1

vix̃ij ≤ 0

)
= 1− α+ εj ,

j = 1, . . . , n

Remark 3.1. Let X be a random variable and

a, b and c constant numbers, if

P (X ≤ a) = c and b ≤ a then there exists d ≤ c

such that P (X ≤ b) = d.

Using the point described above, there exists a

non-negative variable sj , such that:

P

(
s∑

r=1

urỹrj −
m∑
i=1

vix̃ij ≤ −sj

)
= 1− α,

(3.10)

j = 1, . . . , n

We define:

h̃j =
s∑

r=1

urỹrj −
m∑
i=1

vix̃ij
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Table 4: Covariance of the inputs with outputs.

O1 O2 O3

2* DMU01 L1 1719671889 1.27E+18 1719671889
L2 99614471.18 6.95E+16 99614471.18

2* DMU02 L1 924243294.5 2.24E+17 924243294.5
L2 1.38E+11 3.65E+19 137947000000

2* DMU03 L1 12350825587 3.54E+18 12350825587
L2 56936293137 1.68E+19 56936293137

2* DMU04 L1 32129081261 4.49E+18 32129081261
L2 2201601751 1.19E+18 2201601751

2* DMU05 L1 12278464628 8.49E+18 12278464628
L2 10430640443 3.67E+18 10430640443

2* DMU06 L1 1175340556 4.14E+17 1175340556
L2 8523015768 2.58E+18 8523015768

2* DMU07 L1 29019474287 2.38E+19 29019474287
L2 555764038.4 4.11E+17 555764038.4

2* DMU08 L1 2786719373 1.94E+18 2786719373
L2 17526781593 5.52E+19 17526781593

2* DMU09 L1 1763118129 4.33E+18 1763118129
L2 7624782536 1.83E+19 7624782536

2* DMU10 L1 27050849785 1.28E+19 27050849785
L2 41068395.33 2.77E+17 41068395.33

2* DMU11 L1 -251693086.1 1.96E+18 -251693086.1
L2 1766141441 7.51E+17 1766141441

2* DMU12 L1 276551928.8 2.28E+17 276551928.8
R3 -569067395.9 1.61E+18 -569067395.9

2* DMU13 L2 14436066250 6.39E+18 14436066250
L1 669579880.9 1.85E+17 669579880.9

2* DMU14 L1 4721358438 1.06E+18 4721358438
L2 52782510218 2.36E+19 52782510218

2* DMU15 L1 6921174483 2.79E+18 6921174483
L2 93220772175 3.88E+19 93220772175

Since any linear combination of normally dis-

tributed stochastic variables has a normal distri-

bution itself, we therefore have:

h̃j ∼ N
(
hj , σ

2
j (u, v)

)

hj = E
(
h̃j

)
= E

(
s∑

r=1

urỹrj −
m∑
i=1

vix̃ij

)

=

s∑
r=1

uryrj −
m∑
i=1

vixij

σj
2(u, v) = Var

(
h̃j

)
= Var

(
s∑

r=1

urỹrj −
m∑
i=1

vix̃ij

)

= Var

(
s∑

r=1

urỹrj

)
+Var

(
m∑
i=1

vix̃ij

)

− 2 cov

(
s∑

r=1

urỹrj ,

m∑
i=1

vix̃ij

)

= Var

(
s∑

r=1

urỹrj

)
+Var

(
m∑
i=1

vix̃ij

)

− 2
s∑

r=1

m∑
i=1

urviCov (ỹrj , x̃ij)

=
s∑

k=1

s∑
r=1

uruk Cov (ỹrj , ỹkj)

+
m∑
k=1

m∑
i=1

vivk Cov (x̃ij , x̃kj)

− 2

s∑
r=1

m∑
i=1

urviCov (ỹrj , x̃ij)
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Taking into account the stochastic variable h̃j ,

Equation (3.10) is reformulated as follows:

P
(
h̃j ≤ −sj

)
= 1− α, j = 1, . . . , n

P

(
h̃j − hj
σj(u, v)

≤ −hj − sj
σj(u, v)

)
= 1− α,

j = 1, . . . , n

On the other hand, by setting Z̃j =
h̄j−hj

σj(u,v)
and

taking into account the fact that Z̃j has a stan-

dard normal distribution, we have:

P

(
Z̃j ≤

−hj − sj
σj(u, v)

)
= 1− α

P

(
Z̃j ≤

hj + sj
σj(u, v)

)
= α

ϕ

(
hj + sj
σj(u, v)

)
= α → hj + sj

σj(u, v)
= ϕ−1(α)

Therefore, the deterministic for of the probability

constraint will be as follows:

hj + sj − σj(u, v)ϕ
−1(α) = 0

s∑
r=1

uryrj −
m∑
i=1

vixij + sj − σj(u, v)ϕ
−1(α) = 0

The deterministic form of Model (3.9) with prob-

ability restrictions is as follows:

Max

 n∑
j=1

s∑
r=1

uryrj −
n∑

j=1

m∑
i=1

vixij


s.t:

s∑
r=1

uryrj −
m∑
i=1

vixij + sj − σj(u, v)ϕ
−1(α) = 0,

(3.11)

ur, vi ≥ ε, r = 1, 2, . . . , s; i = 1, 2, . . . ,m

sj ≥ 0, j = 1, . . . , n

Now, defining the non-negative variable λj ,

Model (3.11) can be transformed into a quadratic

programming model:

Max

 n∑
j=1

s∑
r=1

uryrj −
n∑

j=1

m∑
i=1

vixij



s.t:

s∑
r=1

uryrj −
m∑
i=1

vixij + sj − λjϕ
−1(α) = 0, ∀j

(3.12)

λ2
j =

s∑
k=1

s∑
r=1

uruk Cov (ỹrj , ỹkj)

+
m∑
k=1

m∑
i=1

vivk Cov (x̃ij , x̃kj)

− 2
s∑

r=1

m∑
i=1

urviCov (ỹrj , x̃ij)

ur, vi ≥ ε, sj , λj ≥ 0,

r = 1, . . . , s; i = 1, . . . ,m, j = 1 . . . , n

Theorem 3.1. Model (3.12) is always feasible

for any level of error α.

Proof. Put

ur = ε r = 1, . . . , s

vi = ε i = 1, . . . ,m

We get λj from the second constraint. From the

first constraint, we obtain sj as follows:

sj = λjϕ
−1(α)−

s∑
r=1

uryrj +

m∑
i=1

vixij ∀j

Therefore, the model is always feasible for any

level of error α.

Theorem 3.2. For any 0 ≤ α ≤ 0.5, the opti-

mal solution of Model (3.12) is always a number

between zero and one.

Proof. Since α ≤ 0.5, we therefore have:

ϕ−1(α) ≤ 0 and sj , λj ≥ 0. Thus,

s∑
r=1

uryrj −
m∑
i=1

vixij ≤ 0 →

s∑
r=1

uryrj ≤
m∑
i=1

vixij →∑s
r=1 uryrj∑m
i=1 vixij

≤ 1

and the proof is complete.
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Table 5: Stochastic efficiency scores.

α = 0.5 α = 0.4 α = 0.3 α = 0.2 α = 0.1

DMU01 0.588 0.498 0.443 0.403 0.301
DMU02 0.713 0.604 0.537 0.488 0.373
DMU03 0.654 0.554 0.493 0.448 0.373
DMU04 0.95 0.805 0.716 0.65 0.48
DMU05 0.619 0.524 0.466 0.424 0.345
DMU06 0.777 0.658 0.585 0.532 0.493
DMU07 0.443 0.376 0.334 0.304 0.289
DMU08 0.476 0.403 0.358 0.326 0.314
DMU09 0.469 0.398 0.354 0.321 0.262
DMU10 1 0.847 0.753 0.685 0.603
DMU11 0.672 0.57 0.507 0.46 0.412
DMU12 0.808 0.684 0.608 0.553 0.457
DMU13 0.463 0.393 0.349 0.317 0.263
DMU14 0.556 0.471 0.419 0.381 0.308
DMU15 0.624 0.528 0.47 0.427 0.361

If the level of error becomes greater than 0.5,

the theorem above will not hold. We will now

discuss the matter through the following example.

Example 3.1. Assume that there are two DMUs

each having one input and one output, such that

x11 ∼ N(1, 1), y11 ∼ N(4, 1),

x12 ∼ N(2, 1), y12 ∼ N(6, 1)

In the evaluation of DMU2, the model has the

following restrictions:

4u1 − v1 + s1 − ϕ−1(α)λ1 = 0

6u2 − 2v1 + s2 − ϕ−1(α)λ2 = 0

Let the inputs and outputs of this DMU be uncor-

related; therefore, we have:

λ2
1 = u21 + v21

λ2
2 = u21 + v21

If α = 0.97, then ϕ−1(α) = 2; thereby, the solu-

tion

u1 = 3, v1 = 4, s1 = 2, s2 = 0

will apply to the above mentioned restrictions and

will be a feasible solution for the model in the eval-

uation of DMU2, given that it has an efficiency

score of
u1y12
v1x12

=
18

8
> 1

This is due to the fact that the considered level of

error is greater than 0.5.

Theorem 3.3. For any level of error α ≤ α′ in

Model (3.12), we have: Z∗(α) ≤ Z∗ (α′).

Proof. Let (Z∗, U∗, V ∗) be the optimal solution of

Model (3.12) in the evaluation of DMUp at the

level of error α′. Since ϕ−1(α) is an increasing

function, the inequality ϕ−1(α) ≤ ϕ−1 (α′) holds.

Hence, we have:

0 ≥
s∑

r=1

u∗ryrj −
m∑
i=1

v∗i xij − λjϕ
−1(α)

≥
s∑

r=1

u∗ryrj −
m∑
i=1

v∗i xij − λjϕ
−1
(
α′)

The expression above shows that (Z∗, U∗, V ∗) is

a feasible solution for Model (3.12) in the evalua-

tion of DMUp at the level of error α′. Given that

the model is a maximization model, the theorem

holds.

4 Numerical Example

In this section, through an applied example, we

explore the application of the proposed stochastic

CSW model with probability constraints. Data

are related to 15 Iranian banks between the years

2010-2016.
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In this respect, the personnel scores (weighted

set of personnel demographics including employee

count, education level, work experience, etc.) and

paid interests (to all bank accounts) are consid-

ered as inputs and received interests, loans, bank

fees, and other resources are parameters regarded

as outputs. Table 1 presents the data related to

these 15 banks expressed as means. To calcu-

late stochastic efficiency using Model (3.12), we

require the input covariance, output covariance,

and input-output covariance. All the covariance

values were calculated using EXCEL. Table 2 two

provides the input covariance values. Table 3 per-

tains to output covariance values. Table 4 shows

the input-output covariance values.

The efficiency of each bank was calculated for

different values using the stochastic CSW model

(3.12). The results are presented in Table 5. The

values of φ−1(α) equal 0,−0.25,−0.52,−0.84,

and −1.28 for α = 0.5, α = 0.4, α = 0.3, α = 0.2,

and α = 0.1. For different α values, different ef-

ficiency scores are obtained for each DMU. The

results are provided in columns two to six of Ta-

ble 5. To analyze the results better, a related

diagram was drawn using Matlab software. The

resulting diagram is presented in fig. 1. The

Figure 1

diagram above illustrates the efficiency of each

DMU based on various α values. The horizon-

tal axis is related to the DMUs and the vertical

axis represents different α values. The highest ef-

ficiency scores pertain to DMUs 10, 4, 12 and 6,

in that order. The only efficiency score of one

belongs to DMU 10 at α = 0.5, and there are

no other efficiency scores of one for other α val-

ues. The lowest efficiency scores are related to

DMUs 7, 9, 13, and 8 . For α = 0.1, DMU 9 has a

lower efficiency than DMU 7, while at other lev-

els of error, DMU 7 is less efficient than DMU 9.

Thereby, the highest and lowest efficiency scores

pertain to DMU 10 at α = 0.5 and DMU 7 at

α = 0.1, respectively. A reduction in the α value

will result in a lower efficiency score, because the

lower the value of α, the larger the number of

constraints that will hold, and thus, the smaller

our feasible region. Therefore, since we are deal-

ing with a maximization problem, there will be

poorer optimal solutions with every stage. Hence,

there will be lower efficiency scores as the α value

is reduced. As can be observed in the diagram,

with increased α values, the efficiency scores in-

crease as well. Therefore, efficiency scores are

dependent on the level of error (α). The level

of error α, which is predetermined by the man-

ager, indicates the level by which the problem

constraints do not hold. Thereby, any changes

in this level would lead to different results. If

α = 0.5, then φ−1(α) = 0. Thus, the results ob-

tained in stochastic DEA with this level of error

are similar to the results obtained in DEA with

deterministic data.

5 Conclusion

In many applied problems, managers are faced

data that are imprecise and stochastic. The

present study discussed efficiency measurement

using a common set of weights in stochastic data

envelopment analysis. In this regard, we ex-

tended the CSW model to cases with stochas-

tic data and obtained its deterministic equivalent,

which can be transformed into a quadratic pro-

gramming model. Furthermore, by determining

a level of errorα , we considered a probability of

incidence for unexpected situations. This level of

error should be specified by the manager from the

start based on his or her sensitivity toward the re-

sults. The produced results will be dependent on

the level of error and any changes in this level

would lead to different results. As an empirical
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example, we calculated the efficiency of a number

of Iranian banks. Results showed that among the

units under study, unit 10 had the highest effi-

ciency for all values ofα and unit 7 had the low-

est efficiency for all levels of error exceptα = 0.1

. The stochastic model allowed a level of error

for the data; therefore, in cases where the data

are relatively imprecise and an approximate es-

timation is required, the stochastic model would

be preferred. Nonetheless, in case of having pre-

cise data, the deterministic model will be more

suitable. In this study, the data were assumed

to be normally distributed. For future research,

we recommend considering other forms of statis-

tical distribution. Moreover, in our model, the

line pertaining to the objective function was un-

der the influence of mean values. In this regard,

a model can be presented in the future in which

the objective function is a function of the mean

and variance of data.
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